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ON THE SPIN BORDISM OF B(E8 E8)

BY

STEVEN R. EDWARDS

Let E8 be the exceptional Lie group; let BE8 be its universal classifying
space. Bott and Samuelson (2) have shown that in dimensions less than 16,
the only non-zero homotopy of E8 is ra(E8) Z, zr15(E8) Z. By the long
exact homotopy sequence of the universal Es-bundle, 7r4(BE8) Z,
zra6(BE8) Z, and rk(BE8) 0 for all other k < 16. Let K(Z,4) be the
Eilenberg-MacLane space whose only non-trivial homotopy group is infinite
cyclic in dimension 4. By the Whitehead theorem (see, e.g., Serre (5)) the
map BE8 K(Z, 4), sending generator to generator in cohomology, yields
an isomorphism in homology through dimension 15. Similarly, the map

B(E8E8) =BE8BE8K(Z,4) K(Z,4)

induces an isomorphism in homology through dimension 15. We use this
isomorphism to compute the spin bordism of B(Es Es).
The motivation for this investigation was given by Witten (10), who

examined a model for heterotic string theory for which an eleven-dimen-
sional compact spin manifold M has 2 principal E8-bundles V1 Vz --* M.
Here the fundamental relations are that homotopy classes of maps of
compact spin manifolds g: M" B(Es Es) are in one-to-one correspon-
dence with principal E8 E8-bundles V ] V2 Mn, but pairs (Mn, g) are
elements of sfi"(B(E8 E8)). Corollary 7 shows that llS’i"(B(E8 E8))
0, so that in fact an E8 Es-bundle over an l1-manifold must be trivial. This
insures that the global space-time anomaly vanishes in the above mentioned
model for string theory.
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Anderson, Brown, and Peterson (1) completed the calculation of the spin
bordism ring 12s.pin. We note the low-dimensional groups for later reference:

dim 0 1 2 3 4 5 6 7 8 9 10 11

group Z Z2 Z2 0 Z 0 0 0 2Z 2Z2 3Z2 0

Stong (7) has calculated

Z, n 4,
2Z2, n 8,

--nfiSpin( K( Z, 4) ) Z2 n 9,
2Z2, n 10,
0, all other n < 11.

Since s.pin(x) is a homology theory,

fiSnPin ( K( Z, 4) X K(Z, 4))

6SnPin( K( Z, 4) A K(Z, 4)) fiSnPin ( K( Z, 4)) hSnPin( K( Z, 4))

(where X A Y is the smash product), and the problem reduces to a calcula-

tion of (SnPin(K(Z 4) A g(z, 4)).

LEMMA 1.

fiSnPin ( K(Z, 4) A K(Z, 4))
0,

n--8,
all other n < 11.

Proof t*(K(Z, 4) A K(Z, 4); Q) t*(K(Z, 4); Q) (R) t*(K(Z, 4); Q)
by the Kunneth formula, but H*(K(Z, 4); Q) -= Q[i], where is the image
under the coefficient homomorphism of the standard generator
Ha(K(Z, 4); Z). Also, -S,pin (R) Q Q[x4i] is a polynomial ring on 4i-dimen-
sional generators. In the Atiyah-Hirzebruch spectral sequence with

-Spin (R) Q)Ep2, q p(K(Z, 4) A K( Z, 4) __q

converging to a filtration of fisP](K(Z, 4) A K(Z, 4)) (R) Q, for p + q < 11,
the only non-zero element is 2at E8. o. This element survives to E.
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LEMMA 2.

(K(Z,4) A K(Z,4);Z2)

Z2, k 8,
2Z2, k 10,
2Z2, k 11,
3Z2 k 12,
0, all other k _< 12.

Proof. /(K(Z, 4); Z2) is a polynomial ring over Z2 on admissible classes
Sqti (see Serre (4)), where dim 4. By the Kunneth formula,

/-* ( K( Z, 4) A K(Z,4);Z2)

has the following basis:

dimension basis elements
8 i(R)i

10 Sq2i (R) i, (R) Sq2i
11 Sq3i (R) i, (R) Sq3i
12 2 (R) i, (R) 2, SqEi (R) SqEi

LEMMA 3. In dimensions
any odd prime p except p 3.

< 12, K(Z, 4) A K(Z, 4) has no p-torsion for

Proof. *(K(Z, 4); Zp) is a module over the mod-p Steenrod algebra
(Cartan (3))with generators i4, 1i4 of dimension 4 + 2(p 1), flli4 of
dimension 4 + 2(p 1) + 1, plus higher dimensional terms. In dimensions
< 12, the only non-integral classes in I*(K(Z, 4) A K(Z, 4); Zp) are ,1i4
(R) 4 and 4 (R) 1i4 when p 3.

PROPOSITION 4.

Z,
Z2 () Z2,Hn(K(Z, 4) A K(Z, 4); Z) -= 2Z 2Z3 Z2,
0,

n=8,
n 10,
n 12,
all other n < 12.

Proof The proof follows easily from the lemmas and the Universal
Coefficient Theorem.

COROLLARY 5.
2-torsion.

