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ANALYTIC REPRODUCING KERNELS AND
MULTIPLICATION OPERATORS

BY

GRFGOR T. ADAMS, PAUL J. McGUIRE AND VERN I. PAULSEN

Introduction

Recall that if E is a set and K is a function from E E into the complex
plane C, then K is positive definite (denoted K >> 0) provided

n

jaeK(wj,we) > 0
j,k=l

for any finite set of complex numbers al,...,an and any finite subset
w1,..., w of E. It is well known that if K >> 0 on E, then

n

ajK(’, w)" al,... a
j=l

and W1,... W - E}
has dense span in a Hilbert space H(K) of functions on E with

E aK(.,w) Ea--iaeK(wy,we).
j=0 j,k

A fundamental property of H(K) is the Reproducing Property which says
that

f(w) =(f(’),K(’,w))

for every w in E and f in H(K). Thus evaluation at w is a bounded linear
functional for each w in E. Conversely, it is well known that if F is a Hilbert
space of functions defined on E such that evaluation at w is a bounded
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linear functional for each w in E, then there is a unique K defined on
E E such that F--H(K). It follows from the reproducing property that
for every z, w in E

K(z,w) =(K(’,w),K(’,z)) =(K(’,z),K(’,w)) =K(w,z).

If K is analytic in the first variable, then it follows that K is coanalytic in
the second variable. In this case K is an analytic kernel. Throughout this
paper, E will always be a subset of the complex plane C and K will be an
analytic kernel.

If th is an analytic function on E and bf is in H(K)for all f in H(K),
then th is a multiplier of H(K). In this case, the Closed Graph Theorem
implies that the multiplication operator M4, defined by M4,f= df is a
bounded linear operator on H(K). If H(K) contains the constants, then b is
necessarily in H(K).
The purpose of this paper is to provide a framework in which a general

investigation of the multiplication operators on H(K) can begin. Our atten-
tion will be focused on analytic kernels defined on E E where E is a
region in the plane containing the origin. In this case, K(z, ) is an analytic
function on E E in the two variables z and . Hence there is an open disk
B(0, R) about the origin such that K(z, w) is represented by the double
power series 2,=oa,z. Moreover, the series converges absolutely and
uniformly on compact subsets of B(0, R) B(0, R). If A denotes the matrix

[a,,], then such a K can be written more compactly in the form K(z, w)
*A, (A,,,)t+ where z denotes the column vector whose transpose is
(1, z, z2,...). (Here 12+ denotes the usual sequence space /2(Z-).) This
product makes sense even for the case of A being unbounded as a matrix on

12+ provided that w and z are both in the disk of absolute convergence for
the double power series representation for K. Recall that if A is a formal
matrix on 2+, then A is positive (A > 0) if An [aj,]’n,=0 is positive for
each n 0, 1, 2,

It is well known that K >> 0 if and only if A > 0. Henceforth, for positive
matrices A, H(A)will denote the space H(K)where K i*A.
The main goal of this paper is to provide a model for the multiplication

operators on H(A) and to relate properties of these operators to properties
of A.

Section 1 recalls some basic properties of reproducing kernel Hilbert
spaces and several examples of such spaces are presented.
As the study of the multiplication operators on H(A) is somewhat awk-

ward when A is unbounded, Section 2 is devoted to a dilation result which
shows that one can reduce to the case where A is bounded.
The principal result of Section 3 is Theorem 3.1 in which it is shown how

to produce bases for H(A) via factorizations of the form A B*B. Addi-
tionally, it is shown that a particularly nice basis for H(A) is obtained when
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the Cholesky algorithm is used to factor A into the form U* U, where U is
upper triangular.

Section 4 contains applications of the results of Section 3 to the multiplica-
tion operators on H(A). Using Theorem 3.1 it is shown that the multiplica-
tion operator M on H(A) is bounded if and only if the unilateral shift S on

12+ leaves the range of B* invariant. Moreover, if M is bounded, it is shown
that Mz is unitarily equivalent to the restriction of the unilateral shift S to
the range space of B*. (The definition of the range space of an operator is
recalled in Section 4). Additionally a characterization of the multipliers of
H(A) is given, as well as a characterization of when M is polynomially
bounded. The authors would like to thank John Froelich for pointing out a
simplification of the proof of Theorem 3.1.

Section 1

The following are basic properties of H(K) for which the reader is
referred to Aronszajn [2].

PROPERTY 1.1 [2, pp 353--354]. If K >>0 and K2>>0 onEE, then
K + K2 >> 0 on E E. MoreoverH H(K + K2) H(K1) + H(K2) with

[[f[[ inf{[[fl [[2H + [[f2[lff-/2" L H(Ki) f + f2 f}.
In particular, if H(K1) (3 H(K2) {0}, then H(K) H(K1) H(K2).

PROPERTY 1.2 [2, pp 351--352]. If K is the restriction of K to a subset
E E of E E, then K >> 0 and H(KI) {flEa: f H(K)} with

IlflE, IIc,- inf{llgllc: g H(K), g(z) =f(z) forallz E}.

PROPERTY 1.3 [2, pp 354--355]. The following are equivalent:
(a) As classes offunctions, H(K) is the same as H(K2);
(b) There are positive constants m and M such that

mK << K2 "<< MK1;

(c) H(K) and H(K2) are equivalently normed Hilbert spaces.

PROPOSITION 1.4. If E is a region in the plane containing B(0, R), K is an
analytic kernel on E, and g is the restriction of K to B(O, R), then the
restriction map V: H(K) - H(K1) is a unitary operator. Moreover if M4 is a
multiplication operator on H(K), then VM6f= M(,f where b denotes the
restriction of tb to B(O, R).
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Proof Since the functions in H(K) are uniquely determined by their
values on B(0, R), the result follows from Property 1.2. m

The content of Proposition 1.4 is that the study of the multiplication
operators on H(K), where K is an analytic kernel and E is a region
containing the origin, can be reduced to the study of multiplication operators
on H(A) where K *A on a disk B(0, R).

PROPOSITION 1.5. If H(Ka) and H(K2) consist of the same class of
functions, then M on H(K1) is similar to Mz on H(K2).

Proof By Property 1.3 (c), the identity map is an invertible map from
H(K1) to H(K2) that intertwines M. m

Before proceeding it is useful to keep some examples in mind. For general
diagonal matrices, the determination of these spaces can be accomplished by
well known techniques, but the determination will also be seen to be a
consequence of Theorem 3.1 of Section 3.

Example 1.1. If A is the diagonal matrix with positive entries
{a0, aa, a2,... and (lim sup aln/n) R < , then

H(A) E bnzn" E Ibnl2/an < oo

n =0 n =0

In this case M is a (bounded) unilateral weighted shift if and only if its
weight sequence {1/h//an+ 1 n 0,1,... is uniformly bounded. The litera-
ture on weighted shifts is extensive and the reader is referred to Shields [5]
for basic properties. The following four examples are specific cases of this
example.

Example 1.2. If A is the identity, then K(z, w) (1 z)-1 and H(A)
is the Hardy space H2 of the unit disk D, M is the unilateral shift, and the
multipliers of H(A) are the bounded analytic functions on D.

Example 1.3. If an n + 1, then H(A) can be identified with the
Bergman space of analytic functions on D which are square integrable with
respect to area measure on D. In this case, M is a cyclic operator whose
spectrum is r(M) D- and whose essential spectrum is O-e(M) 0D.
Moreover, the Fredholm index of Mz_x is index(M_,) -1 for all A in D.
As in the Hardy space case, the multipliers of M are the bounded analytic
functions.
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Example 1.4. If an (n + 1)-- 1, then H(A) can be identified with the
Dirichlet space of analytic functions on D whose derivatives are in the
Bergman space. In this case, H(A) is not naturally identified as a subspace of
an L2 space. Again, the operator M is bounded, r(Mz) D-, re(Mz) OD,
and index(Mz_) -1 for all A in D. The multipliers of H(A) are not as
easily described as in the Hardy space case. Moreover it is shown in Stegenga
[6] that there is a function continuous on the closed unit disk and analytic on
the open disk which is not a multiplier of H(A).

Example 1.5. If a --(n! 2n) -1, then K(z, w) converges on the whole
complex plane and H(A) is a Hilbert space of functions known as the Fock
space. In this case, Mz is an unbounded subnormal operator.

The following proposition enlarges the class of examples beyond the
diagonal case. Recall first, that if h Y’-=-anein is a formal trigonometric

a andseries, then the formal Laurent matrix T6 is the matrix[ i-k],k=0
T T$. If a 0 for each negative n, then T6 is a lower triangular matrix.
In this case, T6 is a formal analytic Toeplitz matrix, and one readily verifies
that the formal matrix product T4,AT$ is well defined for any matrix A with
complex entries.

PROPOSITION 1.6. If p(Z)-- E=oanZn is analytic in B(O, R1) T4 is the
formal Toeplitz matrix with symbol dp, K(z, w)= *A defines an analytic
kernel on B(O, R), and R2 min(R, R1), then the map W from H(A) into

H(T4,AT) defined by (Wf)(z) dp(z)f(z) for z in B(O, R2) is a unitary map
that intertwines Mz on the respective spaces.

Proof First note that

K4,( z, w) i.*T4,AT dp( z)dp(w)K( z, w)

where K(z,w)= *A,. Hence K6 is an analytic kernel on B(0, R2)
K6(., w) b(.)K(., w)ck(w), and

( W(K(’, w,)), W(K(’, w2))) 6
( &(.)K(., W1) &(.)K(., w2))6
( b(.) K(., w), b(.) K(., Wz)b(w2) )6(a/b(w2) )

(&(-) K(., W1) K,(., w2)),(1/&(w2) )
ck(w2)K(w2, Wl)lCh(w2)
(K(’,Wa), K(’,w2)).



ANALYTIC REPRODUCING KERNELS 409

As the span of {K(., w): w B(0, R2)} is a dense linear manifold in H(K)
and W is an isomorphism of this manifold onto a dense manifold in H(K4,),
W extends to an isomorphism. Clearly WM MzW. m

Example 1.6. If {Zn}= 0 is a non-Blaschke sequence in D, and 4’ is an
analytic function on D with zero set {Zn}, then by Proposition 1.5, Mz on

H(T6T) is unitarily equivalent to the unilateral shift S on the Hardy space
H(I) n2 via the map W: n(I) H(T6T$) defined by(Wf)(z) dp(z)f(z).
Note the nonzero functions in H2 H(I) cannot vanish on {Zn}, while every
function in H(T6T$) must vanish on {zn}. Hence H(T6Tg) n H(I) {0} and
by, Property 1.1,

H H(I + T4,T) H(1) (9 H(T6T$).

Moreover, by Proposition 1.5, Mz on H(I + T4,T) is unitarily equivalent to
S ( S. Hence, index(Mz AI) -2 for A in D.
Note also that there is no factorization property for H in the sense of

Richter [4], as there is a function f in H with f(0) 0 but no g in H such
that f(z) zg(z). To see this, note that H {f: f(Z) 0} is the kernel of
a bounded linear functional and hence has codimension 1 in H. Thus, since
the range of Mz- AI is contained in HA, and index(M- AI)= -2, the
range of M- AI has codimension 1 in HA.

It is also worth remarking that this example shows that M on H(A1) may
be unitarily equivalent to M on H(A2), while H(A1) and H(A2) can consist
of quite different functions. This contrasts sharply with the diagonal case in
which it is known that if A and A2 are diagonal matrices such that M on
H(A1) is similar to Mz on H(A2), then H(A) and H(A2) consist of the
same class of functions.
We close this section with a result that asserts that any subtleties involved

in characterizing the multipliers of H(A) or the commutants of the multipli-
cation operators on H(A) have nothing to do with the continuity of the
spectral decomposition of the matrix A. No assumption as to the bounded-
ness of A is made in the result and the reader is referred to the literature for
the spectral decomposition of an unbounded positive operator.

THEOREM 1.7. If KI(Z, w) *A and A has the spectral decomposition
A fA dE(A), then there is a diagonalizable matrix A2 such that H(Al) and
H(A2) consist of the same class offunctions.

Proof. For each integer n, let An 2n, A [An, An+l], Pn E(An), and

dE(A)Vn=fao
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Note that Vn* Vn, 1Vn 2 < 2, and V E(0) + E_ _=Vn is invertible with
IIvII 2 _< 2 and IIV-111 _< 1/2. If A2 Y’.n=_AnPN, then A V I2V. Snce
V is bounded and invertible, Property 1.3 implies that H(A1) H(V*A2V)
and H(A2) consist of the same class of functions. 1

Section 2

The purpose of this section is to show that the study of the multiplication
operators on H(A) can be reduced to a setting where A is bounded by
introducing a dilation of the kernel.

DEFINITION 2.1. If A is a matrix and 0 < r < 1, then the r-dilation A of
A is given by A -DrAD where D is the diagonal matrix with diagonal
entries {1, r, r2,... }.

DEFINITION 2.2. If K is an analytic kernel on E E and 0 < r < 1, then
the r-dilation K of K is defined by Kr(Z, w)= K(rz, rw) for (z, w) in
ErErwhereEr={z" rzE}.

For a function f defined on E, the function fr is defined on E by
fr(Z) f(rz).

Note that K >> 0 on E if and only if K >> 0 on E. Moreover, if
K(z, w) .*A, then Kr(z w)= ,*Zr, r-*Z.

THEOREM 2.3.
a unitary operator.

The operator Vfrom H(K) into H(Kr) defined by Vf fr is

Proof Note

(n )V

_
aiK(z, wi)

j=l

EaiK(rz wl) aiK rz r
wj

aiK z 7r
j=l j=l 1=1

and
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Since V is an isomorphism from a dense linear manifold of H(K) onto a
dense linear manifold of H(Kr), V is unitary, m

COROLLARY 2.4. The function 49 is a multiplier ofH(K) if and only if r is
a multiplier of H(Kr). Moreover, M6 on H(K) is unitarily equivalent to Mdp
on H(Kr).

Proof Note V(qf) (qf)r 4)rfr qrV(f)

Corollary 2.4 asserts that it suffices to study the dilated kernel K as the
multipliers of H(Kr) are the dilations of the multipliers of H(K). In
particular, if M is bounded on H(K), then Mz is unitarily equivalent to

Mrz rM on H(Kr). Proposition 2.5 below points out that the dilated
matrix A is considerably better behaved than the original matrix A.

PROPOSITION 2.5. If K(z, w) Ej,k=oaj, kzJV k *A converges for
Izl, Iwl < R and 0 < r < R, then A is a trace class operator on 12+.

rj+k] and K(r, r) aj, r+ is absolutelyProof Since A [aj, k Ej, k=O k
convergent, the entries of Z are absolutely summable, m

Section 3

By 2.4 and 2.5, it is sufficient to study multiplication operators on spaces
H(A) where A is bounded, so we shall assume throughout this section A is
bounded. Theorem 3.1 below is the main theorem of this section and it
provides a natural model for H(A) as a linear manifold inside 2 The+,

theorem assumes that A has been decomposed into the form A B*B for
some bounded operator B on 12+. Since A > 0, a natural choice to keep in
mind for B is the positive square root of A, but we shall see other
factorizations are important.

Recall that the range space of a bounded operator B on 12+ is the Hilbert
space

R(B) (Bf: f IZ+} {Bf: f (kerB)+/-}.
If f, g (ker B) +/-, then (Bf, Bg )R(B) (f, g )12+ defines the inner product.
Note that convergence of vectors in R(B) implies componentwise conver-
gence of the vectors of sequences in 12 The operator B is a unitary operator+.
onto R(B) when restricted to (ker B) +/- Throughout this section the notation
B-1 will be used to denote the inverse of this restriction of B.

For the choice of B A1/2, Theorem 3.1 can be deduced from Theorem
IV, p. 357 of Aronszajn [2]. The significance of Theorem 3.1 lies in the other
factorizations of A.
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THEOREM 3.1. IfA B*B for some bounded operator B on 12+, then the
operator V from (kerB*) +/- into H(A) defined by (Vf)(z)= (B*f,)l+ is a
unitary operator.

Before giving the proof of Theorem 3.1 it is worth pointing out some of its
consequences.

COROLLARY 3.2. If A B*B and {fn} is an orthonormal basis for
(ker B*) +/- then {(B*fn,,)t2+} is an orthonormal basis for H(A).

COROLLARY 3.3. If A B’B, then the range space R(B*) is unitarily
equivalent to H(A) via the map W defined by

W(B*f) < B’f, ,)12+

Proof. Note B* is a unitary operator from (ker B*)+/- onto R(B*) and
apply Theorem 3.1. m

Note that Corollary 3.3 makes clear that the range space is independent of
the factorization of A.

COROLLARY 3.4. IrA B*B and {en} is the canonical basis for 12+, then
the power series Y’,=oan zn is in H(A) if and only if E=oanen is in R(B*).

In particular, z n is in H(A) if and only if e is in R(B*).

Proof. By Corollary 3.3, Z is in H(A) if and only if Z (B’f, )t+ for
some B*f in R(B*). The result now follows by observing that (B’f, )t+ z
if and only if B*f en.

Note Corollary 3.4 indicates z is a multiplier of H(K) if and only if the
unilateral shift S leaves R(B*) invariant. Thus V establishes a unitary
equivalence between M on H(K) and S on R(B*). This relationship is
explored in more depth in Section 4.

Proof of Theorem 3.1. Let H be the set of all functions on D of the form
g(z) (B’f, )2 where f (ker B*) +/-. When endowed with the norm
IlgllH Ilfll2, H is easily identifiable with either (kerB*)" or the range
space R(B*). If z D, then evaluation at z is a bounded linear functional
as Ig(z)l I(B*f,)l _< IlB*fllzllll2 -< IIB*II Ilgll/4llll2. Also since {: z
D} is dense in 12+, if g(z) (B*f,) 0 for all z in D, then f 0. Hence
g 0 in H and H is a reproducing kernel Hilbert space on D.
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Note that if {fn} is an orthonormal basis for (ker B*) +/-, then gn (B*fn, i)
is an orthonormal basis for H. Hence the kernel function for H is

(A,i) K(z,w).

The uniqueness of the kernel function implies H H(A) from which the
result follows, m

Example 3.1. If A is the diagonal matrix with diagonal entries
{a0, al, a2,... and B* B A1/2, then Theorem 3.1 implies that {X/-nz n"

a 4: 0} is an orthonormal basis for H(A). If a 4:0 for each integer n, then
R(B*) contains the canonical basis {en} for 12+ and H(A) contains the
polynomials in z.

The next example illustrates how to construct a basis for H(A) by using
the Cholesky algorithm to factor the nonnegative matrix A into the product
U*U where U is upper triangular. Recall that the Cholesky algorithm is
based on the following well known fact about 2 2 matrices.

LEMMA 3.5.

is a 2 2 block matrix such that T is invertible on the range of T2, then T > 0

if and only if T > 0 and T3 TT{IT2 > 0.

To perform the Cholesky algorithm one applies Theorem 3.5 to a positive
matrix A [aj, k],k= 0 by setting T1 [a0,0], T2 [a0,k]= 1, and T3

[aj, e]i,e= 1. Then A RRo + Pa where

ao, o ao,1 ao,2

Ro
1 0 0 0 ()P1 0O* A

(0 denotes the matrix [0]j=l) and A T3 ao, o 2 Z2"
Applying Lemma 3.5 iteratively to A1, A2,... one obtains

A _.,R*nRn= Rn Z Rm U*U
n=0 rn =0
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where the second equality follows from the fact that R is upper triangular
with non zero entries only in the n-th row. The only point where the
algorithm can break down is if the upper left most entry of one of the
matrices A should happen to be zero. It then follows that the corresponding
matrix T2 is also zero, and in this case R is set equal to zero and the
iteration continues. The factorization A U*U obtained is known as the
Cholesky decomposition of A. For more details on the Cholesky decomposi-
tion in Hilbert space the reader is referred to [3]. Note that even if A is only
a formal (possibly unbounded) positive matrix, then this algorithm still yields
a factorization of A.

Example 3.2. If A > 0 has been factored into its Cholesky decomposi-
tion, then Corollary 3.2 implies that Rn(Z)= {(Rn*,): Rn 0} is an or-
thonormal basis for H(A). This applies even if A is unbounded. To see this
first form the bounded operator A and observe that if A U* U, U [ui,],
then A Ur*U with U [ui,r].

This basis is noteworthy for two reasons. First, the lowest power of z
occurring in the power series of Rn(z) is z n. Second, the basis is computable
via the Cholesky algorithm!

Section 4

This section is devoted to a discussion of the multiplication operators on
H(A). Before proceeding it is desirable to give a criterion for the operator

M6 to be bounded on H(A). As was pointed out in the introduction, this is
equivalent to describing the multipliers of H(A).

THEOREM 4.1. If alp(Z) E=oan2: n is analytic on D and A B*B where
B is bounded, then b is a multiplier of H(A) if and only if the corresponding
formal Toeplitz matrix T4, leaves the range of B* invariant.

Proof. By Corollary 3.3 the operator W from R(B*) to H(A) defined by
W(B*f) (B’f, ,)12+ is unitary. Let {en=0 denote the standard basis for 2

+
and write B*f E=obnen. If b is a multiplier of H(K), then

ch(z)W(B*f) ( noanZn E bmZm

o ai-kbk zY=
j= k=0 j=0

is in H(A). Thus the j-th component of the vector T6B*f is the j-th
component of the power series for ch(z)W(B*f). Since ch(z)W(B*f) is in
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H(A), it follows that the components of T6B*f define a vector in the range
of B*.
For the converse, assume the range of B* is invariant under T6. Since

convergence in R(B*) implies componentwise convergence, and since T6 is
lower triangular, the Closed Graph Theorem implies that T6 is a bounded
operator on R(B*). The reverse argument of the first part of the proof shows
that M6 WT6W* is bounded. I

Corollary 4.2 now provides a model for M on H(A).

COROLLARY 4.2. The following are equivalent for an analytic function dp on
D and a bounded matrix A B*B.

(1) The operator T4, is bounded on R(B*).
(2) The operator M4, is bounded on H(A).
(3) The Toeplitz matrix T4, leaves the range of B* invariant.
Moreover, if M4, on H(A) is bounded, then it is unitarily equivalent to T4 on

R(B*) which is in turn equivalent to B- 1, T4 B* on (ker B*) +/-

Proof Apply Theorems 4.1 and 3.1.

COROLLARY 4.3. The operator M is bounded on H(A) if and only if the
range of B* is invariant under the unilateral shift S on 12+.

Theorem 4.4 below provides another necessary condition for M
to be bounded.

on H(A)

THEOREM 4.4. If A [aj, k]jSk=O, a0,0 > 0, and if M is bounded on
H(A), then A [aj, k]jn, k=O is nonsingular for each n O, 1,

Proof By dilating we may assume that A is bounded. Applying the
Cholesky algorithm, A may be written in the form A U*U where U is
upper triangular and where u,. 0 implies that the j-th row of U is zero.
Since U is upper triangular, A Un* U where U [uj, k]jn, k=O" Hence, if
A is singular for some integer n, then u.,i 0 for some smallest integer j.
Since a0, 0 > 0, u0, 0 > 0 and j > 0. By Corollary 4.3, Mz is bounded if and
only if R(U*) is invariant for S. Hence, SffU*eo) U*(=oOtnen) for some
vector En=OOtnen in 12+. But

S1( U*eo) Uo, n-jen"
n=j
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Let no be the smallest integer for which an :/: 0. If no < j’, then

U* E Olnen en Olnottno, n
n=0

But this is impossible since (SJ(U*eo),ej)= 0 for all no <j. Hence
no must exceed j since u, 0. But, (S(U*eo),e) # O, whereas
(U*(=j+lOlnen),ej) 0. Since this is impossible, S cannot leave R(U*)
invariant and M is not bounded, m

TrlEOREM 4.5. Let the functions in H(A1) be analytic on B(0, R). If (1 is
a cyclic vector for M Mz on H(A1), then M is unitarily equivalent to
M2 Mz on H(A2) if and only if there is an analytic function 492 on B(O, R)
such that

T4 A2TI Tq A T2

Proof Suppose V: H(A1) "-> H(Az) is a unitary operator such that
VM M2V. If 4)2 V4)1, then 4)2 is a cyclic vector for M2 since 4)1 is a
cyclic vector for M1. By Proposition 1.6, the operators

W1" H(A1) --> H(T2AIT-$-2) and W2" H(A2)

defined by

Wl(f) b2f and W2(f) blf

are unitary. Thus {p2(])l: p is a polynomial} is dense in both H(Tq,2A1T2)
and in H(T4ATN). Since

]IP61]IH(A) IIp(/2)V(ba)llz-/(A) IIp(M1)V(2)IIH(A0 IIP621IH(A2),

it follows that

Ilpo2&l IIH(Tq,zAIT) IIPIOz IIH(T,IAzT;).

Hence H(Tq,,A2TI) H(Tq,2A1T) as functional Hilbert spaces with the
same norm. Since reproducing kernels are unique, Tq,IA2T= T,2AIT2.

Conversely, if TdaA 2TI Tdp2Z
and the operator V: H(A1) H(A2) defined by V W2* W1 is a unitary
operator such that VM M2V.
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COROLLARY 4.6. The operator Mz on H(A) is unitarily equivalent to the
unilateral shift S on 12+ if and only irA Tg,T for some function d analytic in
a neighborhood of zero.

Proof Apply Theorem 4.5 with A I and tl 1. m

In Theorem 4.5 it is assumed that M on H(A1) is cyclic. Theorems 4.7
and 4.8 below replace the cyclic assumption with the condition that H(A2)
contains the constants. It is easy to see that Mz can be cyclic on H(A) with
H(A) not containing the constants. The following example illustrates more
clearly the difference between Theorems 4.5 and 4.8.

Example 4.1. Let G D \ (-1, 1/2] and let L2a(G) denote the space of
analytic functions on G which are square integrable with respect to area
measure on G. It is well known that L2a(G) is a reproducing kernel Hilbert
space with kernel defined on G G. Additionally Mz is bounded on L2a(G),
index(M hi) -1 for h G, and L2a(G) contains the constants. More-
over it is shown in [1] that Mz is not a cyclic operator.

THEOREM 4.7. ff A1, A2 are bounded, M Mz is bounded on H(A1),
ME Mz is bounded on H(A2), and H(A2) contains the constants, then M is
similar to M2 if and only if there is an analytic function dp on D such that the
range ofAl/2 and the range of T4,A12/2 are identical.

Proof By Corollary 4.2, M is unitarily equivalent to AI/2S;A 1/2
---i for

1,2. Since M2 is assumed bounded, Corollary 3.4 implies that H(A2)
contains the constants if and only if the range of A12/2 contains the canonical
basis {e,=0 for 12+. If an invertible R" (ker A1/2)1 (ker A12/2)" exists
such that

RA 1/2SAll/2 A 1/2SA12/2R

then on the range of A1/2
2

SAll/2R-1A I/2 All/2R-1A I/2s.

Since {en} is contained in the range of A1/2 A/2R-1A 1/2
2 T6 for some

formal Toeplitz matrix. Since R- maps onto (ker A/2) +/- and A]/ZR
T,AI2/2, the range of A1/2 is equal to the range of T6A12/2.
For the converse, suppose the range of All/2 and the range of T4A12/2 are

the same. By Proposition 1.5, M on H(Tg,A12/ZA12/ZT$) and M2 Mz on
H(A2) are unitarily equivalent. Since range(A/2) range(Tg, Aa2/2), Proposi-
tion 1.2 implies that m is similar to m2. m
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THEOREM 4.8. IfA1, Aa are bounded, H(Aa) contains the constants, and
M Mz is bounded on H(Ai), 1, 2, then M is unitarily equivalent to ME

if and only ifA T,A2T$ for some analytic d) on D.

Proof If M is unitarily equivalent to M2, then Corollary 4.2 implies
there is a unitary operator W such that WA{I/2SA/2 =A1/2SA12/2W.
Hence

SAI/2W,A 1/2 A/2W,A 1/2S

on the range of A12/2. Since H(A2) contains the constants, Corollary 3.4
implies the canonical basis {en} for 12+ is contained in the range of A12/2. Thus
A/zW*Al/a= T4, for some formal Toeplitz matrix T6. Hence A/Zw*

A1/2A1/2 11/2W. 11/2T4,A12/2 and T6A12/2Ta T6.2 -2 Ta A WA A1. The converse
follows from Proposition 1.5. m

We close this section with a characterization of when M is polynomially
bounded. Recall an operator T on a Hilbert space H is polynomially
bounded provided there is a constant C such that IIp(T)I] _< CIIpll for all
polynomials p. Here lip I1 denotes the uniform (or supremum) norm of p on
the disk D. