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PRECOMPACT OPERATORS

BY

ELIAS SAAB AND PAULETTE SAAB

Introduction

In [1], the authors showed that if F is a Banach space such that F* has the
Radon Nikodym property and contains no subspace isomorphic to l, and if
G is any Banach space and [l a compact Hausdorff space, then an operator
T: C(fl, F) -- G is unconditionally converging if and only if its adjoint T*
is weakly precompact and they asked whether or not the result is still true if
one assumes only that F* does not contain a subspace isomorphic to l. In
this paper we give a positive answer to their question. We actually prove a
more general result, namely we show that if E, F and G are Banach spaces
such that E* is isometric to an Ll-space, and F* contains no subspace
isomorphic to x, a bounded linear operator T: E F G is uncondi-
tionally converging if and only if its adjoint T* is weakly precompact. The
methods used to prove this result allow us to extend the result of [17], namely
we will show that if E* is isometric to an L-space and F is any Banach
space, then l is isomorphic to a complemented subspace of E (R)F if and
only if is isomorphic to a complemented subspace of F.

Notations and definitions

Let X and Y be two Banach spaces. A bounded linear operator
T: X Y is said to be unconditionally converging if T sends weakly
unconditionally Cauchy series E: x in X into unconditionally convergent
series, and T is said to be weakly precompact if every bounded sequence
(x) has a subsequence (X,,,,)k 1 such that (T(x,,,))k 1 is weakly Cauchy.
It follows from Rosenthal 11 Theorem (see [16] or [9]) that T is weakly
precompact if and only if the image by T of the unit ball of X does not
contain a sequence equivalent to the 11 basis. It follows from [8] see also
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[15] that an operator T: X Y is weakly precompact if and only if there
exists a Banach space Z not containing 11 and bounded linear opera-
tors A: X Z and B: Z Y such that T BA. This shows that if
T: X Y is weakly precompact then T*" Y* X* is unconditionally
converging. Of course if T*" Y* X* is weakly precompact then T** is
unconditionally converging and hence T is unconditionally converging. In this
paper we are interested in studying when unconditionally converging opera-
tors have weakly precompact adjoints. It is obvious that if F is a Banach
space such that F* does not contain a subspace isomorphic to 11 then every
bounded linear operator on F has a weakly precompact adjoint.
Here one should mention that the question we would like to address is

closely related to the PeIczynski’s property (V) of Banach spaces. For this
recall that a Banach space X has Peczynski’s property (V) if every uncondi-
tionally converging operator T on X is weakly compact. The most known
classical Banach spaces that have Pelczynski’s property (V) are spaces C(ft)
of continuous functions on compact Hausdorff spaces [14], or more generally
Banach spaces whose duals are isometric to Ll-Spaces [12]. This last fact will
be used later in this paper.

If ft is a compact Hausdorff space and F is a Banach space, then C(f, F)
will denote the Banach space of all continuous F-valued functions on f
under the uniform norm. It is well known [10] that the dual of C(f, F) is
isometrically isomorphic to the space M(f,F*) of all regular F*-valued
measures on ft that are of bounded variation. When F is the scalar field we
will simply write C(f) and M(f). If/x M(f, F*)we will denote by I1
the variation of/x which is an element of M(f) and for each x F we will
denote by (x,/z) the element of M(ft) such that for each Borel subset B of
11 we have

From this it follows that if f C(f) and x F then

<x,/z>(f) =/x(f (R) x).

Where f (R) x is the element of C(I), F) defined by

f (R) x(k) =f(k)x for all k K.

If E is another Banach space, we denote by E (R)F the algebraic tensor
product of E and F endowed with the norm

x(R)Yi =sup
i=1

m

Ex*(xi)y*(yi)
i=1
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The completion E F of E (R)F is called the injective tensor product of E
and F. The space C(f, F) is isometrically isomorphic to C(f) F.

