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I. Introduction

1. Following Riemann, Hecke in his celebrated work [4], [5] uncovered--
using the Mellin transform and its inversemthe systematic theory relating
automorphic (in particular, modular) forms to Dirichlet series satisfying a
functional equation invariant under a transformation of the form s -o a s,
with a real. Knopp, in [9], demonstrated that the Mellin transform of a
modular integral, with rational period function, on the full modular group
F(1) SL(2, Z) satisfies precisely the same functional equation occurring in
Hecke, provided that the poles of the period function in question lie in Q.
(By Theorem 1 of [9], this means the poles are either 0 or o.) Moreover, he
proved a converse theorem, as in Hecke, whence the simple functional
equation discovered by Riemann and Hecke can no longer obtain when the
period function has poles outside of Q. Nevertheless, Theorem 2 in Knopp’s
earlier article [8] suggests the possibility, in the latter case, of a functional
equation with a more complex structure (but still under a transformation of
the form s -o a s, a real).
We have discovered just such a functional equation for the Mellin trans-

form of a modular integral, with arbitrary rational period function, of any
(integral) weight; this is the main object of the present article. Theorem 2
(III) describes this result and Theorem 4 (IV) the expected converse; these
results include as special cases Theorem 3 of [9] and its converse, Theorem 4
of [9], when the poles of the rational period function are 0 or o. It is curious
that while the ordinary hypergeometric functions figure prominently in the
proof of Theorem 2, they drop out in the calculation of the functional
equation (and hence do not appear in the statement of Theorem 4).

It is essential to emphasize that we formulate the results of III, IV not
for the full modular group F(1), but instead for the subgroup F0, of index 3 in
F(1). This choice is not merely a matter of convenience or a desire for
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generality; it goes to the heart of our method of proof. We began this work
with entire modular integrals (with rational period functions) on the full
modular group explicitly in mind, but we found that the much larger class of
entire modular integrals on F0 is the appropriate context for our results. For,
as we gradually realized, the methods we employ in no way depend upon the
stringent conditions met by rational period functions on F(1). On the
contrary, it suffices to invoke the much weaker restrictions satisfied by
rational period functions for F0. Presumably, there is an alternative approach
that exploits these stricter conditions to obtain a form of the functional
equation that reflects the extra structure imposed by the relations in F(1).
(See the speculation of V).
We thank Dr. Richard Cavaliere for a number of stimulating conversations

at the beginning of our work on this article.

2. Definitions and notations.
matrices

F(1), the full modular group, is the set of

with a, b, c, d Z and ad- bc 1. For the most part, we shall consider
F(1) as a group of linear fractional transformations acting on the Riemann
sphere:

Mz--
az+b
cz +d

While this interpretation negates the distinction between M and -M, we
must maintain this distinction in the discussion of multiplier systems below.
Similarly for subgroups of F(1).

F(1) is generated by the two transformations

(1.1) S=
0 1 1 0

as matrices, T2 (ST)3 -I, but in keeping with the identification of M
and M in F(1) we write

(1.2) T2 (ST) 3 I.

In fact, these are the only relations in the generators S, T of F(1). (See, for
example, [7, Chapter 1] for these and the following facts about F0).
The theta-subgroup F0 is the subgroup of F(1)generated by S2 and T

(where S2- (1 2 of course). By the remark following (1.2), T2- I is the
\ 0
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only relation in the generators S 2, T of F0, for our purposes, the crucial
difference between F0 and F(1).

Generalizing the definition of F(1), Hecke [4], [5] considered the class of
groups G(An)mnow called the Hecke groupsmwhere A 2cos(r/n), n

(1 An) and T; with the identifica-Z, n > 3 and G(An) is generated by S o
tion of _+I, the relations in this case are

(1.3) T2 (SnT)" I.

Note that in the Hecke notation F(1)= G(A3), while F0 may be written
G(A=), since A= 2cos 0 2. (Hecke also considered the discrete groups

[a x/ and T, for arbitrary A > 2; for A <2he restrictedG(A), generated by
0

himself to A 2 cos(rr/n), since these are the only A < 2 for which G(A) is
discrete [4, Chapter 3], [5, 5].)
Suppose 2k is an integer (not necessarily even) and F 0 is a function

meromorphic in ?’, the upper half-plane, such that

(* *)(1.4) ;(M)(cz + d)-2kF(Mz) F(z), z oft, M= c d

for all M F, a discrete subgroup of SL(2, R), where (M) is a complex
number depending upon M (not upon z) and I(M)I 1, for all M F.
The set {(M)IM F} is called a multiplier system for F and the weight 2k.
We observe that, in general, (M) is a function on the matrix group F, but
not on the linear fractional group F. To see why this is so, recall that
(-M)z Mz, since both equal (az + b)/(z + d). Thus, since F 0, (1.4)
implies that

(M)(cz + d) -2k (-M)(-cz d) -2k

or

(M) (1)2k(M).

(To put this another way, (M) is a function on the linear fractional group F
only if 2k is even.) It follows from (1.4) that a multiplier system is a
character on the matrix group F (on the linear fractional group F as well,
when 2k is even).

If the function F satisfying (1.4)is holomorphic in and satisfies the
growth restriction

(1.6) IF(z)[ <_K(lzl + y-), y=Imz>O,
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for some K, a,/3 > 0, then F is called an entire automorphic (modular, if
F c F(1)) form on F, of weight 2k, with multiplier system .

Here, we are interested in the generalization to entire modular (or auto-
morphic) integrals, in which the characteristic functional equation (1.4) is
replaced by

(1.7)

7(M)(cz + d)-2kF(Mz) F(z) + qM(Z), (* *)z o, M= c d

for all M F, where again F is holomorphic in and satisfies (1.6), is a
multiplier system on F, as before, and qM is a rational function of z, the
rational period function ofF corresponding to M F. Once again, 2k is called
the weight of F.

Introducing the customary stroke operator FlzkM (or simply FIM) to
represent the left-hand side of (1.7), we may rewrite (1.7) as

(1.8) FIM F + qM, M F.

For any function F defined on the Riemann sphere, the fact that is a
character on F implies

so that

F[ M1M2 (FIM1)IMp, M,M2 F,

(1.9) qM,M2 qM, IM2 + qM2’ MI’ M2 F,

follows from (1.8).
For present purposes it is sufficient to consider only the Hecke groups

F G(A), n > 3, and we include F0 by allowing n oo. Since G(An) is
generated by S and T, (1.8) is equivalent in this case to

(1.10) FISn F + qSn, FIT F + qr.

The entire automorphic integrals for F0 are precisely the class for which we
may expect a correspondence theorem analogous to the one Hecke found for
automorphic forms, provided qs O. For then (1.10) takes the form

(1.11) F[ 2kSn F, F[2k T F + qT

and FISn F, together with (1.6), yields the expansion

(1.12) F(z) E am+K exp[2rri(m + l,)z/in] z o,
m+K>O
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with K defined by

(1.13) (Sn) exp(2riK), 0 < < 1.

In particular, the system of period functions of an automorphic integral F for
F0 is effectively generated by the single period function qT. We shall call qT
the period function of F; we generally write q instead of q, also.

Since F satisfies (1.6) it is relatively easy to check that

(1.14) am+ O(m), m +,

for some 7 > 0, in fact, that (1.14) is equivalent to (1.6). Thus, the Dirichlet
series associated with F, defined formally by its Mellin transform,

(1.15)
m+>O

actually converges absolutely in the right half-plane r > 1 + y and uniformly
on compact subsets thereof.
Now, for the groups G(A,), including F(1) (n 3), but excluding Fo

(n ), the defining relations (1.3) impose upon the rational period function
q qr of F in (1.11) the necessary conditions

(1.16) ql2kT + q 0

and

(1.17t ql2k(SnT ) -1 +qI2(S.T) -2+ ...+q O.

(Obviously, nontrivial rational solutions exist only if the weight 2k is an
integerwhich is why we consider only integral weights.) In contrast, for
F F0 only the condition (1.16) is imposed upon q by (1.11). This is the
distinction between F0 and the other Hecke groups we can exploit: it turns
out that construction of q satisfying (1.16) lies fairly close at hand (II), while
the determination of q satisfying (1.16) and (1.17) simultaneously is a difficult
problem [3]. In any event, these necessary conditions upon q ((1.16) alone or
(1.16) and (1.17)) are sufficient as well, in the sense that if they hold for q,
then there exists F meromorphic in and satisfying (1.11). (See [10].) If the
weight 2k > 2, the construction of [10] can be arranged so that F is
holomorphic in and has growth restriction (1.6) (i.e., F is an entire
automorphicor modularintegral). If 2k < 0, we can take F to be holo-
morphic in , but not necessarily fulfilling the condition (1.6). (See III.1) If
2k 1, we may not assume that F is holomorphic in .
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As we infer from the discussion above of the relations (1.16) and (1.17), the
class of rational period functions q for F0 is a much wider one than that for
any of the other Hecke groups. In fact, any rational period function for any
Hecke group is necessarily a rational period function for F0, but not con-
versely. Thus, a result for rational period functions connected with F0
necessarily has far broader applicability than the corresponding result for any
other Hecke group. In part for this reason and in part because our present
method of proof does not appear well suited to exploiting the relation (1.17)
to strengthen our conclusions, we restrict our attention in this paper almost
exclusively to the group F0 and its rational period functions.

3. Outline. In II we determine all rational period functions for F0 and
in fact we give there a basis for the vector space of these rational period
functions that is relatively easy to apply in treating the Mellin transform F
of an entire modular integral F on F0. In III we turn to the Mellin
transforms themselvesmthe focus of our attention--and we derive the prin-
cipal result, Theorem 2 (III.2), which contains the functional equation (3.9),
(3.25) of F. In III.3 we describe in detail the meromorphic continuation to
the entire complex s-plane of F(S), which has at worst simple poles at
integral values of s. Section IV presents the statement and proof of Theorem
4, the converse of Theorem 2.

II. Rational period functions for Fo

1. In this section, we describe the general solution of the functional
equation

(2.1) qJ2kT + q 0

in the space g’(z) of rational functions. The proof is given in a paper of
Hawkins [3]. The solution allows us to express the Mellin transform of an
entire automorphic integral for F0 in a form that readily leads to a formula-
tion and proof of the Hecke correspondence theorem referred to in the title
of this paper (see Theorems 2, 4 in III, IV).
As we pointed out earlier the weight 2k must be integral, so the consis-

tency condition for multiplier systems implies in particular that

(2.2) (T)
__

2k.

We define 6 (, k) by

(2.3) a 311 + (T)i2k].
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Next, for any integer r, we define fr(a) by

(2.4) fr(a)
Z O)

(I- T)

(Z--Ol)r ( 1)z-r z + -g

when a 4: 0, and, when a 0, by

1 (T)(- 1)(2.5) fr(0) =z-rl( I T) zr z2k_

(For convenience we have written Iforl.) Henceforth, when we write fr(a),
we shall tacitly assume a 4: 0, _+ for convenience.

THEOREM 1. Let q(z) be a rational solution of (2.1),

q[2kT + q O.

Then, in the notation above, q(z) has the unique representation

p M(j) M

(2.6) q(z) E Crfr(O) + E E Crjfr(tXj) + E drfr(i)
k<r<L j=l r=l r=l

r=2k+8(2)

M

+ , d’rfr(-i),
r=l

r--8(2)

where Cr, Crj dr, and d’ are complex constants, with ck (1 6)ck for even
2k. Conversely, any rational function q of the form (2.6) is a solution of (2.1).

Remarks. (i). For even 2k and 6 1, fk(0) 0; this is the reason for the
requirement c (1 6)c for even 2k (otherwise, the representation (2.6)
is not unique).

