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QUATERNION L-VALUE CONGRUENCES AND
GOVERNING FIELDS OF S-CLASS GROUPS

BY

THOMAS A. SCHMIDT

0. Introduction

The goal of Galois Module Theory is to describe the algebraic structure of
modules acted on by Galois group rings. A fundamental result was M.J.
Taylor’s proof (cf. [F3] for a full discussion) that the ring of integers in a
tamely ramified extension of number fields is a free Galois module if and
only if a certain analytic invariant, constructed from root numbers of Artin
L-functions, is trivial. Noticing similarities between the above setting and that
of J. Tate’s approach to the Stark conjectures in [T], T. Chinburg in [Chl]
conjectured a similar relationship for the Galois module structure of certain
S-units. His proof in [Ch2] of this conjecture for a certain family of quater-
nion extensions (which are the first technically interesting case) relied upon
establishing the existence of a governing field for the variation of the
structure of the S-class group when S is the set of ramified primes of these
extensions. By different techniques, Chinburg in [Ch3] was able to find
L-value congruences for a subset of the fields considered in [Ch2] which by
our results lead to a precise governing field.
We give a precise governing field for the variation of the Galois module

structure of the S-class group for all of the quaternion extensions considered
in [Ch2]. Using G. Gras’s analytic genus theory, we proceed to give a precise
governing field in the context of a previously unstudied family of quaternion
extensions. This new result suggests that one now study the algebraic struc-
ture for these extensions.
Our approach uses congruence techniques to replace longer classfield

theoretic arguments showing that a particular set of primes generates the
2-Sylow subgroup of the ideal classgroup of an extension. That stronger
congruences then determine the existence of the governing fields follows
from an observation of [Ch2], as discussed in our Section 6.
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1. Results

We study those N which are pure quaternion extensions of Q and which
have complex multiplication. That is, the Galois group of the extension N/Q
is isomorphic to the quaternion group of order 8 and N has a (unique)
subfield F such that (i) a finite prime p of Q ramifies to N if and only if p
ramifies to F, and (ii) F is totally real and N totally complex. The existence
of the quaternion extensions in all of the cases to which we refer follows from
the results of Fr6hlich in IF1].

THEOREM I. Let

e-- o(v 7,

for primes p =- r -q 3 mod 4 with Legendre symbols

q q

Let N be the unique complex pure quaternion extension of Q containing F. Let
mxm2.’.mn be a product of rational primes such that (mi)= 1 andm

(mi)= 1 Let I 1 mod 4 be a rational prime distinct from the m such that-(1)=1 and (1/4)=-1. Letmo-y; =m if m 1 mod4 and let mo=pm if
m 3 mod 4. Let N[mol] be the unique complex quaternion extension of Q
containing F and ramified over exactly p, r, q, l, and the prime divisors of m.
Let V[ml] be the unique irreducible 2-dimensional representation of the Galois
group of N[mol] over Q. Let L(s, V[ml]) be the Artin L-function of V[ml].
Then L(O, V[ml]) is a rational integer such that

(i) L(O, V[ml]) is exactly divisible by 24+n and
(ii) L(O, V[ml])/24+n mod 4Z is constant for m fixed.

Let be a primitive fourth root of unity. Let p and q be two rational
primes. Let s be the order of the image of p in ((Z/qZ)*)/((Z/qZ)*)4. We
define the quartic symbol ()4 to be s. Note that this is well-defined if

P) is the Legendre symbol for p with respect to q.P)= 1, where (7
THEOREM II. Let

F Q(x/-, v/--)
for primes p q 5 mod 8 such that

P q
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1)4
()4 1. Let NIl] be the unique complex quaternion extension of Q contain-
ing F and ramified exactly over p, q and 1. Let V[I] be the unique irreducible
2-dimensional representation of the Galois group ofN[l] over Q. Then L(O, V[1])
is a rational integer with

(i) L(O, VIII) exactly divisible by 24 and
(ii) L(O, V[1])/24 mod 4Z constant.

The proof of Theorem II is made difficult by the small number of primes
dividing the conductors of V and V[I]. We have used G. Gras’s analytic
genus theory to overcome this difficulty.
We let H8 be the quaternion group of order eight and Z[H8] be its.

integral group ring. Let CI(Z[H8]) be the finite torsion subgroup of the
Grothendieck group of finitely-generated Z[H8]-modules of finite projective
dimension. Suppose N[d] is a complex quaternion extension of Q and F its
biquadratic subextension. Let S[d] be the set of ramified and archimedean
places of N[d]. Let S’[d] be the places of F determined by S[d]. Now
suppose that we have a family of twists N[dl] quaternion over Q, containing
F. The S[dl]-class group of N[dl], ClstdllN[dl], is the ideal class group of
N[dl] modulo the primes determined by the finite places of S[dl]. Let fstdl(l)
be the class of ClstdoN[dl] in CI(Z[Hs]). Let K be the maximal abelian
extension of F to which all of the elements of S’[d] split. Let K’ be the fixed
field of the subgroup of Gal(K/Q) generated by elements whose orders are
powers of primes congruent to 1 or 7 mod 8. Let nstal be the fixed field of
the maximal 2-power order subgroup of Gal(K’/Q).

Recall that a governing field in the sense of H. Cohn and J. Lagarias [CL]
for a function f on a set of rational primes A to some set B is a finite Galois
extension H of Q such that f(l) is determined by the Frobenius conjugacy
class Frobt.I/((l)whenever l, is unramified in H. We call H a minimal
governing field for f(l) if no proper sub-extension of H/Q is also a governing
field for f(l). Theorem I and Theorem II provide the precise congruence
results for the determination of minimal governing fields for the variation of
the Galois module structure in each of these families.

COROLLARY I. Under the hypotheses of Theorem I, Hstd] is a minimal
governing field for fstd](1).

COROLLARY II. Under the hypotheses of Theorem II, Hs is a minimal
governing field for fs(1).

Each of the above results depends upon the generation of the 2-Sylow
subgroup of the class group of a quaternion N by the ramified primes of N
above Q. That this does not hold for all N quaternion over Q, even when N
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is pure and complex and F, the biquadratic subextension, has odd class
number is shown by the following proposition.

PROPOSITION I. Let

F=Q(p,v/-,X/)
for p q r -= 3 mod 4 such that

p p r

The class number of F is odd. There exists a unique complex pure quaternion
extension N over Q which contains F. The three finite primes ofF which ramify
to N generate a subgroup of order 4 of the class group of N; however, the class
number ofN is divisible by 8.

Section 2 presents necessary background material for the proofs of our
theorems. Part A sharpens and extends results on congruences of L-func-
tions over Q via an application of G. Gras’s [G] main theorem. Part B
presents results related to real quadratic number fields. We first give tables
of some of the ray class group characters to be used in the main proofs. We
then prove two lemmas needed later. Lastly, we state the form of a deep
result of Deligne and Ribet to be used throughout our proofs. Section 3
presents an introduction to the techniques used in the proofs of our theo-
rems. We consider whether the ramified primes generate the 2-Sylow sub-
group of the class group of our quaternion extensions. We illustrate how the
reduction-of-level techniques combined with the results of Deligne and Ribet
can be used to study this problem. The idea of using the Deligne and Ribet
work to obtain results in genus theory is clear in Gras [G]. The use of these
techniques in the present setting is new. Section 4 provides the proof for
Theorem I. Section 5 presents the proof of Theorem II. Section 6 gives the
proof of Corollary I and Corollary II.

Acknowledgments. These results constitute a refinement of the author’s
1989 University of Pennsylvania Ph.D. dissertation, written under the super-
vision of Professor Ted Chinburg. The author warmly thanks Professor
Chinburg for his help and encouragement. Professor Eduardo Friedman is
also thanked for many helpful conversations.

2. Congruences and characters

Part A. Results over Q

In proving our theorems about quaternion L-functions, we use the reduc-
tion-of-level technique and induction to resolve our questions to simpler
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objects. One of the most basic of these is the collection of quartic characters
over the rationals. To study L-value congruences of these, we use a version of
G. Gras’s [G] main theorem. Let Q be the cyclotomic Z2-extension of Q, i.e.
the totally real subfield of Q(’2) with Galois group over Q isomorphic to Z2.

