CLOSURE PROPERTIES OF THE CLASS OF UNIFORM SWEEPING-OUT TRANSFORMATIONS

by Jonathan L. King¹

A measure-preserving transformation (S: X, μ) on a probability space is uniform sweeping-out if for any set A of positive mass and any ε there exists N such that: Any collection **K** of integers will satisfy

$$\mu\Big(\bigcup_{k\in\mathbf{K}}S^kA\Big)>1-\varepsilon$$

if $K \ge N$. Nat Friedman introduced this property in [F]. Our goal here is to affirmatively answer a question of Friedman by showing that the class of uniform sweeping-out transformations is closed under countable cartesian product. The proof is a second application of the conditional expectation argument of [K] followed by a counting argument. I am indebted to Nat Friedman and Dan Rudolph who pointed out that uniform sweeping-out has a "mixinglike" characterization. This provoked the "lightly-mixing" characterization which is (C0) below and suggested dusting off the argument which shows that the class of lightly-mixing maps is closed under cartesian product. It is not known (in the category of weak-mixing transformations) whether uniform sweeping-out is implied by the existence of a dense family of sets A each of which sweeps-out uniformly.

Our cartesian product result appears now, rather than in 1988 when it was done, because it is now known that uniform sweeping-out is strictly weaker than mixing. (That mixing implies u.s.o appears in [F].) Terry Adams [A] has recently announced that the lightly mixing example of [F, K] has the stronger uniform sweeping-out property. Yet it is not mixing; indeed, not even partial-mixing.

A "lightly-mixing" characterization. Each of the following two properties is equivalent to uniform sweeping-out. For a $\beta \in [0,1]$ let Indices $_{\beta}(A,B)$ represent the set of indices k satisfying $\mu(S^kA \cap B) \leq \beta$. The function

Received July 10, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 28D05, 47A35; Secondary 34C35.

¹Partially supported by a National Science Foundation Postdoctoral Research Fellowship.

Zero(\cdot , \cdot) below is a uniform bound on the cardinality of such a set of indices. In the sequel δ and ε are numbers in (0, 1). The phrase $a \stackrel{d}{=} b$ means that the expression b defines the (new) symbol a.

(C0) For any set A of positive mass, any ε , there exists $M \stackrel{\triangleleft}{=} \operatorname{Zero}(A, \varepsilon)$ such that for any set B with $\mu(B) \geq \varepsilon$,

$$\# \operatorname{Indices}_0(A, B) < M.$$

If S satisfies (C0) then, given any collection K with $\sharp K \geq M$, let B be the complement of the union $\bigcup_{k \in K} S^k A$. Were $\mu(B)$ at least ε we could apply (C0) to obtain a contradiction. Hence any M iterates of A sweep out more than $1 - \varepsilon$ of the space.

A similar argument shows the converse, that uniform sweeping-out implies (C0).

(C1) For any set A of positive mass, any ε , there exists $M \stackrel{\triangleleft}{=} \text{Small}(A, \varepsilon)$ and positive number $\delta \stackrel{\triangleleft}{=} \text{Size}(A, \varepsilon)$ such that for any set B with $\mu(B) \geq \varepsilon$,

$$\# \operatorname{Indices}_{\delta}(A, B) < M.$$

Evidently (C1) implies (C0). Conversely, fix ε , A and $M \stackrel{\triangleleft}{=} \operatorname{Zero}(A, \varepsilon/2)$. Set $\delta \stackrel{\triangleleft}{=} \varepsilon/2M$. Fix any B of mass at least ε . Suppose there were a collection K, #K = M, of indices k such that $\mu(S^kA \cap B) \leq \delta$. Then the difference set

$$B' \stackrel{\triangleleft}{=} B \sim \bigcup_{k \in \mathbf{K}} S^k A$$

has mass at least $\varepsilon/2$. Yet Indices₀(A, B') contains **K**, a contradiction. We conclude that the quantity Small_{δ} (A, ε) is dominated by M.

Remark. For the properties above, to emphasize the dependence on the transformation S we may write $Zero(A, \varepsilon; S)$, etc.

The class of uniform sweeping-out transformations is evidently closed under powers and roots since

$$\operatorname{Zero}(A, \varepsilon; S^n) \leq \operatorname{Zero}(A, \varepsilon; S) \leq |n| \cdot \operatorname{Zero}(A, \varepsilon; S^n)$$

for any non-zero integer n.