(ii). The functions fr(O), for r > k (r > k, except when 2k is even and
6 0), fr(tej), for r > 1, fr(i), for r 2k + 6(2)(and r > 1), and fr(--i), for
r (2) (and r > 1), form a basis over C for the linear space of solutions of
(2.1) in C(z).
Theorem 1 is actually more general than we require; we need only those

solutions of (2.1) holomorphic in g-, because only those can occur as rational
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period functions of entire modular integrals. Furthermore we make no use of
the uniqueness of the representation (2.6), that is, of the linear independence
of the various functions fr that appear in (2.6). What we use in III, IV is
the following consequence of Theorem 1.

COROLLARY. The rational period function q(z) of an entire automorphic
integral of integral weight 2k and multiplier system for Fo has the representa-
tion

(2.6’) q(z)
p M(j)

E crL(O) -JI- E E CrjL(lj)
k<r<L j=l r=l

M

+ E drfr(-i),
r=l

where Cr, Crj, and dr are complex constants, with c
Here, Im aj < 0 and aj 4: -i, for 1 <_ j <_ p.

(1 )ck for even 2k.

2. Since the proof of Theorem 2 depends in an essential way upon the
corollary to Theorem 1, for the sake of completeness we give here a detailed,
independent proof of the corollary.
To begin, all of the rational functions fr(O), fr(a), fr(--i) arising in the

corollary satisfy the condition (2.1) since they have the form qlT- q.
Furthermore, because

Re Tz Re(- l/z) -Re z/lzl 2,

a function satisfying (2.1), and without poles in Re z > 0, likewise has no
poles in Re z < 0. From these two observations we conclude: if al,..., a
are the poles of q with positive real part, there exist complex numbers C i,
1 < j < l, such that the poles of

M(j)

ql(Z) q( z ) E E Cryfr(
j=l r=l

are restricted to the imaginary axis and the point i. (Here M(j) is the order
of the pole aj.)

Since q(z) has no poles in o, neither does ql(z). This leaves the points
z iy, y < 0, and io to consider. The points -i and 0 (the latter possibly
appearing together with i) are exceptional when they occur as poles of q.
Putting aside discussion of these points for now, we let at+l,..., ap be the
poles of q in (-i, 0). Since T: z -1/z interchanges the two intervals
(-i, 0) and (-i, -i), a function satisfying (2.1) and without poles in (-i, 0)
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has no poles in (-i%
j < p, such that

-i). Hence, there are complex numbers Crj + 1 <

p M(j)

q2(z) ql(Z) E E Crjfr(Oj)
j=/+l r=l

p M(j)

=q(z)- E ECrjf(aj)
j=l r=l

has poles, if any, only at 0, io and -i.
The point -i must be treated with more care since it is fixed by T. In this

case a simple calculation reduces (2.4) to

fr(-i) {1 ;(T)(-i)2rZr-2k}(Z + i)

{1 ;(T)(-1)ri2}(z + i)-r+ higher powers of z + i,

where the second line follows from the first after replacement of z r-2’ by its
Taylor expansion at -i. We note that by (2.2), ;(T)(-1)ri2 +_ 1. Thus, at
-i, fr(-i) has the Taylor expansion

i) [ 2(z + i) + higher powers of z + i,
L(

3’(z + i) -r+ + higher powers of z + i,

for (T)(- 1)ri 2k 1, + 1, respectively.
On the other hand, suppose the rational period function q(z) has the

Taylor expansion

q(z) a(z + i)--r -I-" higher powers of z + i,

at z -i. Then the Taylor expansion at -i of q T + q has the form

a{ 1 + (T) ( 1)r i2k}( z + i) + higher powers of z + i.

Since qlT + q 0, the assumption a 4:0 implies that (T)(-1)ri2c -1.
This shows that g(T)(-1)ri2c= -1 is a necessary condition for a rational
period function q to have the term (z + i) as the smallest power of z +
in its principal part at -i. It follows that there exist complex numbers d
such that the rational period function

M

q3(z) q2(z) E drfr( -i)
r=l

p M(j) M

=q(z) E E Crjfr(a) E drL(-i)
j=l r=l r=l
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has poles, if any, only at 0 and . (Here M is the order of the pole -i; by
the calculation above, the parity of M is determined by the condition
(- 1)M (T)i-2.)
We have

p M(j) M

q(z) q3(z) + E E Crjfr(aj) + E drfr(-i),
j=l r=l r=l

where q3(z)- _.m Zm, a Laurent polynomial, satisfies the relation (2.1).
Observe that

z-r[T (T)( 1)rz r-2k or zr-2k[T ,(T)(1)2k-r

thus a Laurent polynomial satisfying (2.1) and with no term of the form z -r,
r > k, likewise has no term of the form z r-2. It follows that there exist
complex numbers c+ 1,--., c/, fl such that

E Crfr(O) (z-" ifkZ,q3( z)
:+a_<r_<Z, 0 if k Z.

(Recall that 2k Z, but k may not be in Z.)
If k Z, then q3(z) E+l<_r<_tCrfr(O). Assume k Z. From (2.5), we

have

f(0) (1 (T)(-1))z-.
If (T)(-1) 4 1, choose c =/3/(1 (T)(-1)). Suppose, on the other
hand, that (T)(- 1) 1, so that f(0) 0. Applying (2.1) to/3z-, we find
that 0 -/z-(1 + (T)(- 1)), so that/ 0; in this case the choice of c is
arbitrary. In all cases we have shown that q(z)= E_<_</cf(0), so that
(2.6’) holds and the proof of the corollary is complete.

III. The direct Hecke theorem

The main result of this section, Theorem 2, is an explicit form, based on
the representation (2.6), of the functional equation for the Dirichlet series
associated with an entire automorphic integral F of weight 2k and multiplier
system for Fo.