Let kx be the cyclic extension of Q corresponding via class field theory to a
2-power order even character X. Gras proves the existence of L, the unique
minimal abelian extension of Q containing both kx and Q such that

(i) L/kx has all of its ramification above 2 and
(ii) GaI(L/Q) .H for ’ S, where S is the set of primes (other

than 2) which ramify in kx/Q and He = (h e) is the inertia subgroup of I in
Gal(kx/Q).

Now let J0 be the set of primes in S which have trivial residue extension
kx. Gras shows that for l in J0 one can choose a lift/--} to L/Q of theto

Frobenius ’/] such that

where to is the odd quadratic Dirichlet character of conductor 4. Further-
more, we can pick a topological generator 3’ of Gal(Q/Q)within Gal(L/Q),
such that X(3’) is a primitive nth root of unity for n the order of X. With the
above choices made, for all ’ S let tre be defined by

L/Q), 3’o-e.

Gras proves that the equation,

(2.1) CLaO E " VI (1 d’-lffl) N (1 h)
S_J lS\J

in the group ring Z2[Gal(L/Qoo)] is solvable for the aj when cL
iGl-lyles(1_ /-1) and a is the sum of the elements of the group
G Gal(L/Qoo). Let m be the maximal ideal of QE(X). Gras’s main theorem
[G; (0.3)] shows membership of X(aJo) in m (which is independent of any
choices involved in finding the a) to determine the m-divisibility of L(s, Xto).
We illustrate this technique with an application.

LEMMA 2.1. /f q 5 mod 8 and hq is an odd quartic Dirichlet character of
conductor q, then

L(0, Aq) (1 + i)Z2[i]\2Z2[i ].
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Proof. Here Aoto is an even character, of order 4, and of conductor 4q.
By the theorem of Gras, ,(l+i)(2-1L2(0, Aqto))> 0; i.e., vo+i)(2-(1-
Aq(2))L(0, Aa) > 0. But, q 5 mod8 implies that A(2)---:t:i. Thus
L(0, h) (1 i)Z2[i]. We show that this is the exact 2-divisibility of L(0, A).
Here S J0 q. Let Ha (h), ha= e. We....mayassume that we have

chosen h, (--), and y such that x(h)= i, glib}} 1, and X(y)= i.
From Equation 2.1, a0 -= 1 modulo (Augmentation). We find a solution (in
Z2[Hq]) by letting a0 1 and

aq -14q[(3q + 1) + 2(q + 1)h + (q + 3)h2].

From this, X(ajo) is a (1 + i)-adic unit, hence L(0, hq) (1 + i)Z2[i] \
2Z2.

Remark. This congruence can be obtained in another manner. One may
use the analytic formula:

(q- 1)/2 (q- 1)/2

(2.2) L(O,A)=

_
A(j)(q-Zj)/q A(j) modZZ2[i

j= y=l

Simple parity arguments now give our result.

The above lemma can be combined with the reduction-of-level method to
determine congruence data for other L-values. However, this does not seem
to allow us to determine L(0, hq-p). The small number of primes dividing the
conductor hinders the approach.

PROPOSITION 2.1. Let gi -= g -= 5 mod 8 be primes for 1 to some s,
with gi 4 gj and 4 for 4 j. Let qt and be 2 ti order Dirichlet
characters of primitive conductor gi and respectively. Let T maxi(ti).
Suppose I-I I-Ii= 10i and ’ r

i--- O are odd characters of order 2 and
of conductor g and g’ respectively. Suppose further that Oi(Jj) ;() for
all 4: j. Let m be the maximal ideal of Q(). Let D be the number ofdistinct
rational primes ramifying in the extension corresponding to the character
above the gi. Then

(i) (1 (2))L(O, ) (1 ’(2))L(O, ’) mod(m-+r)Z[]
and, if the gi =- rood 2rZ for all i, then

(ii) (1 (2))L(O,) --- (1 ’(2))L(O, ’) mod(m+r)Zg[].

Proof For any odd of 2-power order, with D defined as above, the
valuation with respect to m satisfies

Vm(2-1L2(O, to,)) > D 1.
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Hence

--’:’(2))L(0, ’I’)) _> D-

and (i) follows.
Now let X o. Gras shows that the strict inequality in the above occurs

if and only if X(aJ0) is in m. For a given Dirichlet character , let E be the
corresponding cyclic extension of Q. Define

odd I#i even

and

odd $ even

By our hypotheses, GaI(K/Q)= Gal(K’/Q). By definition, Gal(L/Qoo) is
isomorphic to the product of the inertia groups for the li. By, say, Washing-
ton [W; Theorem 3.7], Gal(K/Q) is also isomorphic to this product. Since L
is minimal with respect to its properties of definition, K u Qoo - L. As every
non-trivial subextension of K has some prime other than 2 ramifying to it
from Q, K N Qoo Q. Therefore, L K u Qoo.
We also find L’ K’U Qoo and from our construction, the isomorphism

sending Gal(K/Q) to Gal(K’/Q) takes Hi isomorphically to H; for all i.
We choose generators h ei and h; for these cyclic groups such that each he:
is sent to h4. Recall, fo p 5 mod 8, the order of p is U2n, the units o
z/2nz, is p-2 for n > 2 and 1 for n < 2. Thus, such p are inert in Qoo/Q.
From this, we can choose topological generators 3’ and 3" as in our discussion
prior to Equation 2.1, and an isomorphism between Gal(L/Q) and Gal(L’/Q)
sending 3’ to 3" such that each r goes to uire;, where the u are units in
the isomorphism of Gal(Qoo/Q)with Z2, which are trivial mod 2r. Now when
we consider Equation 2.1 in order to solve for the aj0, we may assume that

hi hi, and (ri r4 for all i. Since we have required that the l l/’
md 2 for all i, we see that X(ao)= X(.a)o) and hence we are done, by
Gras’s theorem.

COROLLARY 2.1. Let p- q 5 mod 8 be primes. Let Ap be a primitive
quartic character mod p and -q be the quadratic character mod q. Then the
following hold:

(0) L(0, Ap) (1 + i)Z2[i]\2Z2[i].
(1) If (-)= -1, then L(O, 1pTq) 2Z2[i]2(1 + i)Z2[i].
(2) If ()= 1 and (-)4 -1, then L(O, A,-q) 2(1 + i)z2[i]\4z2[i].
(3) If(-q)4 land(-,q)4 1, then L(O, A’q) 4Z2[i].
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Proof. Here Ap(2) +i, hence the L(0, air) mod(1 + i)DZ2[i]. By our
Proposition, it suffices to consider the L-value for a single choice of p and q
satisfying the given restrictions. For the (0) case, we have already seen two
proofs, but now we may simply point out that D 1 and observe that
L(0, A5) (1 + i)Z2[i] \ 2Z2[i].

(1) has D--2 and L(0, As-r13) gives our result. (2) has D 3 and
L(0, A5"/’29) gives our result. (3) has D 3 and L(0, A13"/’29) gives our result.
It is interesting to note that although

L(0, A13’29 ) 4Z2[i \4(1 + i)Z2[i],

one finds that

L(O, As,rlo) 4(1 + i)Z2[i \8Z2[i ].

Thus we could hope to prove no stronger result in this setting.

COROLLARY 2.2. Let p --- q =- /-- 5 mod 8 be primes. Let A, be a primi-
tive quartic character mod p, and rq and ze be the quadratic characters
mod q and respectively. Then the following hold.

(A) For

(1) L(0,
(2) L(0,

8Z2[i} if at least one of (-)4 and ()4 equals
4(1 + i)Z2[i]/8Z2[i] otherwise.

one,

(B) For ()= (-)=land ()= -1,
q )4(3) g(0, A,raze) 8Z2[i1 if ()4 1 --(

q q4](4) L(O,A,’rq’rz) 4(1 + i)Z[i]/8Z[i] if ()4
1 or (

’ q(C) For(-)=-(-)=-l,
(5) L(O, Aprar,) 4Z2ti]/4(1 + i)Z2ti] if ()4 =1 and ()

q(6) L(0, A,’qz) 4(1 + i)Z2[i] if ()4 =land ()= 1,

(7) L(0, A,zqz,) 2(1 + ({) mod 8Z2[/1 if ()4 --1,

(D)
(8)

d’ q

L(0, Av’’e) 2(1 + i)Z2[i]/4Z2[i].