If K is a compact convex subset of a locally convex topological Hausdorff
space, then a measure/x M(K, F*) is said to be a boundary measure or a
maximal measure [19], if its variation I1 is maximal in the sense of Choquet
[7]. In what follows Mm(K, F*) will denote the space of all boundary
measures. Throughout this paper we shall concentrate on the case where K
is the unit ball of the dual of a complex Banach space equipped with its
weak* topology. Let T be the unit .circle and let h denote the normalized
Haar measure on T. For each T, let trt: K K denote the affine
weak*-homomorphism of K defined by trt(p) tp for all p K. Given any
complex Banach space F, for each element /x M(K, F*) we denote by
O-t()--- /. O-t

--1 the image of the measure /x by trt; it is immediate that
trt(Iz) M(K, F*) for each t T and/z M(K, F*). Following [11] we say
that a measure tz M(K, F*) is T-homogeneous if trt(/z) t/z for all t T.
We also say that a function b C(K, F) is T-homogeneous if d(tp)=
for all T and p K. If b C(K, F) we let homr (b) denote the
T-homogeneous element of C(K, F) such that for p K,

homx (b)(p) Bochner fxt-l(tp) dh(t).

It is clear that homx defines a norm decreasing projection from C(K, F)
onto the subspace of all continuous T-homogeneous functions. By duality, for
Iz M(K, F*)we let homx (/z) denote the element of M(K, F*) such that

homT (tt)(th) ---/z(homT (4))

for all b C(K, F).
Finally, we shall denote by Mmh(K,F*) the subspace of Mm(K,F*)

consisting of T-homogeneous measures. If F C we simply write Mm(K) or
Mmh(g). All notations used here and not defined can be found in [9], [10]
and [11].

Main result

In this section we suppose that all Banach spaces considered are over the
complex field. The techniques we are using in the complex case [11] have
their analog in the real case [13] and so all the results presented here are true
in the real case also.
The next lemma is elementary and will be needed in the sequel.
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LEMMA 1. The mapping Ix ----* homT (Ix) defines a norm decreasing pro-
jection from M(K, F*) onto the subspace of T-homogeneous.measures. More-
over, if Ix Mm(K, F*), then homT (Ix) Mm(K, F*).

Proof. The first assertion is easy and follows from the fact the map
tz ----* homr(/) is adjoint of the operator homx defined on C(K, F). To
prove the last assertion, let Ix Mm(K F*). By [20] it is enough to show that
for each x F, the measure

( x, homr ( Ix) ) Mm(K)

For this note that for each x F, we have

(x, homx (ix)) homr(x, Ix).

The result now follows from [11], where it is shown that

if v Mm(K) then hom (v) Mm(K).

Let E be a Banach space, and denote by K its dual unit ball equipped
with the weak* topology. Let F be another Banach space. We will view
E F as a subspace of C(K, F) and we denote by (E F)1 the annihila-
tor of E F in M(K,F*). With these notations we have the following
theorem:

THEOREM 2. The following statements are equivalent"
(1) The space E* is isometric to an L1-space;
(2) For any Banach space F, the intersection of (E F) +/- and Mmh(g F*)

is reduced to zero;
(3) For any Banach space F, the dual of E F is isometrically isomorphic

to Mmh(g F*).

Proof To see that (1) = (2), assume that E* is isometric to an Ll-space.
Let F be any arbitrary Banach space and let / Mmh(K, F*) such that
Ix 0 on E (R),F. For each x F, the scalar measure (x, Ix) is then an
element of Mmh(K) and (x, Ix) 0on E. It follows from [11] that (x, Ix) 0
for all x F, hence Ix 0.
To show that (2)= (3) consider an L (E F)*. It follows from [20]

that there exists an element gL Mm(K, F*) such that

(i) Ix/ L on E ,F, and
(ii) I1,.11 IILII.
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For each L (E F)*, let vL =homT/xL, where L is an element of
Mm(K, F*) satisfying conditions (i) and (ii) above. Since

(E F)
+/-
( Mmh( K, F*) O,

for each L (E F)*, the element vL
of Mmh(K F*) associated to L such that

homx/x is the unique element

and

UL L on E F,

L IlL II.

It is clear then that the mapping L vL homT/xL defines a linear
isometry from (E F)* onto Mmh(K F*).

(3) (1) follows from [11], since assertion (3) implies that E* is isometri-
cally isomorphic to Mmh(K) which is an L1-space [11]. The following known
proposition is useful in the proof of the next theorem:

PROPOSITION 2 [14]. A Banach space Xhas the Pelkzynski’s property (V) if
and only if the following is satisfied: A subset H c X* is relatively weakly
compact whenever

lim sup Ix*(x,,)l 0
n x*H

for any weakly unconditionally Cauchy series E:= Xn in X.

THEOREM 3. Let E, F and G be Banach spaces such that E* is iso-
metric to an L space, and F* contains no subspace isomorphic to 11. Let T:
E (R)F ---. G be a bounded linear operator. The following statements are
equivalent:

(i) The operator T is unconditionally converging;
(ii) The adjoint T* of T is weakly precompact.