1. By (1.14) the Dirichlet series associated with F, namely

(3.1) b(s) dPF(S )

_
am+,,/(m + )s

m+>O

converges absolutely in some right half-plane, say, r > 1 + y (where s
r + it, as usual).
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If F is an (entire) automorphic integral of integral weight 2k and multi-
plier system for F0, with rational period function q, for convenience we
may always assume F(iy)--, 0 as y--, + because (see (2.5)) f0(0)=
1 .(T)z -2k is the period function for the integral (of weight 2k) F(z) =-
-1. Thus, in all cases, by (1.12) and (1.14), as y - +%

(3.2) F( x + iy) O( e-=y)

uniformly in x, for some e > 0.
By (1.6) and (3.2), it makes sense to consider the Mellin transform of F,

defined by

(3.3) (s) F(S) fF(iy)ysdyy
for o- >/3. By absolute convergence, we have, for r > 1 +/3,

(3.4) O(s)

where (s) is given by (3.1); in fact, by (1.6), we can take /=/3 in (1.14) so
for r > 1 +/3,

fo + am+Ke-(m+K)yysdY E am+Kfo e-rc(m+)yysdY
m >0 Y m+c>0 Y

because, by (1.14)

am+ e-(m+)yyS-- <
(m+

and 1/m(-t is a term of a convergent series.
Now, following Hecke (and Riemann) we have, for (r >/3, by (1.11),

aY fl=F( 1//y) y-S
dyaF( iy ) yS--- y

(T)i2f F(iy)y 2k-s dy
Y

+ (T) i2a:fl q(iy) y 2k-s
dy
y

Thus, we have, for r >/3,

(s) Dk(s) + Ek(s),
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where, by (3.2),

(3.6) Dk(s) faF(iy)[yS + a(T)i2ky2k_s] dyy
is an entire function of s, satisfying the functional equation (see (2.2)),

(3.7) Dk(2k s) (T)i2gDk(S) 0;

and

(3.8) Ek(S) (T)i2kf q(iy) y2k- dyy
is analytic in tr >/3.
Now, (3.7) already tells us that the appropriate form of the functional

equation for (s) is

(3.9) (2k s) (T)i2k(s) Rk(s),

say. But, at this point, (3.9) is merely formal, because we do not know that
(s) has a meromorphic continuation to the whole s-plane; moreover, even if

we knew (s) to be meromorphic in the s-plane, we would still want to have
a canonical form for Rk(S) in order to find a converse Hecke theorem for
functions (s) satisfying (3.4) (for tr >/3, some /3 > 0) and the functional
equation (3.9).

2. We solve both the problem of continuation and the problem of a
canonical form for Rk(S) by evaluation of Ek(S), using the representation
(2.6’), in II, for rational period functions for F0. The evaluation of Ek(S)
reduces to that of the two integrals (see (2.4) and (2.5))

(310) flfr(O)y 2k-sdy fl( 1 ’(Z)(-1)r) 2k-sdy
(iYlr (iy) 2k-r

Y ---,
for k<r<L, and

(3.11)

flfr(Ot) Y Y (iy --Ol)
( T)(-1/ce) ) y2k-s dY

( iy)2k-r ( iy

_
i)-a) ---for 1 < r < M (and a 4: 0). We note, in passing, that (1.11) and (3.2) imply
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that, as y --) 0 +,

F(iy) -q(iy),

so, in general, it must be true that / > 1; in particular, the integrals (3.10)
and (3.11) converge for (r >/3. In fact, (3.10) converges for

(3.12) r> max {2k-r,r} =L
k<r<L

and (3.11) converges for

(3.13) r > max(2k r,O) max(2k 1,0).
r>l

Thus, the poles of (s), for tr >_ 2k, can come only from the terms of Ek(S)
involving (3.10).
The first integral (3.10) is trivial, of course: we have, for the part of Ek(S)

corresponding to the first sum in (2.6’) (call it E(s)) just the rational
function

r( 1 -(T)i2k )(3.14) E2(s) E Cr(i) r s r (2k s)k<r<L

which clearly satisfies the functional equation,

E(2k s) (T)iZkE(s) O,

the same as that for D(s), (3.7).
For the second integral, (3.11), we use the well-known integral representa-

tion for the ordinary hypergeometric function (see, for example, Lebedev [11,
Chapter 9]),

(3.16)

fo2Fl[ fl; T; Z] r(.)r(r .) Y

valid for Re a, Re(y- a)> 0, and z in C\[1,), with the principal
branches taken for all the exponentials. We have, for c in C \ (-0% 1] and
trot,

y dy 1
Fl[r-s r’l +r-s’-c]"(3.17)

(c + y)r y r s 2

(3.17) already proves that (I)(s) has a meromorphic continuation to the whole
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s-plane, but we shall postpone the investigation of the poles and residues (see
{}III.3). We actually use another form of (3.17) obtained by first applying the
identity, valid for z in C \ [1, oo), with the principal branch taken for (1 z
(see Lebedev [11, Chapter 9]),

2F1[ a,’y;z]=(1-z) 2F1 Y-a,’Y;, i -z

to get, forcinC\(-%-l]ando-<r,

fl y dy (c+l)(3.18) (c+y)r y r-s Cl2F1 1, r; 1 + r- s; c + 1

(Incidentally, this corrects an error in Oberhettinger [12], formula 2.22.)
Thus, we have, assuming (3.13) on r, with r ia (so Re r > 0),

(3.19)

(iy ( 1)(iy)2k-r iy "}- - 2k-s dy
Y y

(’J" 7 i r (2k s) 2F1 1, r; 1 + r (2k s); r + 1

7( T)i -2k
2F1

1
1, r;1 +s;+ 1

Now, it is convenient to have functions with the same argument; since we
want to consider (s) under the transformation s 2k s, we should find
an expression for the first function in (3.19), with argument r/(r + 1), in
terms of hypergeometric functions with arguments 1/(r + 1). Since

1
=1r+l r+l

we use the identity (see Lebedev [11, Chapter 9]),
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valid, at any rate, for Izl, I1- z < 1 with the principal branch taken for
(l-z)r--, to get (with a= 1, /3 =r, y= 1 +s-(2k-r), and z=
/( + 1))