Proof Let e (A, + 1)(zqze + ’ + z + 1), considered as an imprimi-
tive function on (Z/pqgZ)*. The analytic formula, Equation (2.2), gives
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L(0, e) 0 rood 8Z2[i]. But,

(2.3)

L(O, e) L(O, Apra’e) + L(O, Apqle) + L(O, Aplqz) + L(O, Alo)

L(O, AprqT")+ (1-()4(-))L(O, Ap-q)

q ’
where we temporarily admit a sign ambiguity in the case that either ’ or q is
a non-square at p. We could now proceed case by case, via applications of
Corollary 2.1.

Part B. Results in quadratic subfields

B1. Character tables

We determine certain characters for k Q(V/--), one of the quadratic
subfields of the F Q(V/--, -) of Theorem II.
For j {2, 4} and P a prime of k, let F(P, j) be (Ok/P)*/((Ok/P)*)j.

For P one of the infinite places of k, let F(P, j) be {1,- 1}. Also, let ky)
denote the non-zero elements of k which are prime to the ideal f. Let Pp be
the prime of k above p and let Pq and Pq be the primes above q. We
consider the homomorphism from k’pq) to

F(Pp,2) F(Pa,4) F(fi,,4) F(P=,2) F(fi=,2).

Note that we do not use the usual identification of each of the two factors
related to q with

(Z/qZ) */( (Z/qZ),)4.

By Fr6hlich [F1], we know that there exists a complex quaternionic
extension N of Q containing F which is ramified at exactly p and q. Thus
there is an odd, order 4 ray class group character, X, of primitive conductor
pq over k Q_(v). Indeed, let h be a generating character of the dual of
F(P,, 4), and h its image under r, the non-trivial element of Gal(k/Q). Let
the symbol (-) represent the quadratic character on a group of order 2.



QUATERNION L-VALUE CONGRUENCES 651

TABLE 2.1

k Q(V/’); p 5 mod 8, q 5 mod 8, - 1, - 4 4

F(Pp, 2) F(eq, 4) F(Pq, 4) F(P, 2) F(P(R), 2)

1: 1 e 2
ek: --1 e +
x: (-) , - (-) (-)
: (-) (-) 1

Xx: (-) 1 (-) (-)
Xx/z: 1 (-) (-) (-)
X3: (-) (-) (-)

’3/./," (--) (--) (--) (--)

.Xg" 1 h-x -1 (_)

Then X2 may be represented as:

F(P,, 2) F(Pq, 4) F(Pq, 4) F(Poo, 2) F(Poo, 2)

X2" (-) A -1 (_)

For tr the non-trivial element of the Galois group of k/Q, X X; as it
must, as ,’2 represents a quaternionic extension over Q. Now, any class group
character evaluated at the image of a unit of k gives the value 1. Further-
more, we know that {-1, ek} is a generating set for the units of k, where ek
is a fundamental unit. By genus theory, ek is of norm -1. Genus theory also
tells us that the class number hk is odd and, as we have chosen our
biquadraic field to have odd class number, that ek is a non-square at both Pq
and Pq. Thus we have

Here e is the image of ek in F(Pq, 4), and 6 is in {1,- 1}. Now, the
product A(e)-l( 1()-1) is A(-1) times -1. Since q 5 mod 8, and has
residue degree one to k, -1 is a square, but not a fourth power, at both Pq
and Pq. Therefore, A(-1)= -1. Since XE(ek)= 1, we see that must be
--1.
We now list all of the characters of conductor dividing pq and of order 2

or 4.
Note that/z (X2)2 (,,q)2 and Xq XlX2,’3, both of which correspond

to extensions of k which are abelian over Q.
Consider the characters of conductor dividing . By genus theory,

[(F(Pe,2) F(fi,2)/(- 1, ek) divides 2hoc-y,(.
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TABLE 2.2

(")k=Q(Vr-);p-=r-= -q-=3mod4, 7 -1

t(Pp, 2) t(Pr, 2) t(/q, 4) t(Pq, 4) t(Poo, 2) F(P, 2)

1" -1 -1 e U

X2; (--) (--) A "-1 (_)
XI: 1 1 1 1 (--) (--)
X3: (--) (--) (--) (--) (--)

Xq: ,-1 -1 (_) (_)

Since g-- 1 mod 4, -1 is a square at P and P. By Galois action, ek is a
square at P if and only if it is at Pc. Hence, hQ(v- if) is even if and only if

e, is a square at these primes.,, But, by Fr6hlich [2; Theorem 5.7], hQ(v, if) is
P { } 1. Hence, in the setting of Theorem II, ek iseven if and only if (-2)4 4

a

square at P and Pc, the two primes of k above g. Let

where the elements of Se are quadratic characters of primitive conductor 1,
Pg, Pc, PtPc, respectively.
We now give the characters used in our proof of Theorem I. We reproduce

a table of Chinburg’s [Ch2], established by similar methods as above.
Since epr the fundamental unit of k Q(v/-r), has norm 1, the images of

epr at conjugate places are either both squares, or both non-squares. If is a
rational integer with ()= 1, then let Pt and t be the two primes of k
above t. Let qt be the quadratic character of primitive conductor PtPt Since
the images of the units vanish under q’t, it is indeed a ray class character of
k. Thus we define the ray class characters qmi for the m of the hypotheses of
Theorem I. Let I be the trivial character of conductor t. We define

n

Smi {lmi,mi and Sm HSmi.
i=1

We now discuss characters whose conductors are divided by PC or Pc. We
have qe as above. If// 1, then Chinburg [2] shows epr to be a square at
both P and P. We then have ray class characters qe and e of primitive
conductor P and Pc, respectively. We define

If ()=-1, then the primes Pe and e remain inert to k(v/-p)

k(v-%). Hence -% is a non-square at both Pz and . Since g--
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TABLE 2.3

F(Pt,, 2) F(P,., 2) F(q, 2) F(Pq, 2) F(P, 2) F(, 2) F(P=, 2) F(fi, 2)

-1: -1 -1
ek" 6 -6 -1 -1 -1 -1 + +
v’" (-) 1 (-) 1 1
v’" 1 (-) 1 (-)

1 mod 4, epr itself is a non-square at these primes._ Thus there is no even ray
class character of primitive conductor Pe or P. We now define ve and ve as
below.
We define S {1

B2. Auxiliary congruence results

It will be useful to have the following lemmas, both generalizations of
techniques of Chinburg ([Ch3] and [Ch2], respectively.)

LEMMA 2.2. Let k be a real quadratic extension of Q, with odd class
number and odd discriminant. Let f be a conductor of k, co-prime to 2. Let a
be an odd quadratic character of k of (possibly imprimitive) conductor f. Let
f be the number of distinct finite primes of k dividing f. Furthermore, let

L(s,l,(a)) be the Artin L-function for the (possibly imprimitive) character
which a induces on Gf. Then L(0,f(a)) 2#/’Z2

Proof Let : be the primitive character associated to a and L be the
quadratic extension of k corresponding to :. For a number field K, let r(s)
be the usual zeta-function, hr be the class number of K, Reg(K) the
regulator of K, and wr be the number of roots of unity in K. Then

t( s) hL Reg( L)wkL(0, s) (k(S) s=0 hk Reg(k)Wl

Since a is odd, L/k has complex multiplication. As L/k is unramified over
two, L and k have the same units up to torsion. Thus Reg(L) 2 Reg(k). If
w is unequal to Wk, then for some root of unity /, L k(/z). Since f is
co-prime to 2, this/x could only be a third root of unity. Therefore, either wz
and wk are equal, or they differ by an odd factor. Thus

L(0 s) 2hh "u -1

u a unit in Z2 (intersected with Q).
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Let t be the number of primes of k dividing the conductor of :. L/k is
ramified at these primes as well as at the two infinite places. Therefore, as
hk is odd and O has two generators, whose images are distinct in F(Poo, 2)
x F(Poo, 2), we find

But

L(O, :) 2Z2

:[ HL(O,f( a) )
Ql(fcond())

(1 -a(Q))]L(O,)
2Of-’)2Z

2 2fz2
LEMMA 2.3. Let a be a non-trivial quadratic character of a real quadratic

extension k Q(fd) of Q with discriminant D. Suppose that a is non-Galois
over Q, i.e. the field corresponding to a is not Galois over Q. Let f be the
primitive conductor of a, and suppose that D and f are co-prime. Let
P1, P2,. Pn be distinct primes of k lying over P l, P2, Pn, distinct rational
primes. For A in Q, let IAI be the product of the prime divisors of A, each
taken to the first power. Let tr be the non-trivial element of the Galois group of
k/Q. Suppose that IDffl divides the product PiPE Pn and ototr(Pi) 1
for all Pi which do not divide f. Then,

Pn) [ 1 if aiseven,P1P2 1 otherwise.

Proof. Let L’ and L" be the extensions of k corresponding to a and to
a respectively. Let L be the compositum of L’ and L". Then L/Q is Galois
of degree 8, with non-Galois subextensions and more than one subextension
of index 2, thus the Galois group of L/Q is isomorphic to D8, the dihedral
group of order 8. Now, D8 has a unique cyclic subgroup of order 4. L/k is
clearly not cyclic. There are two other quadratic subextensions of L/Q. One
is Q(Pl Pn ); let us call the other k’. At least one of the pj does not
ramify to k’. Let Q be a prime of k’ above such a pj. The inertia group of Q
to L fixes a subfield of L to which. Q is unramified. Since Q is ramified to
k(pl "’’Pn), but L is unramified (except possibly at the infinite places)
over k(/pl Pn ), L/k’ must not be cyclic. Thus, L/Q(v/pl Pn ) is the
cyclic extension.

If a is even, then L/Q(/p Pn) is unramified. Otherwise, it is
unramified except at the infinite places. In this latter case, the very existence
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of L implies that the narrow Hilbert class field of Q(/pl Pn ), H+, is not
equal to the Hilbert class field of Q(/Pl ""Pn ), H. But, for a quadratic
extension of Q, [H+: H]2. Therefore, [H+: H]=2 and H+ is the
compositum of H and L. Letting B be the unique prime of Q(/p pn )
above each Pi, we have I-liB (/Pl P, ) is principle, hence trivial in the
class group.

But, for a non-even, (V/pl p ) is non-trivial in the narrow class group.
As the Artin map gives an isomorphism between the narrow class group and
Gal(H+/Q(/Pl’"P)), (/Pl"’" P,) has for its image an element of
order two. We know that H+ is the compositum of L and H, and the Artin
map for the extension H/Q(/p1 pn ) is trivial on (/Pl P ). There-
fore, the Artin map for L/Q(I/pl P, ) must take (/pl P, ) to an
element of order two. Thus, we find that the Artin map for the extension
L/Q(v/p p, ) takes I-IiBi (V/pl pn ) to an element of order one or
two, depending on whether a is even or not. But, all of the Bgare split to
k(/pl"’pn), by our assumptions. Thus, B splits to L if and only if
a(P) 1. Equivalently, the image of Bg under the Artin map corresponding
to L/Q(/p ".’p,) is trivial if a(Pi) 1 and has order two otherwise.
Hence, t(P Pn) 1 if and only if a is even.

Throughout the remainder of this paper, we use the results of Deligne and
Ribet in the following form.

THEOREM 2.1 (Deligne and Ribet). Let k be a totally real field to which 2
is unramified. Let r [k" Q]. Let f be an ideal of k prime to 2 and Gf the ray
class group of conductor f of k. Let L be a finite extension of Q2. Let F be the
set of odd functions on Gf with values in 0L, the ring of integers of L. For any
c in G, there is an additive functional on F, denoted Ac(0, -), with values in
2 Oz. When e is an odd character of G,, Ac(O, e) (1 e(c))L(O, e).

The above version of the theorem is virtually that in [Ch3], but see also [R]:
remarks (1) and (2) to (2.1) as well as (3.1); also confer [DR].

3. Generation of the 2-Sylow subgroup of the ideal class group

In the cases which we consider, N/Q is a tame extension with Galois
group isomorphic to Ha, the quaternion group of order 8. Let F be the
unique biquadratic subextension. Assume that the class number of F, he, is
odd. Further, assume N is totally complex, while F is totally real. Let the
number of finite primes which ramify from F to N be t. Let the primes of
N lying above these be called A1 through A t. By Kummer theory (cf. [Ch2;
pp 40-41], under our hypotheses the set of the AhF generates a subset of the
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ideal class group of N isomorphic to (Z/2Z)t-1. Is this the full 2-Sylow
subgroup of the ideal class group of N?
Our approach is as follows. We choose a quadratic subfield of F, say k,

which has odd class number. As N is cyclic over each of the quadratic fields,
N/k corresponds to a ray class group character of k, say X2. The induction
of ,’2 to Q, IndkX2, is the character of the unique irreducible 2-dimensional
representation, say V, of the Galois group H8. Thus, L(s, X2) L(s, V).

It is well known that the L-function of the regular representation of a
Galois extension is the zeta-function of the upper field. In the case of N/Q,
we find that this regular representation decomposes into the direct sum of
the regular representation of Gal(F/Q) with two copies of V. Hence,
L(s, X2)2-" N(S)/F(S). But, the leading coefficient of the expansion of a

st-function of a field E at s 0 is -heReg(E)/we. From our choice of N
and F, the image of the units of F in N generate the units of N and we find
that

(3.1) 2L(O, )(2 23h/hF

Now, since N/F is a ramified extension of degree two, hF divides hN.
Since X2 is a quartic character, from Siegel [Si] we know that L(0, X2) is in
Q(i). As it squares to a positive rational integer, L(0, X2) is itself a rational
integer.
From Equation (3.1), the Ah generate all of the 2-Sylow subgroup of the

ideal class group of N (and hence if S includes all of the Ai, then the order
of the S-class group of N is odd) if and only if 23+t-1)llL(0, X2)2. Thus, we
need study L(0, X2) mod 22/tt/21Z.
The study of this congruence is carried out via the use of the reduction-of-

level technique combined with the results of Deligne and Ribet.

Example 3.1. Let us take F and N[m0] as in Theorem I. Note that here
equals 4 + 2n. Let k Q(1/), and

f prqm PpPrPaPqPm,Pm, Pm.Pm..

We use the notation of Table 2.2 and let

S--{,,,’2,/-1 ,,,1 Sm’ {lmiXa, X1, Xlld’, )(3, X31.3 m
and

n

am---- HSmi.
i=1
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By the Deligne and Ribet theorem, for any c Gf,

(3.2)
1 E E A(O,f(X*)) - 24+nZ2[i1.
x.S .S

We choose c such that ,’2(C) "k-i}. Since X2 corresponds to a quaternion
extension, the non-trivial element of Gal(k/Q)sends X2 to X1, but leaves
the fixed, and thus

L(O,f(x2)) L(O, f(xf a*)).
From this,

(3.3)
1- E E Ac(O,z( X’qt ) ) = E L(0,Z(X2,*)).
X{,,2,,,"1} "tI, . S atl’ . S

By Lemma 2.2, we have

(3.4) E E Ac(O,f(Xa’)) 24+nz2
X{XI, XI, X3, X3} att ’Sm

Now, let

/3. 1/2(1 Xq(c))(1 Xq(PI))(1 Xq’q’(Pr))L(O, qm()(q"q’)).

By our Lemma 4.1 (whose proof is independent of this section), L(0, qm(Xq))
has value in

2n+Zz2[i] \2n+2(1 + i)Z2[i ].

Our choice of c gives Xq(c) _i}. Thus

Traceotq/<(/3.) 2n+3z2 \ 2n+4z2,

and we have

1
(3.5a) - _

Ac(O,f(X) ) 23 mod24Z2 if n 0,

and, since there are an even number of the/3, when n > 0,

1
(3.5b) E E Ac(0,/’(X*)) 24+nz2 if n > 0.

A/ {,,q, ,,- 1} I am
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Combining (3.2) through (3.5), we find that L(0, V) 23 mod 24Z2, and,
with an easy complete induction argument, that

L(0, V[m 1) -= 23+’ mod 24+’Z2
Hence L(0, V)--- 23 mod24Z and L(0, V[m])-= 23+n mod24+"Z. We con-
clude that the Ahe generate all of 2-Sylow subgroup of the ideal class group
of the N[m0].

