A THEOREM OF NEHARI TYPE

BY

NAZIH S. FAOUR

Introduction

The Bergman space A^2 is the space of all analytic functions f defined on the open unit disk D such that they are square integrable with respect to the area measure $dA = (1/\pi)dy dx$. The Bergman space A^2 is a closed subspace of L^2 and the polynomials are dense in A^2 . Let $\phi \in L^{\infty}(D)$, the Hankel operator H_{ϕ} is defined on A^2 by $H_{\phi}(f) = P(J(\phi f))$, where J is the unitary operator defined on L^2 by $J(f(z)) = f(\bar{z})$ and P is the orthogonal projection of L^2 onto A^2 . It is easily established that $H_{\phi}T_z = T_{\bar{z}}H_{\phi}$, where T_z is the operator defined on A^2 by $T_z(f) = zf$ and $T_{\bar{z}}f = P(\bar{z}f)$. Thus, the Hankel operators H_{ϕ} are special instances of solutions of the operator equation

$$ST_z = T_{\bar{z}}S\tag{1}$$

where S is a bounded operator on A^2 . From (1), it is easily established that $\langle Spq^+, 1 \rangle = \langle Sp, q \rangle$, where p and q are polynomials in z, and $p^+(z) = \overline{p(\overline{z})}$. Thus, it follows that

$$\langle Sb_{\xi}^{1/2}, \left(b_{\xi}^{1/2}\right)^{+} \rangle = \langle Sb_{\xi}, 1 \rangle$$

where $b_{\xi}(z) = (1 - |\xi|^{2})(1 - \overline{\xi}z)^{-3}, \xi, z \in D.$

In this paper a Nehari type theorem is proved. In particular it is shown that if S is a bounded operator on A^2 which satisfies (1), then $S = H_{\phi}$ for some $\phi \in L^{\infty}(D)$. However, it should be mentioned that in [3] the symbol ϕ was determined explicitly whenever S is of finite rank. The theorem above is of Nehari type due to the fact that Nehari [4] proved that if S is a bounded operator on the Hardy space H^2 such that $ST_{e^{i\theta}} = T_{e^{-i\theta}}S$, then $S = H_{\phi}$ for some $\phi \in L^{\infty}(\partial D)$, moreover, ϕ can be chosen such that $||H_{\phi}|| = ||\phi||_{\infty}$.

© 1991 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received February 3, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 47A; Secondary 47B.

1. The main result

To establish the result and for the sake of completeness the following is needed.

DEFINITION 1. A collection of points $\{\xi_i\}_{i=1}^{\infty}$ in *D* is called an η -lattice if the hyperbolic balls $\{z: d(z, \xi_i) < \eta\}$ cover *D*, and the ξ_i are separated in the same sense that $d(\xi_i, \xi_j) \ge c_0 \eta$, $i \ne j$. Here c_0 is a constant associated with the η -lattice and $d(z, w) = |z - w| / |1 - \overline{w}z|$.

THEOREM 1. Let $\{\xi_i\}_{i=1}^{\infty}$ be an η -lattice with η sufficiently small then for $g \in A^1$ (that is, g is analytic in D and $\int_D |g| dA < \infty$), there exist $\{\lambda_i\}$ in l^1 such that

(i) $g = \sum_i \lambda_i b_{\xi_i}$

(ii) $\sum_{i} |\lambda_{i}| \leq \alpha ||g||_{1}$, where α is a constant which depends only on η .

Remark 1. Theorem 1 is a special case of Theorem 1.3 proved in [2]. To prove it, take the Hilbert space H in Theorem 1.3 to be C, and follow the same techniques of the proof of Theorem 1.3. In [1], a theorem similar to Theorem 1 is proved for the case $g \in A^2$, and thus it can be concluded that span $\{b_{\xi_i}\}$ is dense in A^1 and A^2 . Also, it is known that $||b_{\xi}||_1 \le c, \xi \in D$ and c is a constant. For a proof of the last statement see [2].

THEOREM 2. Let S be a bounded operator defined on the Bergman space A^2 such that $ST_z = T_{\overline{z}}S$. Then there exist $\phi \in L^{\infty}(D)$ such that $S = H_{\phi}$.

Proof. Let $M = \operatorname{span}\{b_{\xi_i}\}$ where $\{\xi_i\}$ is an η -lattice. Define the linear functional G on M by $G(f) = \langle Sf, 1 \rangle$. Note that $M \subset A^2$ and hence is contained in A^1 . From Theorem 1, given $f \in M$ there exist $\{\lambda_i\}$ in l^1 such that $f = \sum_i \lambda_i b_{\xi_i}$ and $\sum |\lambda_i| \le \alpha ||f||_1$.

Given 0 < r < 1, note that $||b_{\xi_i}(rz)||_2 \le k(r)$. Thus, with $f_r(z) = f(rz)$ we see that

$$\langle Sf_r, 1 \rangle = \left\langle S\left(\sum_i \lambda_i b_{\xi_i}(rz)\right), 1 \right\rangle$$

= $\sum_i \lambda_i \left\langle S\left(b_{\xi_i}(rz)\right), 1 \right\rangle$
= $\sum_i \lambda_i \left\langle S\left(b_{\xi_i}^{1/2}(rz)\right), \left(b_{\xi_i}^{1/2}(rz)\right)^+ \right\rangle.$

Therefore,

$$|\langle Sf_r, 1\rangle| \leq \sum_i |\lambda_i| ||S|| \cdot \sup_{\xi_i} ||b_{\xi_i}(rz)||_1.$$

Consequently, it follows from previous discussion and Remark 1 that

$$|\langle Sf_r, 1 \rangle| \le \alpha c ||f||_1.$$

But $f_r \to f$ in A^2 . Thus, by the continuity of G it follows that $|G(f)| \leq \beta ||f||_1$ for some constant β . Since span $\{b_{\xi_i}\}$ is dense in A^1 it follows that G extends by continuity to an element of $(A^1)^*$, and consequently, by the Hahn Banach Theorem to an element of $(L^1)^* = L^{\infty}(D)$. Therefore, there exists $\phi \in L^{\infty}(D)$, such that

$$\begin{split} \langle Sf,1\rangle &= \langle \phi f,1\rangle \\ &= \langle J(\phi f),1\rangle \\ &= \langle P(J\phi f),1\rangle \\ &= \langle H_{\phi}f,1\rangle. \end{split}$$

Moreover, by [1], span $\{b_{\xi_i}\}$ is dense in A^2 . Thus, it follows that $\langle H_{\phi}h, 1 \rangle = \langle Sh, 1 \rangle$, $h \in A^2$. Using the fact that $\langle Spq^+, 1 \rangle = \langle Sp, q \rangle$ where p, q are polynomials in z, it follows that $\langle Sp, q \rangle = \langle H_{\phi}p, q \rangle$, and hence, $S = H_{\phi}$, and this ends the proof of the theorem.

References

- 1. R.R. COIFMAN and R. ROCHBERG, Representation theorems for holomorphic and harmonic functions in L^p , Asterisque, vol. 77 (1980), pp. 11–66.
- 2. N. FAOUR, A factorization theorem for Bergman spaces, Indian J. Math., vol. 30 (1988), pp. 17-27.
- 3. N. FAOUR AND S. YOUSEF, A class of Hankel operators on Bergman spaces, Indian J. Math., to appear.
- 4. Z. NEHARI, On bounded bilinear forms, Ann. of Math., vol. 65 (1957), pp. 153-162.

KUWAIT UNIVERSITY KUWAIT