2F1 1, r; 1 + s (2k r); + 1

(2k s) r
2k-s 2Fill r’l + (2k-s)"’+1

-[(2k-s) -r]B(2k-s,r- (2k-s)) r+ 1 r

(B(x, y) denotes the beta function, as usual); we used, here,

2F1
1

1 +s-2k s- (2k-r)’l +s-2k"’7"+1

s-2k+r

Thus, (3.19) becomes (still under the assumption (3.13) on r)

(3.20)

1 (T) --d 2,- dyfl r-- lrY y(iy a) (iy)2-r( iy +

(--i) {(r)i-2k

( "r + 1) s 2El

1+ 2k s 2F1

1
1, r;l+s; r+ 1

1
1, r;1 + (2k-s); r+ 1

B(2k s, r (2k s))r2k-s;

principal branches being understood, as above, we may also write

2k-s exp -
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Note that, when a -i, r 1 and (3.20) reduces to

1
(3.20’)

(iy + i)
(z)ir

(iy)2k-r(iy -t-i)
y 2k-s

dy
Y

(--i)r { a(Z)i-2k7 S 2F1
1

1, r; 1 + s;

1
+2k s

1
1, r;1 + (2k-s);

+ (-i)rB(2k s, r (2k s)).

We denote by E(s) that part of Ek(s) involving the hypergeometric
functions appearing in (3.20) and (3.20’), namely

(3.21)
p M<j) (--i)r I 1E(s) a Crj i 2F1

j= r=l 1]1, r; 1 + s; rj+l

+ 2k s 2F1 1, r; 1 + (2k- S)’rj,
M

r--6(2)

--i)r(1dr (
2 2F1 111, r;1 +s;-

.(T)i2/

+ 2k s 2F1
1

1, r; 1 + (2k s);

where, of course, rj iaj, 1 < j < p; in fact, E(s) is meromorphic in the
whole s-plane and, clearly, satisfies the functional equation.

(3.22) E(2k s) (T)iZkE(s) 0

as for E(s) and D(s).
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Finally, we denote by E(s) the rest of Ek(s), namely

(3.23)
e,(s) e(s) e0(s) e(s)

p M(j) ( _i)r=(T)i2k E E Crj
j=l r=l Tf B(2k s, r (2k s))r2-

M

+ (T)i2k E
r=l

r=6(2)

dr(-i)rB(2k s, r (2k s))

pM<j)()rjo(r)(1)2k

51
1

B(2k s, r (2k s))eCrj 0l---
j=l

+ (T)i2
M

r=6(2)

dr(-i)rB(2k s, r (2k s));

-Tris /2ol}k-s

clearly, E(s) is meromorphic in the s-plane.
We summarize our results.

THEOREM 2. Let F be an entire automorphic integral of integral weight 2k
and multiplier system for Fo, with period function q given by (2.6’); suppose
that F has the Fourier expansion (1.12), with zero constant term (in other
words, (3.2) holds in all cases). Let d(s) be the Mellin transform ofF, given by
(3.3) for tr > and by (3.4) for tr > + 1. Then (s) has a meromorphic
continuation to the whole s-plane, being represented, for tr > , by

(3.24) (s) :o,,(s) + E2(s) + E() + E(s),

where Dk(s) is entire and Ek(S),0 Ek(s),h and E(s) are meromorphic in the
s-plane (these functions being given by (3.6’), (3.14), (3.21), and (3.23));
moreover, (s) satisfies the functional equation

(3.9) (2k s) (T)i2’(s) R(s),
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where

(3.25)
R( s) E,(2k s) (T)i2E,( s)

p M(j)

j=l r=l

M

r=-6(2)

(--i) 2B(rf {(T)i s r s)r

-B(2k s, r (2k s))’’-s}

dr(-i)r{(T)i2kB(s, r s) B(2k s, r (2k s))}

i2g
1
E Crj .(T)B(s r s) 7ris/2

j= r=l

-B(2k s, r (2k s))e-ris/2ofk-s}
M

E dr(-i)r{(T)i2:B(s, r s)
r=l

r-6(2)

-B(2k s, r (2k s))}.

Remarks. (i) To obtain (3.25), we have used the functional equations
(3.7), (3.15), and (3.22), of course. Note also, that Rg(s) obviously satisfies the
functional equation,

(3.26) R(2k s) + (T)i2gR,(s) O,

without reference to (3.9).
(ii) The expression (3.25) depends on only the nonzero poles a., 1 < j < p,

and -i of the period function, q(z); in particular, the pole terms at 0 and
do not affect R(s). Thus, if q(z) does not have finite nonzero poles, the
functional equation (3.9) reduces to the one occurring in Hecke [4], [5] and in
Knopp [9], as we mentioned in the introduction.

(iii) For the Hecke groups, G(An), for 3 < n < , the major modifications
needed are to (3.25), from which the last sum should be omitted, because the
nonzero poles in these cases are real (see Knopp [9]). We now have, for
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0->+1,

(3.4’) q(s) F(iy)yS--}
2rr

r(s)4(s)

instead of (3.4); we have the same representation (3.24) for (s) and the
same functional equation (3.9), with (3.25) modified as indicated.

3. We must now consider poles and residues, as well as growth properties
in vertical strips, of (s), in preparation for the converse of Theorem 2 in
{}IV. In fact, we shall show that (s) has, at worst, simple poles at certain
integer points--infinitely many of them, in generalmand that (s) is bounded
in lacunary vertical strips of the form

(3.27) S S(0-1, 0-2; to): % _< r _< 0-2, [tl >_ to > O.

It is clear from (3.24) that it is sufficient to prove these facts for Dk(s),
E(s), and E(s). By (3.6), Dk(s) is clearly bounded in vertical strips; D(s)
is entire, as we have observed. By (3.14), E2(s) is also clearly bounded in
lacunary strips (3.27). E(s) is a rational function with simple poles at the
integers

2k-L,2k-L + 1,...,
2k- 1 2k + 1

2 2

for odd weight 2k; at the integers

2k-L,2k-L + 1,...,k- 1, k+ 1,...,L- 1, L,

for even weight 2k and 6 1; at the integers

2k-L,2k-L + 1,...,k- 1, k,k+ 1,...,L- 1, L,

for even weight 2k and 0. It is clear that the residue of E(s) at s m,
k <m <L, is

(3.28) --Cm(--i)m;

at s=m, 2k-L <m <k, itis

(3.28’) (T)C2k_mim;

and at s k, when 2k is even and 6 O, it is

(3.28") 2c(-i).
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For E/,(s), we first recall Stirling’s formula for IF(r + it)l as Itl ,
/2[F(tr + it) 2x/-lt

(See Lebedev [11, Chapter 1].)Then, since

larg rjl _< ,
we have, as tl - o in lacunary strips (3.27),

(3.29) Ek(tr+it) =O exp -e Itl

for any e > 0, from (3.23). It is clear that E,(s) has, at worst, simple poles at
all the integers; since

+ E (s)

is analytic in the half-plane tr > max{2k- 1, 0} (see the discussion relating
to (3.11) and (3.13)), we need to consider the poles only at integersmfor
either function E(s) or E/,(s)--less than or equal to max(2k- 1, 0}. If
2k > 1, then the residue of E,(s) at s m, for m < 2k 1, is

t(j) (2k-l-m)( i)r(,rjr )2k-r-m(3.30) (T)i Cr 2g r- m
j=

M

+ (T)i2k E
r=l
r8(2)

dr(2k-12k-r-m-m) ir(-1)2k-m
p M(j)

2k 1 m
Jimol}k-r-2k-r-m

M

+ ,(T)i2k dr (2k 1 m )ir(_ 1)2k-m
r=l

2k-r-m
r=6(2)

(a)with the usual convention on the binomial coefficient b for b > a. On the
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other hand, if 2k < 0, then the residue of Ef,(s) at s -m, for 0 < m, is

p M(j)

(3.30’) (T)i2k j=l =51 crj( r m 2k l )irI ( "l’j)2k-r+m

M

r= r- 1 (-i)
r-8(2)

( l)2k+m

p M(j)

"--(T) 1 rl Crj( r-m-2k-1) m

r- 1 (-1) (-i)

+ (Z)i2k E dr(r-m- 2k- 1

r=l
r-- 1 (--i)

r--6(2)

( l)2k+m

Finally, we have EO(s) to consider. Returning to the integral representa-
tion (3.16), we have, for tr > 0 (and Re r > 0, " : 0),

(3.31)
1
7F1

1
1, r;l+s; r+ 1

F(1 +s)fo s-l( y )--rr(1)r(s)s (1 -y) 1 r+l dy

If Irl > 1, then we have

1
(3.32) 72F1

1
1, r; 1 + s; r+l (r+, 1)r (r)m(_ 1) 1

r m! 7 s+m’
m=O

where as usual,

F(r + m)
r(r)

In (3.32), it is clear that the right side is meromorphic in the s-plane with
simple poles at s -m, m > 0, the residue at s -m being

and that, moreover, it is bounded in lacunary strips (3.27). On the other
hand, if [rl < 1 (and Re r > 0), by using (3.31) and an integral representa-
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tion for the beta function (see Lebedev [11, Chapter 1])we have, for
O<tr<r,

1 1
(3.31’) 72F1 1 r" 1 + s"’r+l

(r+ 1) rSB(s r-s)

ll---(r + 1) JO yr- (1 + ry)

from which we obtain the same properties as before, including formula (3.33)
for the residue at s -m, m > 0, for the left side of (3.31’).
We now summarize those results pertinent to our converse of Theorem 2.

THEOREM 3. The function (s), defined by (3.3) for tr > , has a mero-
morphic continuation to the s-plane with, at worst, simple poles at all integer
points m < L, and is bounded on every lacunary vertical strip, S, described in
(3.27).

Remarks. (i) We might point out we have proved, in fact, that bounded-
ness in lacunary strips (3.27) of each function Dk(s), Ek(s), Eg(s),h and Ee(s)e
is uniform in r. The same is therefore true of (s).

(ii) By (3.4), the meromorphic continuation of (s) implies that of b(s)
(and conversely). Since F(s) has simple poles at s =-m, m > 0, the
residues of (s) at these points give the values of b(s) at these points:

6(-m) (-1)mrrmm! res (s).
s= -m

The poles of (s) at s 1, 2,..., L, if they exist, are also poles of 4)(s).
(iii) The main point of Theorem 3 is that it suggests there is a converse of

Theorem 2 exactly as for the automorphic forms originally considered by
Hecke. The proof we give for the converse is the same one Hecke gave, with
appropriate modifications.

IV. The converse Hecke theorem

We now prove, in some detail, the following converse to Theorem 2. (We
renumber the relevant equations and expressions of III, for convenience.)

THEOREM 4. Suppose the Dirichlet series

(4.1) 4(S) + am+K
m >0 (m + to)
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converges absolutely in a half-plane r > fl > 0 and has a meromorphic contin-
uation to the s-plane, also denoted by oh(s), such that:

(a) The only possible singularities of (s) are simple poles at the integers
s m, O < m < L;

(b) The function

(4.2) (s) 7r-Sr(s)b(s)

is bounded in every lacunary vertical strip S S(r1, o’2; 0) described by

(4.3) S: -<erl<er<r2<, It] >to>0;

(c) The function dp(s), defined by (4.2), satisfies the functional equation

(4.4) P(2k s) (T)i2kcp(s) R,(s),

where 2k is an integer, is a multiplier system of weight 2k for Fo, and

(4.5)
p M

R(s) {ArjB(s,r s)’ BrjB(Zk s,r (2k s))’-s},
j=0 r=l

for some integers p, M > 1, complex numbers Ar1, Br and complex numbers

’ ia1 with 4:0 and

-3rr 7r
(4.6) 2 < arg a < -,
for 0 <j <p.