Example 3.2. Let us take F and N as in Theorem II. Note that here t
equals 4. Let k Q(v/--), and f pq PvPqq. We use the notation of
Table 2.1 and let

S {X2,X-1 }Xq, X- X1, X1/z, X3, X3/z

By the Deligne and Ribet theorem, for any c G,,
1

(3.6) 7 E Ac(0,/’(X)) 24Z2[i]
xS

By choosing c such that X2(C) +i} (which forces /z(c) -1), we find
that

1
(3.7) E

x {x2, xf 1}

Unfortunately, our Lemma 2.2 is insufficient to ensure that the L-values of
the quadratic characters are all congruent to zero. However, we may choose
c such that X3(c)= 1. Since xI(P,)= X1/z(P,)= 1, we need only study
L(0, X3/z). Now, as X3/x corresponds to a fourth degree Galois extension of Q
to which only p, q and oo ramify (p totally ramified), this field must be the
cyclic extension of Q corresponding to Ap%. Thus, L(0, X3/z)=
L(0, Ap-)L(0, Az). We apply Corollary 2.2 to conclude that L(0, X3/z)
24Z2 Note that here we have used the results of Gras. Thus,

1
(3.8) E

X{X1, Xlb X3, XabI’}
Ac(0 (X)) 24z2"

Now, let

/3’= 1/2(1 Xa(c))(1 x(P,))L(O, X).
Since X induces down to Q as the product Az Aa, Corollary 2.3 gives

L(0, Xq) 4Z2[i] \4(1 + i)Z2[i 1.
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(This is the significant use of Gras’s results.) Now,

P

By our choice of c, Xq(c) + i}. Thus, TraceQtq/Q(fl’) . 23Z2 and we have

1
(3.9) E Ac(0,f(X)) -= 23 mod 24Z2

Combining (3.6) through (3.9), we find that L(0, V) 23 mod 24Z2 Since
L(0, V) is a rational integer, L(0, V)-= 23 mod 24Z. We conclude that the
Ahe generate all of the 2-Sylow subgroup of the ideal class group of N in this
example.

Example 3.3 (Proof of Proposition I). Let us take

F Q(p, x/, vf-),
with p q r 3 mod 4 primes such that

p q r

By FrShlich [F2; Theorem 5.7], F has odd class number. By FrShlich [F1],
there is a unique complex quaternion extension N of Q containing F which
is ramified only above the rational primes p, q and r. There is exactly one
prime of F above each of these primes. Therefore, t 3 and we have an
order 4 subgroup of the ideal class group of N generated by the image of the
ramified primes.

Let k Q(V). N/k is cyclic of degree four, corresponding to, say X2"
f P,t,P,P,. is the conductor of X2. By genus theory, the fundamental unit of
k, epq, is totally positive. Since 2,22 corresponds to F/k, X is an even
quadratic character of primitive conductor P. Therefore, both -1 and epq
are squares at P. We know that -1 is not a square at either P or Pq, thus
since 2’2(-1) must be trivial, -1 is a fourth power at P. We now show that
epa is a square at exactly one of P, or Pa. If not, then there would exist an
even quadratic character a, of primitive conductor P,Pq. By its construction,
a would be Galois over Q and Pr would be inert in the corresponding
extension K,/k. Thus K,/Q would be cyclic of degree 4 and ramified at
exactly p and q. But, for p q 3 mod 4, there exists no such extension of
Q. Thus e,a has the image asserted above. Since X2(e,a)must be trivial, we
find that epq is a square, but not a fourth power at P. We may now construct
the following table.
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TABLE 3.1

k Q(p)when F

F(ev, 2) F(eq, 2) F(P,, 4) F(P(R), 2) F((R), 2)

1" -1 -1 1

X2" (--) (--) X (--) (--)
X: (-) 1
0: 1 (-) (-)
fl: 1 1 (-) (-) (-)

Let S {X2, ’-1, 0,/}. By the Deligne and Ribet theorem, for any c Gf,
1

(3.10) - A(0,f(X)) 23Z2[i].
xs

By choosing c such that ,’2(C) +i}, we find that

1
(3.11) E

’ (’2, X- 1}
L(o,

By Lemma 2.2, we have

1
(3.12) E

x{O,#}
A(O,f(X)) 23Z2[i].

Therefore, L(0,/’2) 23Z2[i] (indeed, L(0, X2) 23Z) and the ramified
primes of N do not generate the 2-Sylow subgroup of the ideal class group
of N.

4. The Proof of Theorem I

As Chinburg [Ch3] obtains the result we desire in the case when n 0 and

()- 1, we consider only the remaining cases. Let

be a conductor for k Q(v/-). From Section 2, we have S, our set of odd
characters of conductor dividing prqOk, as well as the sets of even characters

Smi {lm,, Imi} and

Se= {l,e ,0e} when 1
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and

S’= (le, ve, ve,/z6e} when -1.

Let Sm Vlin= 1Smi Let Te be either of Se or S, with clarification provided
as necessary. We also set the ordered set (b, 4)’, be) to be (,, Oe) if

(e)=land (e) -1(re, re,/ze) when
Let

1

xS g’Sm

Then by the Deligne and Ribet theorem,

(4.1) Ac(0, h ) (2-1232n22)22Z2[i] 26*nz2[i], forx Gfm.

The freedom in this approach lies in the choice of c and in the use of the
reduction-of-level techniques. First, as we want to isolate L(0, X2m), we
choose c such that X2(c)= i. Thus, Ix(c)=-1 and X(c) {+i}. Let
Xq(C) and Xl(C)= 1. Thus X(c) is now determined for X S. Let
(c) =l for all Sm. Let fie(c)= (/.

PROPOSITION 4.1.

1

X{X2,X"1} Sm {le,e}

where o(d) is the number of distinct prime divisors of d.

Proof Consider

(4.2) 1/2Ac(O,fm(X2llml

1/2(1- X2lm,"" mn(e(c))Z(O, X2m, mnCe)

(1 X2m 6mpe(c))L(O,v[ml]);

note that for the =/zCe, we have X2te x-lce.
Now,

(/’21]/ml Iftmp’)" Xf ll]/m Impe, and (fro) fro"
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Thus,

L(O,fm(Xlml mn[) L(O,fm(X2m mn[)).

Furthermore, X2() +/-i and the $(c) +/- 1. Therefore,

1
(4.3) E

xe{x2,x 1}
A(O,L(XOm, bm.qb,) ) L(O, Vtmg 1).

For the remaining summands, we use induction via

(4.4) g(O,fm(Xtml mi_llmiOmi+ll))

I7 (1 Xm,

L(O,fm/mi(X2m mi
2L(O,fm/mi(X2Oml mZ... mn))

as X22 =/z and as ()= -1 gives/z(Q) -1.

PROPOSITION 4.2.

1

Xe{X2, X31z, X, XllX} W.Sm
mod 26+nz2[i].

Proof. All of the characters in the equation are quadratic and the result
follows immediately from Lemma 2.2.

PROPOSITION 4.3.

1

Xe{Xq, X-1} ’,teS OeTz
mod 26+nz2[i].

LEMMA 4.1.
i)Z2[i].

The value L(O,x,qm, Omn) iS in 2n+2z2[i]\2n+2(1 +

Proof. Case 1. q 1 mod 8.
Now, IndQkXq rtv + "rtr, where is a primitive even quartic Dirichlet

character of conductor q and where tr are the Legendre symbols mod p and
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mod r, respectively. For z in Z, let z’= z if z-= 1 mod 4 and z’=pz if
z 1 mod 4. Now let tz, be the quadratic Dirichlet character of conductor z’.
Then

(4.5) L(O, Xqm mn) L(O,’rtrtm, tm,n).
Let

(4.6)
n

e, (7"- lq)(tp + lp) tm, t,, + E (tm’ tm’ tm’)
i=lm’

n

+EE
i= j>i m,

(tm, tm,i tmi tm,)+ "’"-blm,

where means a is omitted from a sum, and y, is as above.
Since z is a quartic character, the (-- lq) factor takes values in (1 +

i)Z2[i]. The next factor clearly takes values in 2Z2. The final factor is the sum
over all characters in the group generated by the tin,, thus takes values in
2Z. Therefore, e takes values in (i 1)2=+ Z2[i].
We use the analytic formula to determine

(4.7)
pqm m

L(O, en) -p(pqm mn)/2 e(j)j/pqm m

-(p- 1)(q- 1)(m 1).’. (m 1)/2- T

where

T--0 mod2+x(i+ 1)Z2[i ].

