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PERTURBATION THEORY IN DIFFERENTIAL
HOMOLOGICAL ALGEBRA II
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V.K.A.M. GUGENHEIM, L.A. LAMBE AND J.D. STASHEFF

1. Introduction

Perturbation theory is a particularly useful way to obtain relatively small
differential complexes representing a given chain homotopy type. An impor-
tant part of the theory is "the basic perturbation lemma" [RB], [G1], [LS]
which is stated in terms of modules M and N of the same homotopy type. It
has been known for some time that it would be useful to have a perturbation
method which would respect extra structure. For example, if the initial
modules M and N and the rest of the data have coalgebra, algebra, Lie,
Lie-co, or Hopf structures, then there should be a corresponding "homologi-
cal perturbation machine" that produces new data in the same category. A
special case of this for algebra or coalgebra data has appeared in [GS]. The
present paper is a continuation of part I [GL], but we have tried to make it
relatively self-contained. Unless stated otherwise all modules will be over a
commutative ring R with 1.
The use of "perturbation methods" in differential homological algebra has

had a long history, much of which was indicated in part I and [GLS].
We wish to express our gratitude to the referee for his careful reading of

an earlier version of this paper and his comments which have resulted in a
major restructuring of the exposition.

In part I we showed that, in a special case, the basic perturbation lemma
accepts algebra or coalgebra data without a change in the formulas, provided
that we begin with an initiator (defined below) that itself satisfies an algebraic
condition. The purpose of this paper is to cover the general case promised in
part I [GL, 3.2].
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2. Basic perturbation theory

Unless otherwise stated, we work over an arbitrary commutative ring R
with 1. We will use the term "module" to mean a chain complex over R. We
also suppose that M and N are modules, V and f are chain maps, and b is a
chain homotopy; V: M N, f: N M, and : N N, satisfying fV 1M,
Vf= 1N + D(b), where D(b)= dgb + thdN. We will refer to Vf often
enough to denote it by 7r. This information will be denoted succinctly by the
diagram

MN,d
f

Such objects and maps are called SDR-data [LS], [GS], [GL]. This notion of
SDR-data first appears in 12 of Eilenberg-MacLane [EM1], where it is
referred to as a contraction, and crucially (in terms of the history of
homological perturbation theory) in [RB] and [WS]; in [GMu] SDR-data with
some more structure is called Eilenberg-Zilber data, whereas in [HM] SDR-
data with some more structure is called a trivialized extension. We call V the
inclusion and f the projection, while b is simply called the homotopy. It was
pointed out in [LS] that given f, V, b, the homotopy b could be changed to

’ so that fb’ 0, b’V 0, and b’b’-= 0. This can be achieved, if necessary,
by first setting b" D()D(ch) and then b’ b"db". We call these proper-
ties "side conditions". We point out that these conditions are crucial in the
proof of the "algebra perturbation" lemma below.

2.1 The basic perturbation lemma

Consider SDR-data

( v )M----N,

and a new differential . on N. Let t .- d. Thus t satisfies

(2.1.1) dt + td + 2= 0

We now introduce a natural decreasing filtration. Let ’ be the algebra of
non-commuting polynomials in b, t, and d filtered by the weight in t. The
filtration induced by the image of the obvious representation on End(N)will
be denoted by In so that

End(N) I 11 ::3 D I
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For the purposes of (2.1.2) below, we also define filtrations for Hom(M, N)
and Hom(N, M) using In f In and InL In V respectively.
We note that, in the example concerning the Serre filtration in [G1], there

is an error which was pointed out to us by Don Barnes [DB]. The point is
that if we allow all operators, then the statement that every operator
decreases the Serre filtration by one is false. The difficulty is overcome by
restricting to the subring of operators generated by V, f, b, and t and using
the above filtration.

Remark. Note that (2.1.1) implies that dt + td 12

Following [G1], we define

t t, tn+ (tdp)nt
n--- +’’" +tn"

We call the initiator. For each n define new maps as follows.
On M,

(i) Oqn+

(ii) Vn+
=n + ftnV =d
Vn + btnV V + bEnV,

and on N,

(iii) fn +
(rv) }n+l

fn -I- ftn( f + fndP
(n "b dPtndp "-dp + dpndp.

Then we have:

(2.1.2) LEMMA [G1] (also see [RB], [WS]).

8n0n In, .Vn Vn0n In,
Cgnf f.. In, fnVn 1M,
Vnfn 1N "-)n )n’’@ In, dPnVn O,
fnfn O, (n(n O.