Cartesian product. Fix $(S: X, \mu)$ and $(T: \hat{X}, \hat{\mu})$, two uniform sweeping-out transformations. Our goal is to show that $S \times T$ is uniform sweeping-out by

showing it to satisfy (C0). Fix some set $\mathbf{V} \subset X \times \hat{X}$ of positive mass. We shall compute an upper bound for

$$Zero(V, 2\varepsilon; S \times T)$$

in terms of Small($, \varepsilon; S$) and Small($, \varepsilon; T$).

Given a point $z \in X$ let V_z denote the cross-section of V above z; thus V_z is the subset of \hat{X} such that $\{z\} \times V_z$ equals $[\{z\} \times \hat{X}] \cap V$. By standard measurability arguments, the following holds for μ -a.e. z. Set $\hat{A} = V_z$. Then for any positive $\hat{\delta}$ the set

$$V \stackrel{\triangleleft}{=} \left\{ x \mid \hat{\mu} \big(\mathbf{V}_{x} \Delta \hat{A} \big) \leq \hat{\delta} \right\} \tag{1}$$

has positive μ -mass. Consider z and \hat{A} as henceforth fixed. Define the quantities

$$\hat{M} \stackrel{\triangleleft}{=} \text{Small}(\hat{A}, \varepsilon; T) \text{ and } \hat{\delta} \stackrel{\triangleleft}{=} \text{Size}(\hat{A}, \varepsilon; T).$$

For this $\hat{\delta}$, define V as in (1). Finally, set

$$M \stackrel{\triangleleft}{=} \mathrm{Small}(V, \varepsilon; S)$$
 and $\delta \stackrel{\triangleleft}{=} \mathrm{Size}(V, \varepsilon; S)$.

Wishing to establish (C0) for $S \times T$, it suffices to show that

$$\operatorname{Zero}(V, 2\varepsilon; S \times T) \leq M + \hat{M}/\delta.$$

Fix any set $\mathbf{W} \subset X \times \hat{X}$ with mass at least 2ε . Set

$$W \stackrel{\triangleleft}{=} \left\{ x \mid \hat{\mu}(\mathbf{W}_x) \geq \varepsilon \right\}$$

and note that $\mu(W) \ge \varepsilon$ follows by a Fubini argument. Define a function $f: \mathbf{Z} \to [0,1]$ by

$$f(k) \stackrel{\triangleleft}{=} \mu \Big\{ x \in W \mid \hat{\mu} \big(T^k \hat{A} \cap \mathbf{W}_x \big) \leq \hat{\delta} \Big\}.$$

This function measures the probability that a fiber W_x has k in its bad set Indices $\delta(\hat{A}, W_x)$. Let $1[\cdot]$ denote the Dirac function where 1[true] = 1 and

1[false] = 0. By Fubini, the sum $\sum_{k \in \mathbb{Z}} f(k)$ equals

$$\begin{split} &\sum_{k} \int_{W} \mathbf{1} \Big[\hat{\mu} \Big(T^{k} \hat{A} \cap \mathbf{W}_{x} \Big) \leq \hat{\delta} \Big] \, d\mu(x) \\ &= \int_{W} \sum_{k} \mathbf{1} \Big[\hat{\mu} \Big(T^{k} \hat{A} \cap \mathbf{W}_{x} \Big) \leq \hat{\delta} \Big] \, d\mu(x) \\ &\leq \int_{W} \| \operatorname{Indices}_{\hat{\delta}} \Big(\hat{A}, \mathbf{W}_{x} \Big) \, d\mu(x) \leq \mu(W) \cdot \hat{M}. \end{split}$$

This yields the inequality

$$\sum_{k \in \mathbf{Z}} f(k) \le \hat{M}$$

whose usefulness arises from the fact that although $f(\cdot)$ depends on the set **W**, the bound \hat{M} does not.

Counting the set of bad k. Suppose k is such that $[S \times T]^k \mathbf{V} \cap \mathbf{W}$ has zero mass. For μ -a.e. x then $\hat{\mu}(T^k(\mathbf{V}_{S^{-k}x}) \cap \mathbf{W}_x)$ equals zero. Thus if $x \in S^k V$ then

$$\hat{\mu}(T^k \hat{A} \cap \mathbf{W}_x) \le \hat{\delta} \tag{2}$$

by (1). In particular, (2) holds for every $x \in S^k V \cap W$. Thus $f(k) \ge \mu(S^k V \cap W)$. This last quantity will exceed δ if k is chosen outside of $\mathbf{K} \stackrel{\triangleleft}{=} \operatorname{Indices}_{\delta}(V, W; S)$. As a consequence

$$\sharp (\operatorname{Indices}_0(\mathbf{V}, \mathbf{W}; S \times T) \sim \mathbf{K}) \leq \sum_{k \in \mathbf{Z}} \frac{f(k)}{\delta}.$$

Since the righthand quantity is dominated by \hat{M}/δ we may conclude that

$$\sharp \operatorname{Indices}_{0}(\mathbf{V}, \mathbf{W}; S \times T) \leq \sharp \mathbf{K} + \hat{M}/\delta \leq M + \hat{M}/\delta$$

as desired.

Countable Cartesian products. In order to pass from finite to countable cartesian products we need to show that the class "Uniform Sweeping-out" is closed under inverse limits.

Given $(T: X, \mu)$ and a factor algebra \mathscr{F} recall that the *conditional* probability function $\mathscr{P}[\cdot|\mathscr{F}]$ is canonically defined by the equality

$$\int_{F} \mathscr{P}[B|\mathscr{F}](x) \, d\mu(x) = \mu(B \cap F)$$

for all $F \in \mathcal{F}$ and measurable B.

Inverse Limit Lemma. Given $(T: X, \mu)$ and an increasing tower $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots$ of factor algebras whose join is the entire σ -algebra. Then

 $T|_{\mathscr{F}_n}$ uniform sweeping-out for all $n \Rightarrow T$ uniform sweeping-out.

Proof. Fix ε and a set A of positive mass. Pick $\mathscr{F} \in \{\mathscr{F}_n\}_n$ sufficiently far out in the sequence that A is nearly \mathscr{F} -measurable: Choose it so that $\mu(F)$ is positive, where

$$F \stackrel{\triangleleft}{=} \Big\{ x \ \Big| \ \mathscr{P}[A|\mathscr{F}](x) > 1 - \varepsilon \Big\}.$$

Let N be the constant arising from the uniform sweeping-out of $T|_{\mathscr{F}}$; thus for any collection $\#\mathbf{K} \geq N$ of integers, $\mu(\mathbf{F}) > 1 - \varepsilon$ where \mathbf{F} denotes the union $\bigcup_{k \in \mathbf{K}} T^k F$. Let $\mathbf{A} \stackrel{\triangleleft}{=} \bigcup_{k \in \mathbf{K}} T^k A$. Consider a point $x \in \mathbf{F}$, say, $x \in T^k F$. Then

$$\mathscr{P}[\mathbf{A}|\mathscr{F}](x) \ge \mathscr{P}[T^k A|\mathscr{F}](x) = \mathscr{P}[A|\mathscr{F}](T^{-k}x) > 1 - \varepsilon$$

where the last inequality follows from the definition of F. Consequently

$$\mu\left(\bigcup_{k \in \mathbf{K}} T^k A\right) = \int \mathscr{P}[\mathbf{A}|\mathscr{F}] d\mu \ge \int_{\mathbf{F}} \mathscr{P}[\mathbf{A}|\mathscr{F}] d\mu$$

$$\ge \int_{\mathbf{F}} 1 - \varepsilon d\mu$$

$$= \mu(\mathbf{F}) \cdot (1 - \varepsilon) > (1 - \varepsilon)^2 > 1 - 2\varepsilon.$$

Thus any N iterates of A sweep out all but 2ε of the space.

REFERENCES

- [A] T.M. Adams, Uniformly sweeping out does not imply mixing, to appear.
- [F] N.A. Friedman, Mixing on Sequences, Canad. J. Math., vol. 35 (1983), pp. 339-352.
- [F, K] N.A. FRIEDMAN and J.L. KING, Rank one lightly mixing, Israel J. Math., to appear.
- [K] J.L. King, Lightly mixing is closed under countable products, Israel J. Math., vol. 62 (1988), pp. 341–346.

University of Florida Gainesville, Florida