Therefore,

L(O,e.) 0 mod2"+x(i + 1)Z2[i (n > 0),

as the m q --- -p 1 mod 4. Since L(0, e) 0 for a an even Dirichlet
character, one has

(4.8) L(0, en) L(0, ztptm, tm,,) +’’" -t-Z(0,’rpm(tp) )
-[L(O,pqm(tptm, tm,,) ) + +g(o,pqm(tp))].

Note that

(4.9) (n )L(O,pqm(tp)) (1 -t,(q)) i=1(1 -t,(mi) ) L(O,t,).
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Let L be the extension of Q corresponding to tptm, tm. Then

(4.10)

(0) =-htReg(L) ’o(0)L(0 tt, tm, tm) =-1/2L(O,ttm, tm).WL

As L is imaginary, Reg(L)= 1.
WLIWcp,cl...,cj)= 2pm’x m, thus 2111WL By genus theory, 2JlhL

Therefore, 2j- 11’L(0); hence 2IL(0, tptm, tm). Now, each inverse Euler
factor has a value in {0, 2}, so induction on j gives

(4.11) L(O, ztptm, tm; ) +’’" +L(O, zm(t)) =- 2"+Zz[i],

L(O, zttm, tin,,) (1 + i)"+2Z2[i \,(1 + i)n+3z2[i].

Chinburg [Ch3; Equation 4.9] shows L(0, zt) 2Z2[i]\2(1 + i)Z2[i]. We
use complete induction on n to show L(0, ztt, tm, tin,.) (1 + i)n+Ez2[i]
\(1 / i)+3Z2[i].
Suppose we know our claim for all n < j 1. We want to show our claim

for n j. We have

(4.12)
J

L(O, ztptm, tm. ) +’’" + I--I (1 "rtp(mi))L(O, "rtp)
i--1

-= 0 mod 2’+1z2[i ].

Since the zt(mi) {+i}, all summands other than L(0, "rtptm, tm;.)
are in

(1 + i)J+Zz2[i] \(1 + i)’+3Z2[i].

The total number of summands is Y’-{=o (), a power of two.
Summing in pairs, we find each pair other than that including L(0, ztptm,

tm,.) is in (1 + i)J+3Z2[i]. If L(O, ztptm, tm) itself were in (1 +
i)J+3ZJ2[i] then its partner would also be, as the total sum is in (1 +
i)2+2Z2[i], by Equation 4.12. Thus

L(O, zt, tm, tin; ) q (1 + i)J+3zg.[i].

On the other hand, as all other summands as well as the sum itself are in
(1 + i)+2Z2[i],

L(O, zt,tm, tin; ) (1 + i)Y+ZZ2[i].
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By symmetry, L(0, ztrtm, tm,) also has the above property, hence

L(0, Xqg.yml mn L(O, "tptm, tm,n)L(O "ftrtm, tm,n)
2n+VZ2[/] \2n+2(1 +/)Z2[/].

Case 2. q 5 mod 8.

Now, IndOk(Xq) A + Atpr for A a primitive odd quartic Dirichlet charac-
ter of conductor q. Hence,

L(O, Xqml mn) L(O, Atm, tm,.)L(O Atprtm, tin,.).

We will work with the first factor, the determination of the second factor is
virtually the same.

Let

(4.13)

Thus, y,, has values in 2’(1 + i)Z2[i].

(4.14) L(0, Tn) -dP([p]qml mn)/2
[p]qmi m

E
y---1

[ p l](q 1)(ml 1)"" (m

0 mod 2"(i + 1)Z2[i ],

1)/2 U

(where U 2n(i + 1)Z2[i])

where factors in square brackets need be considered only when one of the m
is congruent to 3 mod 4Z.

But,

(4.15) L(O, Tn) L(O, Atm, tm,) +’’" +L(O, Amtp](l))
-[L(Oq(tm, tm,,) ) + +L(O, qm[p](1))
L(O, Atm, tm,n) +’’" q-L(O, Am[p](1)),

as the tin, are all even characters.
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Claim. L(O, Atm, tm,) (1 -t- i)"+lz2[i] \ (1 + i)n+ lz2[i].

The proof for n 0 we have seen via Gras’s method in Corollary 2.2. Thus
we use complete induction on n as above.

Chinburg [Ch3; Equation 4.14] shows that

L(O, Atpr ) (1 + i)3Z2[i]\(1 + i)4Z2[i ].

Complete induction again gives

L(O, Atprtm, tm,) (1 + i)n+3z2[i] \(1 + i)n+4Z2[i].

Hence

L(O, Xqllml Imn) (. 2n+2z2[i] \2n+2(1 + i)Z2[i ].

Proof of Proposition 4.3.
Let f fm/PpP

Case 1. h’e(P,Pq) 1.

Let 0 if xq(P,Pq) 1 and 8 1 otherwise.

1
(4.16) E E E Ac(O,fm(X*O))

X.{Xq,X 1} S

E E E
x {xq,xa} I, Sm ’ Te

(as X*O(P,) +i)

E E E

mod 2n +7Z2[ ],

this last from the Deligne and Ribet Theorem.
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Now, this is in 22"+5Z2[i], by Lemma 2.2. If n > 0, we are done. If n 0,

(e)= 1 and note that ,(c)= v’(c);we are interested in only the case of
, ,)= )=f, xev(P,) tze(P,) 1; ve v, and X for X

{x,x}.
Thus,

(4.17)

Therefore,

(4.18)

But,

( -x,(v,,)) a(o,,(x) )

2( x,,:,(G)) a(o,,( x,,:, ))

--- 0 mod 26Z2 (by Lemma 2.2).

E E ac(0,(x,))
Xe{X1, X-1} I//eS

(-x,(e,,))ac(o,,(x,))

mod 26Z2[i].

and

Therefore,

1 XI() =0, 1 Xilz$(c) O,

1 XIIJ,(P,) 1 ( 1)( 1) 0

1 E E Ac(0,(X)) 26Z2[
x {xq,x}
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in this case and we proceed with:

Case 2. dp’(PpP) 1.
Let 6’= 0 if Xq4’e(PpP)= 1 and 6’= 1 otherwise.

(4.19)
1
2

E E E
X {Xq, X" 1} I Sm tE{,t
x Ac(O,r(X*,)),

(by the Deligne and Ribet Theorem)

by the work in Case 1. Now, 41’e(Pp) v,ea"(pp), b’(c) b’(c) and (b’e) 41’
gives

(4.20)
1
2

E E E 2(- 1)n’(1 +

XE {’q,X 1} XI Sm
rood 26+"Zz[i] (by Lemma 2.2).
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Let

ft. 2(- 1)’(1 + X(P,))(1 xgxlt(c))(1 X(P,))
(1

Recalling that L(O, xq) is in 2n+2z2[i]k 2n+2(1 + i)Z2[i], we find that
ft. 2n+SZE[i]2n+5(1 + i)Z2[i]. Therefore,

1
(4.21) - E E E A(0,fm(XXIt))

X.{Xq,,X1} eSra geT

E E 2(- 1)n’(1 + xxt’le(Pp))A(O,f,(xxt’l))
x{xq,x I} I’Sm

Traceotil/o(fl)

=- 0 mod 2n+6z2[i].

Thus we have completed the proof of Proposition 4.3.

PROPOSITION 4.4.

1
7 E E E ac(0,mX’I’,))
X{X2,X"1} "tIS

25 mod 26Z2[i] /fn 0 and - -1

Proof.

(4.22)
1 E E E ac(0,.x**))

[1 X2"4’(c) + 1

1

(-S

X({,2,X"1} attSm
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Letting f" fm/P= PpPP,PPPt Pm.Pm.P,, we find that

1
(4.23)

E E (1
Xe(X2,X"1} It-Sm

Choose c’ {c, C -1} such that X*$’(z) X*$’(c’). We now have

1
(4.24) -, E ., Ac(O,m(X*t#))

x{x, xg} "I"Sm ’{", 4"b}

But

E E A,(0,r(X**) ).
x {x2,x} xl, Sm

E E A,(0,y,(xXlt0)) 2"+6Z2[i],

by the results of Deligne and Ribet. Now, Lemma 2.2 gives

(4.25) E E E
Xe{X1, XII, X3, X31.} xlt eSm I].te{|g,}

Ac,(O,f.(X*qt)) 22n+6Z2[i].