Remark. The convergence of these maps occurs in many situations be-
yond [G1] and [RB]. For example, the basic perturbation lemma is applied to
certain iterated fibrations in [LS] and specifically to nilpotent groups in [L3] to
obtain complexes over the integers. Furthermore, the analogous construction
works (converges) for some non-nilpotent groups such as the fundamental
group of the Klein bottle as pointed out in [BL].

In the following, we will often use the notation f g mod In if f g In.
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2.2 Perturbation of objects with structure

We will state perturbation theorems for coalgebras and algebras and give
the details for coalgebras. We note however that no use of (co)associativity or
(co)unit is used in the proofs. The reader should therefore think of "algebras"
and "coalgebras" in the sense of universal algebra. A further remark will be
made about this after the proofs of the algebra lemma. We will come back to
the issue in another paper which will deal with the other algebraic structure
theorems mentioned in the introduction.
We write our structure maps as c: C- C (R) C for coalgebras C and

m: A (R) A A for algebras A. As above, consider a given set of SDR-data

( )M N, dp
f

If M and N are coalgebras, then we say that b is a "coalgebra homotopy" if
(see [AH], [GMu])

cth (1 (R) (h + th (R) 7r)c.

Recall that the initiator is a coderivation means

ct= (1 (R)t+t(R) 1)c.

When M and N are algebras, the corresponding notion of "algebra homo-
topy" is

Cm=m(l(R)d)+th(R)

and t is a derivation means that

tm=m(l(R)t+t(R) 1).

Briefly, the theorems and their duals say that if M and N are (co)algebras
and b is a (co)algebra homotopy and is a (co)derivation, then for all n > 1:

(1)
(2)
(3)
(4)

If V is a (co)algebra map, then so is V modulo In-1.
Iff is a (co)algebra map, then so is f modulo In-1.
If V and f are (co)algebra maps, then On is a (co)derivation.

is a (co)algebra homotopy modulo I- 1.

For the precise statement we need some additional notation. Let

Sn

u=tdp:NN,

1 + En 1 + u + un,
v=t:NN,

rn 1 + p,,, 1 + ,v + U n.
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Note that

7r2=Tr, f’rr=f, u=O, u’rr=O,
Cv=O, rv=O, r=O, r=O.

We will freely make use of these identities in the discussion that follows.
As we have stated, there are eight theorems, four for coalgebras and four

for algebras which are completely dual. We will give proofs of the four
coalgebra versions. Only in (2.2.3) do we need d to be a coderivation and
then only on N. These proofs dualize in a straightforward manner to yield
the algebra versions of the statements.

Define a filtration of Horn(N, M (R) M) by In (f (R) f)Jnc where jn c
End(N (R) N) is the ideal generated by products of (R) 1, 1 (R) t, b (R) 1,
1 (R) , d (R) 1, and 1 (R) d with at least n factors equal to 1 (R) or (R) 1.

(2.2.1) PROPOSITION. If cf (f (R) f)C, then for all n >_ O,

Cfn+l (fn+l (R) fn+l) c mod In.

Proof We have

n

fn+l =fEui
i=0

SO

(fn/l (R) fn/,)C E (f (R) f)( ui (R) uJ) c"
O<i,j<n

On the other hand,

n

Cfn+ CfSn ( f (R) f) E cui
i=0

Put

= (l(R)t+t(R) 1)(1 (R)th+b(R)
1 (R)u +u (R)rr+t(R)d-(R)tTr.

Then cu ct c and so cu ic. On the other hand, an easy induc-
tion using the conditions uTr 0, fTr f, u 0 and f 0 gives

(f (R) f).i= _. (f (R) f)(uk (R) ut),
k+l=i
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and so

(fn+l (R) fn+l) c Cfn+l

(f(R)f)( E (u’(R)uy)-
O<i,j<n

E (f (R) f)( ui (R) uJ) c I
i+j>n

E (ui*uJ)) C
i+j<n

The proof is now complete.

Remark. Note that in the proof above we have not assumed that either
differential is a coderivation.
A similar proof using rn 1 + v + v n" N --, N (so that 7n+l rn7)

gives:

(2.2.2) PROPOSITION. /f cV (V (R) V)c,. then for all n > O,

CVn+l (Vn+l (R) rn+l) mod In.

We now consider the status of the sequence of "partial differentials"
For this we use the combined hypotheses of (2.2.1) and (2.2.2).

(2.2.3) PROPOSITION. Iff, V are coalgebra maps, then for all n > O,

COn + (On + (R) 1 + 1 (R) O + 1) ( no congruence necessary ).