Proof It is enough to show that (i) implies (ii). Suppose that T is an
unconditionally converging operator. This implies that for any weakly uncon-
ditionally Cauchy series E= en in E we have

(,) lim sup T(en (R) X)II 0
nw xF, Ilxll <1

To see this, note that if this were not true, then there would exist a 6 > 0
and subsequence (e)na of (en)na and a sequence (x)a of elements of
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the unit ball of F such that

IlT(e, (R) xn)ll > 6 for each n > 1.

The series E:r e, (R) xn is easily checked to be weakly unconditionally
Cauchy in E (R)F since E:=I e, is weakly unconditionally Cauchy and
IIx II -< 1 for all n > 1. Condition (..)would then contradict the fact that T
is unconditionally converging, thus we have condition (.). For x F and
y* G*, consider the element (x, T’y*) E* defined as follows:

(x,T*y*)(e) =(T(e (R) x), y*)for all e E.

With this in mind, let

H {(x, T’y*); y* G*,x F with Ily*ll -< 1 and Ilxll _< 1}.

Hence H c E*. Since E* is isometric to an Ll-space, it follows from [12]
that E has the PeIczynski’s property (V). Notice now that if e E and
(x, T’y*) H then

I<x,T*y*>(e)l < IIT(e (R) x)ll.

Now apply condition (,) and Proposition 2 to deduce that H is relatively
weakly compact in E*. Let

S" (E F)* Mmh(K,F*)

denote the linear isometry which assigns to each element L in (E F)* the
unique element S(L) in lmh(K F*) SUCh that S(L) L on E (R)F. Simi-
larly let

s: E* Mmh( K)

denote the isometry of E* onto Mmh(K). Then for each x F and y* G*,
we have

(x,S(T*y*))= s((x,T*y*)),

This follows from the fact that s(x,T*y*) and (x,S(T*y*)) are both
elements of Mmh(g) and they both agree on E, for if e E one has

(x,S(T*y*) )(e) S(T*y*)(e (R)x) (T(e (R) x), y*),

and

s((x,T*y*))(e) (x,T*y*)(e) (T(e (R) x), y*).
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Hence they are identical. The set

s(H) {(x, S(T*y*)); y* G*, x F with Ily*ll 1 and Ilxll 1}

is relatively weakly compact subset of Mmh(g) and hence it is uniformly
countably additive [9]. This in turn implies that the set

W {IS(T*y*)I; y* G* and Ily* II 1)

is uniformly countably additive [10, page 8], here IS(T*y*)I denotes the
variation of the measure S(T*y*). By a result of Grothendieck [9] the set W
is relatively weakly compact subset of M(K). If F* contains no subspace
isomorphic to/1, it follows from [22] or from [4] and the methods used in [17],
that the set

{S(T*y*); y* G* and Ily* II 1}

is weakly precompact. Since S is an isometry the set

{T’y*; y* G* and Ily* < I}

is weakly precompact, and hence T* is weakly precompact.
The following corollary solves positively the question asked in [1]. Before

stating the corollary we need the following definition:

DEFINITION 4. We say that an operator T: C(f/,F)-- G is strongly
bounded if its representing measure is continuous at the empty set (see [5] or
[21]).

It is well known (see [5] or [21]) that if F contains no subspace isomorphic
to co then saying that T is strongly bounded is equivalent to saying that T is
unconditionally converging. This fact together with Theorem 3 gives:

COROLLARY 5. Let 1 be a compact Hausdorff space and let F and G be
Banach spaces. If F* does not contain a subspace isomorphic to 11, then the
following statements about a bounded linear operator T: C(fl, F) ---. G are
equivalent"

(1) The operator T is unconditionally converging;
(2) The operator T is strongly bounded;
(3) The adjoint operator T* of T is weakly precompact.