Therefore,

(4.26)
1
7 E E E ac(0,.x*o))

xe{x2,x1} "I’eSm

E E
X.{X2,X 1} 9eSm

E E E a,,(o,r(x,I,,t,)).

LEMMA 4.2.

1 E E Ac’(0,y’(x+le))

24+2n(1 + (,,fiq)) mod26+nz2[i].
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(4.27) E E

E E (1 XxIt(c’))(1 Xqt(Pg))L(O,prqm(X))
/’{/,2,,’"1} xltS

E E [(1 Xz(c’))(1 Xz(P))
,e{Xz,X"1} l"eS

+(1 xfl*(c’))(1 xlt(Pg))]L(O,prqm(X2/))

But

Xz(c’) xz(z)*(e)ck’(z)/ck’(c’) (by our choice of c’)

as b’e(c’) e + 1} and by our initial choice of c. Therefore,

E E Ac’(O,f"(x*le))
X.{X2, Xf 1} xX eSm

E (2 + 2#pg(Vg)Z(q))L(O,prqm(X2It))
S,.

_(4 _, L(O,prqm( X2q) ) if b’(,)(b’(q) 1,

otherwise.

Since Example 3.1 shows that 2n+3[IL(O,prqm(X2)), we have proved our
lemma.

LEMMA 4.3.

X,{Xq,X; 1} ’ffkt.Sm qt{le,v’,,

24+2n(1 + (PpPr)) md26+nzz[i]
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Proof Case 1. ’e(PpPr) 1.
Let f" f"/PpPr VqPqPmlVml Vmfmf#/"

(4.29)-
X{Xq,X 1} xitS {l/,t}

E E E
xe{xq, x;q t’eSm

2(-x*,t,(e,))’a,, (o, ,,,(

E E E
X{Xl, XlI} xlt -’Sm

2( -X"0(Pp))*A,(0, f,,,( X

mod 26+nz2[i],

by the Deligne and Ribet theorem. When n > 0, we may apply Lemma 2.2 to
conclude that this last is in 26+"Z2[i]. For the case of n 0, we proceed,
noting that b’ v.
We have 1 Xl(C) 0, and 1 Xl/Z(P) 1 (-1)(-1) 0. Thus,

(4.30)

E E ac,(0,,,(x,))
X{Xq,X1} ,e{l,v}

_, 2(-Xv’(P,))nAc,(O,f.(XV’)) mod 26+"Z2[i]

2(-XlV(Pp))a(1 XlVz(c’))(1 Xlll(Pq))L(O,f,,,(Xll)))

+ 2(-Xxlzv’e(Pp))n(1 ,,,,ll/g(c’))(1 XII.t,I/g(Pq))L(O,f,,,(,11/g))

But, Xl(C’) 1, tz(c’) -1, xx(Pq) -1, tzvx zve, and Sz(Pq) -1.
Thus the above equals

2(-Xv(P))’(1- v(c’))(1 + v(,q))L(O,f,,,(X,V))

+ 2(-Xlzv’e(Pp))n(1 + v’z(c’))(1- PI(Pq))L(O,f.,(Xll/I))

and now, by our choice of c, v’(c’) v(Pq), hence both of these summands
must be zero, and we have proved our lemma in this case.
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Case 2. ck’e(PpPr) 1.

(4.31)
E E E

X{,q,X"1} "tXr-S ,{le,b’e}
ac,(0,r(x*,))

:

X. {Xq,X 1} xlt S

Xac’(O,I"(X*@)) + E E E 2(-X*O(P.))n’

X{X,X} Sm @{le,ff}

Xac,(O,i,.(XO)) mod 26+nz2[i].

In Case 1, we showed that this second summand was congruent to zero.
tting

x(a xy(c’))(a

and noting that exactly one of 6 or 6’ is zero and the other 1, with
xle(P,) {i}, we find that

0. 2n+4(1 + i)Z2[i 2"+Zz[i].
But then

TraceQtq/Q(O.) 2n+Sz2
Therefore, either n > 0 and the sum of these TraceQtil/Q(O.) are then in
2"+5Z2, or we have n 0 and find

(4.32) E E A,(0,f,,(Xq)) -= 25 mod26Z2[i].
X.{Xq,X"1} q {le, v}

We can now complete the proof of Proposition 4.4. By combining Lemma
4.2 and Lemma 4.3 with Equation 4.26,

(4.33)
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Combining Propositions 4.1 through 4.4, we find that

0 --= 2(d)L(0, V
dlml

ml + 0 + 0 + 22n+5 mod 2n +6Z2[ ].

Since Example 3.1 shows that all of the terms are rational integers, the
congruence holds true modulo 2n+6Z. As L(0, V) is exactly divisible by 23,
the case of n 0 follows immediately. When n > 0, we solve for L(0, V[m l ])
using

mod 2n+6z,

which follows from the divisibility results of Example 3.1.

5. The proof of Theorem II

Recall that we are now in the context of

F= Q(x/--, V/--), p ---q 5 mod8,

p q(’’)4 ()4 --1o

We also have l-- 1 mod 4 such that

and

Let us set k Q(V/-). Recall from Section 2 that we have Se
{1 e, $, $, Oe}, the set of even characters of conductor dividing g. We let S
be the set of odd characters of k of conductor pq and order at most 4, given
in Table 2.1. Let f PPqPqeee. Then for all c G, the Deligne and
Ribet theorem gives.

(5.1)
1

" E E Ac(0,f(X*)) 26Z2[i]
xeS eSe

We will choose c so as to achieve the proof of our theorem.

PROPOSITION 5.1.
Then

Let c Gf be such that X2(C) +i} and $e(c)= 1.

1

X{X2,X 1} {le,e}
a,(O,/.(Xqt)) L(O,V[g]) + 2L(O,V).
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Proof
applied.

The same techniques as in the proof of Proposition 4.1 may be

PROPOSITION 5.2. For c G, as above and such that X3(c) 1,

1 E E Ac(0,/’(X)) 25Z2[ i] \26Z2[i]
X{Xl, XlZ, X3, Xatx}

Proof Since Pp (x/--), we find that xI(P,) I(P,) (P,) 1.
Therefore,

(5.2) Ac(O,f(Xlll) ) Ac(O,f(Xll.l,ll) )
Ac(0,f(Xl,/)) Ac(0,f(Xl/./,d)) 0.

Further, note that Lemma 2.3 implies that XI’(PuPqP) 1. Thus,

(1 X,q,,(Pp))(1 Xq,,(,Bq))(1 Xq,(/)) 0.

Therefore,

Ac(0,f(Xl,)) ---’0.

Similarly,

(5.3) Ac(O,f(Xlld,)) Ac(0,f(Xl )) Ac(O,f(Xll.lb )) O.

We have ($,)’ $; also, $(c) 1 gives $(c) $(c). Combining this
with (X3) X3 and (/z) , we find that

1
(5.4) E E Ac(0,f(Xk)) E Ac(0,f(X)),

which is in 26Z2, by Lemma 2.2.
Finally, recall that our choice of c in Proposition 5.1 forced/z(c) to be 1.

Thus, although (1 X3(C)) (1 X3e(c)) 0, we find that (1 X3lX(c))
(1 X3/.t,e(c)) 2. Hence, we have now shown that

(5.5) E E ac(0,

1
2 E E Ac(0,f(X))
Xe {X3, X3} /e {1 e, ke}

(1 X3/.t(P,))(1 X(P,))L(O, Xs) + L(O,
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Now, X3tz corresponds to a fourth degree Galois extension of Q in which
only p, q, and oo ramify (p totally ramified). This field must be the cyclic
extension of Q corresponding to hp,q. Thus,

L(O, X/z) L(O, A’q)L(O,
We apply Corollary 2.3 to conclude that L(0, X3/z) 24Z2. Since 4 divides
the value

we have

(1 X3/z(P/))(1 X3/z(fi/))L(0, X3/z) 26Z2
Similarly,

L(O, xstz$) L(O, A,%’)L(O, ’’).

L(0, Xa/$e) 25Z2[i] \26Z2[i],

as we have chosen our q such that
4

Thus, we have proven our proposition.