Proof Given the formula for (f (R) f)i in the previous proposition and
the fact that uV 0, it is now routine to verify that

n-1

COn+ cd + E (f (R) f)(1 (R) uit + uit (R) 1)(v (R) V)c.
i=0

On the other hand,

(0n+ (R) 1 + 1 (R) 0n+I)C

ca + (I ) I2 u-t + u-t ( V)c
i--1

so we are done.
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We now consider the effect of the perturbation on the homotopy b. For
this we may drop the hypotheses on f and V.

(2.2.4) PROPOSITION. For all n > 0

n+ (1 (R) (n+ q- (n+ (R) 7T) mod In.

Proof. We introduce the notation 1 (R) + (R) st. We then have

n n

C(n E cui E ic
i=0 i=0

while it is easily seen that

1 (R) n+l -I- n+l (R) 7/" 1 (R) rnt at- sn (R) rnSn

n

i=0 O<i,j,k<n
U (R) uJTI’U k

An induction that is now routine and left to the reader shows that

6 1 (R) un( "or" E (ui (R) uJTTuk
i+j+k=n

We thus have

(1 (R) n+l + n+l (R) "17")C Cn+l E tui (R) uJ’wuk
i+j+k>n

Remark. Note that, as in (2.2.1) and (2.2.2), we did not assume that either
differential was a coderivation in the proof of (2.2.4).

We will state the algebra version of the above theorems for future
reference.

(2.2.5) PROPOSITION. Suppose that

(M )A,v

is SDR-data where M andA are algebras, t: A --, A is an initiator such that is
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a derivation and v is an algebra homotopy"

tm m(t (R) 1 + 1 (R)t), vm m(1 (R) v + v (R) aft).

(1) If am m(a (R) a) then for all n > O,

re(an+ (R) an+l) an+ira mod In.
(2) If tim m(fl (R) fl) then for all n >_ O,

m( fln+ (R) fin+l) fln+ m mod In.

(3)
(4)

If a and fl are algebra maps, then for all n >_ 1, 0n is a derivation.
For all n >_ O, m(1 (R) Vn+ "" lZn+ (R) aft) ln+ m mod In.

The formulas in the proofs lend themselves to convergence lemmas. For
example, suppose {fn} is such that there is an n such that fn/l fn then
ftnd fun 0 hence fui= O, for all > n., i.e. fn+k fn for all k > 0, i.e.
{fi} is naive convergent. Now let m 2n, then

(Ym+ Ym+ )C Cfn+ E (fui(R)fuJ)c
i+j>2n

hence at least one of i, j must be > n so the expression is zero and

(L *L)c =cL.
Therefore:

(2.2.6) PROPOSITION. Iffn +
(f= (R) f=)c cf=.

fn, then naive convergence takes place and

Similar statements hold for V= and tboo:

(2.2.7) PROPOSITION. If Vn+ Vn, then (V= (R) V=)c cV=.

(2.2.8) PROPOSITION. If (n+ (n, then (1 (R) boo + boo (R) zr)c cboo.

We also have, of course, the three corresponding dual algebra statements.

Remark. The proofs just given do not give results directly for Lie, Lie-co,
or commutative algebras. In these cases, the (anti) symmetry must be taken
into account. For example, note that the definition of an algebra homotopy
we have given is not a good definition for commutative algebras. If m is a
commutative operation, then the left hand side of the equation vm m(1 (R)
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v + v (R) 7r) is symmetric, but the right hand side is not. We will come back to
this issue in another paper.

3. The tensor trick

It may seem a bit difficult to make sure that the (co)algebra conditions
above are satisfied. This difficulty is resolved in the so-called tensor trick (see
[GL, (3.2)], [GLS] [HK]). Consider now a connected differential graded
module Z (i.e., Z is non-negatively graded and Z0 R), denote by TcsZ the
tensor coalgebra on the suspension sZ of the submodule Z of positive
elements with the tensor product differential. Now consider SDR-data satis-
fying the side conditions with no other assumptions on the maps:

M----N,

but with M and N connected. We form the corresponding tensor coalgebra
of the given data to obtain new SDR-data

TCs. TCs, Tdp

Here TV and Tf are an abuse of notation for the obvious maps and

where, with s implicit,

T b (R) 7r (R) (R)Tr+ 1 (R)6 (R)Tr(R)

+ +1 (R) (R) 1 (R)b (R)Tr(R) (R)Tr+

+ 1 (R)"" (R) 1(R)6, nfactors.

This construction appears in [EM, I]. The differentials involved are just the
tensor product differentials. The maps TV, Tf are maps of coalgebras, and
T is a coalgebra homotopy. Now let N be an algebra and take the initiator
on TCsN to be the "algebra part" of the bar construction differential on N,

i.e.,

t(a1(R) an) +_ a (R) (R) aiai+ (R) (R)an

As introduced in [GL], the tensor trick consists of applying propositions
(2.2.1)-(2.2.4) to the tensor coalgebra data above. The formulas of the basic
perturbation lemma converge because the correcting terms decrease the
number of tensors by one and so will be zero after a finite number of steps.
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Convergence in the dual situation involving the "coalgebra part" of the cobar
construction is much more subtle. It is clear that, with the tensor trick, we
obtain information not about the original data, but about the corresponding
"classifying spaces". We immediately obtain the result of [GS]. Applications
to K-T. Chen’s work [KC] are given in [GLS] and applications to E. Brown
[EB] and T. Kadeishvili’s work [TK] are given below. Related results are
discussed in Heubschmann-Kadeishvili [HK].

4. Consolidating earlier theorems

The algebra perturbation lemma can be used to consolidate several theo-
rems appearing in [EB], [TK], [GMu], [G2], and [GS]. This observation began
in [GL] where we showed a relationship between the work in [GMu], [G2]
and [GS] in a special case. We now lift the restriction of that special case.
The theorems we have in mind will be referred to using the notation of this
paper.

4.1 Cobar and bar construction results

Recall the cobar construction. For a connected differential graded module
Z, denote by Ta$-l, the tensor algebra on the desuspension of , with the
tensor product differential. The cobar construction 12C [FA] on a (differen-
tial graded coalgebra)(C,A) is Tas-l with total differential d + t where
the "coalgebra part" t is the graded derivation determined by

tc , + C Cti

where Ac ,c (R) ci.

Gugenheim’s theorem in [G2] is the following:

(4.1) THEOREM [G2, (2.1)]. Given SDR-data

( v )HC, qb

where C is a simply connected coalgebra, H is a module with trivial differential
(d 0), and V and f are merely assumed to be module maps, there is a
derivation

and a twisting cochain

Tas-1 _._> Tas-1

7"" C --> (ras-l, )
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such that the induced map of differential graded algebras

is an isomorphism in homology.

Gugenheim’s formulation of this perturbation result was inspired directly
by K-T. Chen’s work [KC] as explained in [GLS]. The result itself had already
been discovered by T. Kadeishvili [TK], although, at the time, we were
unfortunately not aware of this fact. R. Hain has worked out an analogous
result in the Lie setting [RH2]. The result above was generalized to the case
where the differential in H above is not assumed to be zero by Gugenheim
and Stasheff in an unpublished manuscript that had circulated for some years
before the published (dual)version appeared in [GS].

(4.2) THEOREM [GS (II)]. Suppose that

M _.__A
I’

is SDR-data where A is an algebra, M is a differential module (both connected),
and f and are merely assumed to be module maps. There exists a coderivation
of the tensor coalgebra

O" TCsM TCsM

and a twisting cochain

z" TCsM A

such that the induced map of differential coalgebras

" TCsM BA

induces an isomorphism in homology.

Even when d 0, the result involving the cobar construction is more
subtle because the initiator raises the filtration given by the number of
tensor factors. We will deal with this in another paper that addresses
convergence issues in several general settings.

4.2 A-structures

An Aoo-algebra means a connected module M along with a differential 0
which is a coderivation of the tensor coalgebra TCsM and a perturbation of
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the tensor product differential, i.e. differs from the tensor product differen-
tial by terms which increase the number of tensor factors. We write (TCsM, O)
simply as BM [JS]. For later use, it may be helpful to recall another
interpretation of Aoo-algebras in terms of maps. Since the differential O:
TCM TCM is a coderivation, we can look at the induced maps

mi" iM---->M for/> 1.

These are the composites

m
(R)M------o M

TCs o_ TCs"

Because of the fact that the differential is a coderivation, the maps m satisfy
interesting relations. For example, m is the differential on M, and m2 is an
operation on A for which m is a derivation. The map m3 is a chain
homotopy giving the obstruction to the associativity of m2. Similarly, in the
dual case (which follows by a proof that is completely dual to the one in [GS]
but under a stronger assumption that guarantees convergence), we call the
differential algebra (Tas 1H, t) a Aoo-coalgebra and write it simply as H.