Proof. All one needs to notice is that if F* does not contain a subspace
isomorphic to 11 then F** does not contain a subspace isomorphic to co and
conclude using the remark preceding this corollary.
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Discussions and remarks

In light of Theorem 3, one can ask the following question: Under what
conditions on the Banach space X any operator T: X Y that is
unconditionally converging has an adjoint T* that is weakly precompact,
where Y is any Banach space. To be able to answer this question let us agree
to say that a Banach space X has the property weak (V) if it satisfies the
following property: A subset H of its dual X* is weakly precompact when-
ever it satisfies

(***) lim sup <Xn, X*)[ =0
n--.oo x*n

for every weakly unconditionally Cauchy series E= Xn in X.
It is clear that a Banach space X has the PeIczynski’s property (V) if and
only if X has weak (V) and X* is weakly sequentially complete. One can
quickly see that a Banach space X has weak (V) if and only if for any Banach
space Y, any unconditionally converging operator T: X Y has a weakly
precompact adjoint. To see that, let H be a subset of X* that satisfy (***)
above and let (x*)x be a sequence in H. Consider the following map
T: Y co defined by T(x) (x*(x))nz 1. This operator T is uncondition-
ally converging since H satisfies (***), hence T* is weakdy.precompact and
therefore the sequence (X*n)n> which is a subset of the image by T* of the
unit ball of is weakly precompact. Combining this observation with
Theorem 3 we get that E F has weak (V)whenever E and F are Banach
spaces such that F* is isometric to an Ll-space and F* contains no subspace
isomorphic to 11. This in particular implies that if F* contains no subspace
isomorphic to 11, then C(f/, F) has the weak (V) property. Let us mention
that it is still unknown whether C(f/, F) has weak (V) whenever F has the
same property. The best partial result in this direction was obtained in [6].

Consider now the following question: Under what conditions on the
Banach space Y an operator T: X Y is weakly precompact as soon as
T* is unconditionally converging, where X is any Banach space. For this let
us say that a Banach space has weak (V*) [3] whenever it satisfies the
following property: a subset H of X is weakly precompact whenever it
satisfies

*)1 o(****) lim sup I<X, Xn
noo xH

* in X*.for every weakly unconditionally Cauchy series Y..= x.
The Banach space X has (V*) [14] if it has weak (V*) and is weakly

sequentially complete. It is clear that any Banach space Y that contains no
subspace isomorphic to 11 has weak (V*), so co has weak (V*) but does not
have (V*). The results of [4] or [22] imply that if Y contains no subspace
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isomorphic to ll, and if (12,,v) is a probability measure space, then
Ll(V, Y), the space of Bochner integrable Y-valued functions equipped with
its usual norm [10], has the property weak (V*). Here also it turns out that a
Banach space Y has weak (V*) if and only if for any Banach space X, any
operator T: X ----* Y is weakly precompact whenever its adjoint is uncondi-
tionally converging. To see that, let H be subset satisfying condition ( )
above and let (xn)nz be a sequence in H. Consider the operator
T: Y defined by T((an)n 1) = a,x,. It is easy to check that T is
well defined, linear and has a closed graph, so T is bounded. The adjoint
T* of T is unconditionally converging. For let E= Yn* be a weakly uncondi-
tionally Cauchy series in Y*. Since H satisfies (, ,), one has

lim sup [y (x)[ 0.
koo n>l

A moment of reflection reveals that this implies that limk,.llT*(y)[[ --0
which in turn shows that T* is unconditionally converging. Therefore T is
weakly precompact and hence the sequence (x,). 21 is weakly precompact.

In [17] it was shown that if C(12, F) contains a complemented subspace
isomorphic to 11, then F contains a complemented subspace isomorphic to l1.
With the help of Theorem 2, we can extend this result as follows: Let E be a
Banach space such that E* is isometric to an Ll-space and let F be any
other Banach space. If E F contains a complemented subspace isomor-
phic to 11, then F contains a complemented subspace isomorphic to 1. First
observe that if E (R)F contains a complemented subspace isomorphic to
11, then (E F)* contains a subspace isomorphic to c0. By Theorem 2,
(E F)* is isomorphically isomorphic to Mmh(K,F*). This implies that
M(K, F*) contain a subspace isomorphic to c0. Apply now [17] to conclude
that F* contain a subspace isomorphic to co and therefore F contains a
complemented subspace isomorphic to 11 [2].
Another application of Theorem 2 and [22] gives the following: Let E be a

Banach space such that E* is isometric to an Ll-space. Let F be a Banach
space such that F is weakly sequentially complete then (E (R)F) is weakly
sequentially complete. As before (E F)* is isomorphically isomorphic to
Mmh(K,F*) which is a subspace of M(K,F*), but M(K,F*) is weakly
sequentially complete by [22]. If one suppose that F is an addition a Banach
lattice, then one can conclude using [18] that (E F)* has (V*).
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