For n <_ 11, the torsion in SnPin(K(Z 4) A K(Z, 4)) is all
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Proof In the Atiyah-Hirzebruch spectral sequence with

SpinE2, p(K(Z, 4) A K(Z, 41; __qq

the E2-term is

0
Z2 0
Z2 0
Z 0

2Z2
2Z2 0

8 9 10 11

forp +q < 11.
Rather than further analyze the preceding spectral sequence, we next

make use of the generalized Thom construction (see Thom [9], and Stong
[8]):

fiS,pin( K( Z, 4) A K(Z, 4)) -= rr. ( K(Z, 4) A K(Z, 4) A MSpin),

where MSpin denotes the Thom space of the universal bundle over BSpin.
Anderson, Brown, and Peterson [1] have given a decomposition of MSpin

into BO BO(8,... ) This decomposition implies that

*(MSpin; Z2) -= ’/(1"Sq’ + afSq2)U
+ d/(gSq + Sq2)w U + higher terms,

where is the mod-2 Steenrod Algebra, U is the Thom class of the
universal bundle over BSpin, and w4 is the image under the Thom isomor-
phism of the Stiefel-Whitney class w4 Ha(BSpin; Z2). Since in low dimen-
sions,/*(MSpin; Z2) is a free ,f/afl-module (where ’1 is the subalgebra
generated by Sq and Sq2), to determine

/* (K( Z, 4) / K( Z, 4) /x MSpin; Z2)
-=/*(K(Z, 4) A K(Z,4);Z2) (R) *(MSpin; Z2)

as a module over ,, it suffices to consider fI*(K(Z, 4)/x K(Z, 4); Z2) as a
module over ,’1. The Adem relations (see Steenrod (6)) give us the following
basis of gall:

dim 0 1 2 3 4 5 6
1 Sq Sq2 Sq3 Sq3Sq Sq5 +Sq4Sq SqSSq

SqSq
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Consider the action of ’1 on H*(K(Z, 4) A K(Z, 4); Z2) in low dimen-
sions. The actions are determined by the Caftan formula, the Adem rela-
tions, and the fact that Sqli 0, since is an integral class.

i(R)i

Sq2( (R) i) Sq2i (R) + (R) Sq2i

Sq3( (R) i) Sq3i (R) + (R) sqai

(Sq5 + Sq4Sql)(i (R) i) Sq2i (R) Sq3i + sqai (R) SqEi

All others are 0.
(R) Sq2i

Sqt(i (R) Sq2i) (R) Sq3i

Sq2(i (R) Sq2i) Sq2i (R) Sq2i

Sq3(i (R) Sq2i) Sq2i (R) Sqai + Sqai (R) Sq2i

Sq2Sql(i (R) Sq2i) Sq2i (R) Sq3i

Sq3Sql(i (R) Sq2i) Sq3i (R) Sq3i.

All others are 0.
i(R)i2

Sq2(i (R) i2) Sq2i (R) 2

Sqa( (R) i2) Sqai (R) 2.

All others are 0.
i2(R)i

Sq2(i2 (R) i) 2 (R) Sq2i

Sq3(i2 (R) i) 2 (R) sqai.

All others are O.
This shows that in low dimensions,

*(K(Z, 4) A K(Z, 4) A MSpin; Z2)

is isomorphic to

(d/.g’Sql)i (R) (R) U + (d/dSq2SqlSq2)i (R) Sq2i (R) U

"b (d:’/,tZ’Sq "k ’SqS)i (R) 2 (R) U + (d:g’/dSq .4r ,fd’SqS)i2 (R) (R) V
+ higher degree terms.
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Consider the following Eilenberg-MacLane spaces with Z2-cohomology
generators:

space K(Z, 8) K(Z2, 10) K(Z, 12) K(Z, 12)

generator 8 10 12 J12
Let

f: K(Z, 4) A K(Z, 4) A MSpin K(Z, 8) x K(Z2, 10)
K(Z, 12) K(Z, 12)

be a map that induces the following in ZE-COhomology:

f*(i8) (R)i (R) U

f*(ilo) (R) Sq2i (R) U

f*(i12) = (R) 2 (R) U

f*(J12) i2 (R) (R) U

Since the Steenrod operations are natural transformations, they commute
with the homomorphism f*. A dimension by dimension examination of

I*(K(Z, 8) K(Z210) K( Z, 12) K(Z, 12))

as a module over shows that the homomorphism f* is a bijection through
dimension 12, and in dimension 13 f* is surjective with kernel Z2. The
corresponding map f, in homology must then be a bijection through dimen-
sion 12.

THEOREM 6.

SnPin ( K(Z, 4) A K(Z, 4)) = Z2,

0,

n=8
n 10,
all other n < 11.

Proof Corollary 5 has shown that for n < 11, the only torsion in

fiSnPin ( K(Z, 4) A K(Z, 4))

is 2-primary. By the Whitehead theorem (Serre (5)), since f induces an
isomorphism in homology through dimension 12 (modulo odd torsion), f
induces an isomorphism through dimension 11 in homotopy (modulo odd
torsion). But there is no odd torsion in the homotopy of

K(Z, 8) K(Z2, 10) K(Z, 12) K(Z, 12),
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and thus

7rn(K(Z, 8) K(Z2, 10) K(Z, 12) K(Z, 12))
zG( K(Z, 4) A K(Z, 4) A MSpin)

fiSnPin(K(Z, 4) A K(Z, 4)) for n < 11.

COROLLARY 7. lS’in(B(E8 E8)) =- 0.

Proof. Since -S,pin is a homology theory,

11 (B(g8 g8)) - "’11(’Spin ( "’11(’Spin[B(g8\ g8))
oSpin 6Spin t BE8 A BE8)"’11 "’11 k

Spin/’ BE,s) 5Spin [ BE,s)

but by the preceding calculations and the equivalence between K(Z, 4) and
BE8, all relevant groups are 0.
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