In light of our current work, we see that the more general theorem 4.2 is
really only one third of the whole picture given by the tensor trick where we
obtain new SDR-data

( )M ---- BAwith Voo and foo maps of differential coalgebras (bo a coalgebra homotopy).
Project Voo to A,

using the obvious projection 7r onto A c A, which is a universal twisting
cochain. We obtain a twisting cochain z as in the earlier theorems, but now
we have a map foo in the reverse direction as well as a homotopy for the new
maps. Before pointing out the significance of the "reverse map", we review
the related result from [GL], viz. in the case when the projection f in the
original data is multiplicative (thus also assuming that M is a d.g. algebra).
We recapture the recursive formula for the twisting cochain given by
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Gugenheim and Munkholm [GMu]"

q’0 =0

’Tn E t(’/’i U’/’j).
i+jfn

We furthermore recapture the homotopy in [GMu].

4.3 Homotopy twisting cochains and homotopy representations

For an application of the limit projection foo, recall the theorem of
E. Brown:

(4.3) THEOREM [EB (9.1)]. Let - be a twisting cochain z: C A, where C
is a coalgebra and A is an algebra, and L is a module over A. Let E
End(H(L)) denote the endornorphisrn algebra of the homology ofL with trivial

differential. There is a twisting cochain -*" C E such that the twisted tensor
product complexes C (R) L and C (R), H(L) are homology equivalent.

Recall also Kadeishvili’s theorems, the first of which we have already
mentioned:

(4.4) THEOREM [TK, p. 232, pp. 235-236]. (1) Given an algebra A, there is
an A-structure on H(A) and a twisting cochain " JH(A) A.

(2) Given a twisting cochain I." C- A, there is a "homotopy twisting
cochain" (see the definition below) fz" C H(A) with respect to the A-struc-
ture on H(A) given in (1) above for which I and zfz are equivalent, i.e., the
twisting cochains are homotopic in the sense of twisting cochains [TK, p. 235],
[GMu].

Generally, if M is an Aoo-algebra, so that BM exists as above, then a
hornotopy twisting cochain z" C --, M (where C is a coalgebra) is an R-mod-
ule map such that there exists a differential coalgebra map , making the
following diagram commute"

where r is as above for BA.

C -M

BM
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Now we will explain the relationship between these theorems and the
tensor trick. To begin, we recall the left regular representation of an alge-
bra M.

p" M Hom(M, M) End(M)
a (b ab).

The map p is an algebra map precisely because the operation in M is
associative. If M is an Ao-algebra, the operation in M is not generally
associative. However, the map p above is still defined for an Aoo-algebra M,
but it may no longer be an algebra map because of the possible lack of
associativity. It is however an algebra map up to homotopy in the strong (Aoo)
sense, (see [GMu] for a discussion of such maps). This fact was shown in R.
Nowlan’s thesis [RN]. To be precise, we have that p extends to a map of
differential graded coalgebras

BM B End(M)

or equivalently, there is a twisting cochain which makes the following
diagram commute:

End(M)

Note that if the differential in M is trivial, then the differential in
Horn(M, M) End(M) is trivial and B End(M) is just the ordinary bar
construction of the R-algebra End(M).
By this device, we may convert a homotopy twisting cochain z" C --. M into

an ordinary twisting cochain .P: C End(M); we take . z. We can then
extend the theorems above for a given twisting cochain z" C --. A, assuming
that we have SDR-data

( v )MA
f

where A is an algebra. We may use the homotopy twisting cochain obtained
by projecting the composite

fofr. C -- A-- Monto M via the universal homotopy twisting cochain 7r, and, using the
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discussion above, also obtain the associated twisting cochain

End(M).

(4.5) THEOREM. Let C - A be a twisting cochain where C is a coalgebra
and A is an algebra. Let

M z---* A cI’

be SDR-data for some connected module M (with possibly non-zero differential).
There is an Aoo-structure on M, a homotopy twisting cochain

Zr.CM

and a twisting cochain

’*" C --* End(M)

such that we have factorizations

C ---. End(M)

BA M.

with foo a coalgebra homology equivalence (foo is the map obtained from the
tensor trick).

Note that zr itself is a homotopy twisting cochain which induces the
identity on /M (i.e., zr is the homotopy twisting cochain associated to the
Aoo-structure obtained from the tensor trick).
As a consequence of this theorem, the twisted tensor products C (R) A,

and C (R). M are homology equivalent (compare [GL, (4.1)]). One can also
define the "homotopy twisted tensor product" C (R)5 M [TK, p. 235] and this
complex is also homology equivalent to C (R) A.
We leave the details of the proof and the extension to the case of modules

L over A as in Brown’s theorem to the reader.
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