PROPOSITION 5.3. For c Gf as above,

1 E E Ac(0,.f(X$)) 26Z2[i]
x{Xq,x 1}S

Proof Let f’= f/Pp PqqPeP--e. Now, using Pp (1/-), we find
xq(P,) -1 and, for Se, $(P,) 1. Thus,

1
(5.6) E E Ac(0,/’(X$)) E E Ac(0,’(X$)).

x{x,,xq q,Se x{x,x} q,se

By the Deligne and Ribet theorem,

E E Ac(0,/"(X$)) 26Z2[i]
x{xq,x, x, xt} q,Se
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Therefore,

1
(5.7) E E Ac(O,f(XO))

x {xq x1}

E E Ac(0,f’(X’)) mod 26Z[i].

But,

Xl( Pe)xl(e) xI( P)XllZ( Pe) ix(Pc) -1.

Similarly, XxIz(Pe)xx(P) 1. Therefore,

L(O,f,(Xll)) L(O,f,(X,Izl)) O.

Now, Xl is an odd quadratic character of k, non-Galois over Q. Thus,
Lemma 2.3 gives that Xl(PpPq)= -1. Since )(P,,)= 1, we find )(Pq)=
-1. This, and O(Pq) -1, give

Hence,

L(O,f,(Xlqte) ) L(O,F(X,I.tQ)) O.

By Lemma 2.3, XlO’(P,PaPe) -1. But, Xle(Pp) 1. Therefore,
Xld,;(P_ee)__ 1 and

(1 XII//,(Pq))(X --/’ll]/,(Pg)) O.

The same holds true for XI(P/) replacing Xlt)(P), and similarly for
X1/x,(Pe) and X1/.O(P). Hence,

L(O,f,(Xlqt’)) L(O,f,(XlO’j )) L(O,f,(X,IZO’’)) L(O,f,(XllZb’ )) O.

Thus,

1
(5.7) Z Z Ac(0, f(Xff))

xe{xq, x’} eS

: Z Ac(O,f’(Xl,l)) md26Z2[i],

which is equal to zero. Therefore, we have proved our proposition.
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PROPOSITION 5.4. For c Gf as above,

1 E E A(0,f(Xq)) -4L(0, V) mod 26Z2[i].

Proof Let f"--f/P= PpPqPqPe. Since Xz(c) {+i}, q,(c) $(c)
{+ 1} and the action of the non-trivial element r of Gal(k/Q)takes Xz to
Xz and qt to qt, we have

1
(5.9) " E E A(0,r(Xq))

E (1 Xqt’(fie))L(O,f.(X’))

Now, let c" in Gy,, be such that X2(C") X2II/I(Pl) (note that this forces
tz(c") to be 1.) We will further restrict our choice of c" as we proceed with
our proof. Now,

A c" (0,/’"(XO)) 26Z2[ ],

by the Deligne and Ribet theorem. Therefore,

1
(5.10) E E h(O,/.(Xff))

E

E Ac"(0,/"(1))

E Z
x{x,,x1} q{le,q}

Z Z

But, the q(Pp), Xl(Pp) and ,’l/(Pp) are equal to 1. Since /’3 corresponds
to a cyclic order 4 character of Q of conductor p, we find that Xa(Pq)=
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x3(Pz) 1 Also, X3Oz(P)xaz(P) =/(P) 1. Recall that L(0, X3/)
24Z hence2

Ac,,!0,f,(Xa/lz)) 26Z2 If we now restrict our choice of c" such that
gal(c") 1, then

1
(5.11) - Y’. Y’ A(0,f(X))

x x2,x g’ g’,, g’

E a,,(o,,,,(x))
xe{x2,x}

E E ,,,(o,r(x,))

x {x2,x}

E E (1 Xq(Pp))A,,(O,z,.(Xq))

E A,,(0,/,.(XI /))
xe{x2,x}

E E 2Ae’(0,/’’(gq))

as X,(Pp) 1 q,(Pp).
Since

E E
xE{x,x,x,xat} q,{, q,}

2A c" (0,/’’(X)) 26Z2[ ],

we have

1
(5.12)

E Ac"(O, f"(X1 /))
X{X2,X"1

E E 2Ac,,(0,f,,,(Xq)).
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By setting Xx(C") xI(Pe)[ -xI(P)], one has (1 Xl(C"))(1 xI(P)) 0.
That is,

Ac,,(O,f,,,(Xllg) ) =0.

Since/z(c") 1 and XII.t(P) -xI(P/), we also find Ac,(O,f,,,(Xlp,l))
0. Now,

(1 Xlqt’e(c"))(1 Xll//tg(/q)) (1 XI(P)@’e(c"))(1 ,,’ll]/(/q)

and Lemma 2.3 gives Xl’(PpPqPg) %--1, i.e. that Xl’g(PqPl) -1. Let
us choose c" such that q,(c")= q(Pz). Hence, Ac.(0,.,(glq,))= 0. We
also find Ac,,(0,f.,(X1/Zqt))= 0. Therefore,

1
(5.13) 7 Z E Ac(0,y(X))

., Ac"(O,f.(xle))

-[(1 X2(c"))(1 x2(Pe))

+(1 X]-I(c"))(1 xfl(Pe))]L(O, X2).

,,,’(c")’" (c") X2q,,(Pz) and we q’,(Pz).We have chosen c" such that X2wz
Thus,

X2(c") X2(/g) X-I(P,).

Therefore,

1

x(x2,xq (’e, ’}
hc(O,f(Xq,)) =- -4L(0, 2’2) -4L(0, V).

Combining Propositions 5.1-5.4 and using that L(0, V) is exactly divisible
by 23 we find that

L(0, V[ g l) -= 6L(0, V) mod 26Z2

By example 3.2, both of the above L-values are rational integers, thus we
have proved our theorem.
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6. Governing fields

Let F be a biquadratic extension of Q with odd class number. Fix a
complex quaternion extension N of Q containing F. Let S be the set of
primes of N ramified over Q. Let S’ be the corresponding set of primes of F,
and S" that of Q.

Let A be the set of all rational primes with a given unramified splitting
configuration to F and of a given residue modulo 4Z. For / in A, consider
N[ l], a complex quaternion extension of Q containing F and ramified at
S[ g ], the set of primes dividing g and S". Let be the cardinality of S[ g]
and let T be 2 + It/2], where [x] denotes the integer part of x. Let
L(s, V[ g l) be the Artin L-function of the unique irreducible two-dimen-
sional representation of the Galois group of N[ over Q.

Let K be the maximal abelian unramified extension of F to which all of
the primes of S’ split. Let K’ be the fixed field of the maximal subgroup of
Gal(K/F) of order powers of primes congruent to 1 or 7 mod 8Z. Let Hs be
the field fixed by the unique subgroup of Gal(K’/Q) of order 4.

Let fs(g) be the class of the S[ ]-Class group of N[ /], ClstjN[ /], in
CI(Z[H8]), the finite torsion subgroup of the Grothendieck group of finitely
generated Z[H8]-modules of finite projective dimension.

PROPOSITION 6.1. /f
(i) L(0, N[ ])/2r is odd and
(ii) L(0, N[ ’ ])/2T mod 4Z is a constant function of ,

then Hs is a minimal governing field for fs( ).

Proof Let X+ (respectively g-) be the non-trivial even (resp. odd)
quadratic Dirichlet character of conductor 8 (resp. 4). Let WNtel/Q be the
Artin root number of the two-dimensional irreducible representation V[] of
Gal(N[ I/Q). Furthermore, let ClstlF be the S’[ ]-Class group of F. Since
Cl(Z[H8]) is a group of order 2, we identify it in the natural manner with
{1, 1]. From our assumption (i), Chinburg [Ch2; Proposition 4.3.7] gives that
the image of the class of ClstlN[l] in CI(Z[H8]) is equal to

x+(ClsI,]F)x_(L(O, V[ ])/2T)WNt]/O.
From our assumption that all ’ in A have the same residue modulo 4Z,

results of Fr6hlich [F1] give that WNte/, is constant.
From our assumption (ii), x_(L(O, V[ /])/2T) is constant.
Classfield theory gives that the image of the Artin map for K over F of the

primes of F above ’ determines ClstF. A restriction to K’ over F
determines x+(ClsteF). Standard density results show that K’ is minimal
for this property. However, for all ’ in A, the splitting configuration of ’ to
F is known. Since K’ is the composition of F and Hs, Hs is indeed a
minimal governing field for fs().
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It is now clear that Corollary I and Corollary II follow from the above
results.
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