Then oh(s) is the Dirichlet series associated with an entire automorphic
integral F of weight 2k and multiplier system for Fo whose period function q
has nonzero poles only at o,. ap, 1/ao,. llap.

To prove this we use, of course, the inverse Mellin transform. Since, for
o-> c >/3,

(4.7) b(s)I < lam+ <
m+K>0 (m + lam+)m+K>0 (m +

and, as Itl ,
(4.8) Ir( + it)l 2v-ltl-l/2e -=ltl/2,
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by absolute convergence we have

(4.9) F(iy)
m+K>0

e_rr(m+x)y__ 1 fcCiy -S*(s) ds,-

for Re y > 0 (convergence is uniform for Re y > 0 and arg y < rr/2 e,
each e > 0); we shall assume y > 0 throughout the proof, for convenience.
We want to move the line of integration to r 2k c, of course. Note

that, by (a), c > L, in any case; we may also assume that L > 2k, for
convenience, and that L < c < L + 1. That we pick up only the residues of

(s) at

2k-L,2k-L + 1,...,L- 1, L

is a consequence of property (b), the boundedness of (s) on lacunary
vertical strips. Indeed, by (4.8), (s) vanishes exponentially as Itl in
lacunary vertical strips (4.3). Because b(s) is bounded for r > c by (4.7), it
follows that (s) vanishes exponentially on r c by (4.8). Since (4.6) and
(4.8) imply that, for some e > 0,

R(s) O(e -1’1)

as It] c in lacunary strips (4.3), by the functional equation (4.4) it follows
that (s) vanishes exponentially also on r 2k- c. By the Phragm6n-
Lindel6f principle, then, (s) vanishes exponentially as tl --, in the
lacunary strip S(2k c, c; to). Therefore,

lim fc +iT
Y

ITI- J2k-c+iT
o,

which proves our assertion.
Thus, we now have

(4.10)
1 fz -c+i yF( iy)

2k-c-i
-’( S) ds + E res y-Sd( s)

2k-L <r<L s=r

whence, by (4.4) and (4.9),

(4.10’) (FlkT)(iy) F() E res (y-S(s))
2k-L <r<L s=r

.(T)i -2/ f2__-c_+i2rci J2t, c i
y -R,( s) ds.
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To finish the proof, it is necessary only to show that the right side of (4.10’) is
a rational function in iy.
The sum on the right in (4.10’) is obviously a rational function of iy, being

of the form

L

(4.11) _, ArY
r=2k-L

because the poles of (s) are simple; the poles (if any) of (4.11) are at 0
and .
For the integral in (4.10’), by (4.5) we need to consider only the integrals

(for y > O)

(4.12)
1 2k-c +iy-sO( s, r s)erris/2a ds2 rri 2k-c-ioo

and

(4.13)
1 f2k-c+iY2k-c-im

-SB(2k s, r (2k s))e-rris/202k-Sds

i-2k2rri fcc_im+imy _(2k_s)n ( S r s)erriS /2ogS dS

where r is an integer, 1 < r < M, a 4= 0 satisfies (4.6), and, of course,

(4.14) as= IoelSe(iarga)s;

note that the integrals (4.12) and (4.13) converge absolutely (uniformly for
Rey > 0 and arg y < rr/2 e, each e > 0) by (4.8) and (4.6).

Recall (see Lebedev [11, Chapter 1]) that, for 0 < r < r and b in
C \ (-,01,

f yS dy
bs_rn (S r s)

(b -+- y) Y

the principal branch being taken for bs-r. Thus, for 0 < c < r, since
B(s, r s)vanishes exponentially on any vertical line, we have, in particular,

(4.15)
b 1 fcC+im B(S, r S) ds,

(b + y)r 2rri -im

for y > 0 and b in C \(-%0]. Since, as we just pointed out, B(s,r- s)
vanishes exponentially on any vertical line, it follows that in moving the line
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of integration we pick up only the residues of the integrand in (4.15) at the
appropriate points.

Thus, if we move the lines of integration in (4.12) and (4.13) to tr 1/2, we
obtain (recall that, by assumption, 2k < L < c < L + 1), by (4.15),

1 2k-c+iy(4.12’) 27ri 2k-c-io
-SB( s, r s)eris/2o ds

L -2k

a iy) -[" r;
( iy ce)

and, similarly,

(4.13’)
1 fekc+_ioo2rci ek c ioo

y -SB(2k s, r (2k s))e-ris/2ce2k-s ds

E m ( 1)r( --o)m(iy)m-2kr
m=r ( iy ) 2k-r iy -+- --Since both (4.12’) and (4.13’) are rational functions of /y, whose nonzero

poles are a and -l/a, we are done, by (4.5).

Remarks. (i) What we have proved, of course, is that, for y > 0,

(4.16) (FlkT)(iy) F(iy) + q(iy),

where q(z) is a rational function whose nonzero poles can be only at
ao,.., al,, -1/ao,...,-1/ap. By the identity theorem, (4.16) holds for
Re y > 0--that is, for all z iy in o. That q(z) has the form (2.6’) is a
consequence of (the corollary to) Theorem 1. (Note that F(z), defined by
(4.9), satisfies the growth condition (1.6)--see I.2--hence must be an entire
modular integral.)

(ii) The only modification in the statement of Theorem 4 needed to obtain
the converse of Theorem 2 for any Hecke group G(An) 3 < n < , is in the
definition of (s): we would use, instead,

( )_s(4.2’) (s)= -X7 r(s) b(s).
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(iii) It may be of interest to note that if we ignore Dirichlet series and
require only that (for example)

1 fcc+i -sF( iy)
=ioo

y ( S) ds

be analytic for z iy in ,g, for some c > 0, and that, as y + ,
F(iy) -0,

then the existence of a Fourier expansion, as in (4.9), is equivalent to the
existence of a Dirichlet series expansion (4.1) for the function

O(s)6(s)

absolutely convergent in some half-plane 0. >/3 > 0. The same remark
applies to the case of any Hecke group, by Remark (ii).

(iv) Finally, we should point out that the Phragm6n-Lindel6f principle still
applies when (b) is replaced by an apparently much weaker condition:

(b’) The function

(4.2) (s)

is of finite order in every lacunary vertical strip S S(0.1, 0"2; to). (In fact, this
can be replaced by an even weaker condition. Incidentally, a function f(s),
holomorphic in some region S, is said to be of finite order in S if

f(s) =O(e Islp)

for some p > 0 and all s in S.)

V. Conclusion.

We return to the observation that a rational function qT is a rational
period function for F0 (in the sense of (1.11), with n ) if and only if qT
satisfies (1.16), while rational period functions on G(An) must satisfy (1.16)
and (1.17) simultaneously. Once again letting G(A) denote the discrete

{1 A/’ with arbitrary A > 2, we observe(Hecke) group generated by T and o
that G(A), like F0 G(Aoo), has the single relation T2 I. (Abstractly, G(A)
is isomorphic to F0, of course.) For this reason, the rational period functions

(1 ) A>2, areqT on G(A), in the sense of (1.11), with S replaced by
0

precisely the same as the rational period functions on F0. Furthermore, any



A HECKE CORRESPONDENCE THEOREM 205

qr connected with any G(An) (Hecke group with translation /n < 2) is

afortiori connected as well with F0 and with G(A), for arbitrary A > 2.
Consequently, from the point of view of rational period functions F0

cannot be distinguished from the groups G(A), A > 2. From the perspective
of function theory (including the theory of automorphic forms), however, F0
parallel the groups G(An) and not the G(), with > 2.

For, since the fundamental region of Fo, like those of the G(n), has finite
hyperbolic area, it follows that Foagain like the groups G(An)has a
finite-dimensional vector space of entire automorphic forms. On the other
hand, the space of entire forms has infinite dimension for the group G(A),
because G(A) has infinite hyperbolic area. (The distinction is between com-
pact and open Riemann surfaces.)
For these concluding remarks, then, we include Fo among the groups

G(A), by allowing A 2. Thus, A > 2 and ,i < 2.
Assume now that q is a rational period function on some G(An), with

multiplier system and, for convenience, of weight 2k > 2. Then there exists
an entire automorphic integral Fn, of weight 2k and multiplier system on
G(A), with period function qr.
To define a multiplier system, say, on G(,)it suffices to specify ((

!

(1 A)and T generate the group.and ;(T) since the two transformations
0

(a ))remainsFurthermore, since T2 I is the sole relation in the group, (
0

arbitrary, in contrast to the necessary condition (T)2 (-1)2k. Thus, given
the multiplier for G(An) we derive from it a multiplier system for G(A)
by means of

(5.1) ((10 Z))=exp(2rri)l ;(T)=(T),

where 0 < < 1 and is otherwise arbitrary. Then the given qr is also a
rational period function on G(A) of weight 2k > 2 and multiplier system ;.
As with G(An) from this follows the existence of an entire automorphic
integral ff, of weight 2k and multiplier system ; on G(A), with period
function qr.
We now have available both n, the Mellin transform of Fn, and , the

Mellin transform of flA. These can be written, respectively,

(5.2) n(S) (2rr/A,)-SF(s) E am+K
m+K>0 (m + K)

and

(5.3) +(s) (2r/x) -’r( s) E am+
m+>0 (m + )s.
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The method of proof of Theorem 2 (III) shows that, as F and ffh have the
same rational period function qT, n and +h have precisely the same
functional equation:

On(2k s) ( T)i2gOn( S) Rk( S),

cx(2k s) (T)i2g(s) Rg(s).

(Note that the corollary to Theorem 1, II, and its method of proof, remain
valid for G(A).) Since there is a converse, Theorem 4 (IV), to Theorem 2,
we may infer that there is no loss of information in the passage from the
rational period function qT occurring in the transformation formula for the
automorphic integral to the function R,(s) appearing in the functional
equation of the Mellin transform. Thus the structure of the qr must be
inherent in the form of the Rk(s), and it should be possible to derive the
former from the latter.

Nevertheless, comparison of (5.4) and (5.5) argues against such a conclu-
sion. For (5.5) reflects only the single functional equation (1.16) for qr, while
(5.4) entails both (1.16) and (1.17), a far stronger requirement upon qr. Since
(5.4) and (5.5) contain the same function Rk(s), the differencemand it is an
essential onemnecessarily finds expression elsewhere. And, indeed, the only
visible distinction between the functional equations (5.4) and (5.5) resides in
the (seemingly innocuous) factor (pzr) which occurs in the expressions
(5.2), (5.3) for the Mellin transforms. In (5.4), p > 1; p _< 1 in (5.5). This
distinction alone may be sufficient to characterize the contrast in properties
of the qr. Or, perhaps, one needs to use the fact that the situation in which
qT satisfies (1.16) alone corresponds to a functional equation with p _< 1 only
(i.e., (5.5)), while qv satisfying both (1.16) and (1.17), corresponds simultane-
ously to functional equations with p _< 1 and with p > 1 (i.e., (5.4) and (5.5)).
We conclude with the observation that the functional equation (3.9)

satisfied by (s) can be cast into a more symmetrical form. With an
appropriate simplification of notation in (3.25), as in Theorem 4, define

p M (__i)(5.6)

It then follows from (3.9) that

(5.7) (2k s) (T)i2g(s),

the usual functional equation of Riemann and Hecke that holds for the
Mellin transform of an entire automorphic form on G(hn) or G(h). Thus, as
an alternative to the viewpoint we have adopted throughout the papermthat
Theorem 2 (III) exhibits a new type of functional equation for the Mellin
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transform of an exponential series--we can interpret Theorem 2 as giving
the new solutions (5.6) of the standard Riemann-Hecke functional equation
(5.7). Note that each sum,

P (--i)ECrj B( S, F s)Tf
j =o z)

1 <r <M,

added to (s) in (5.6) to give (s), is analogous to (s) itself insofar as it is
a "finite zeta-function" multiplied by the F-factors of B(s, r s).
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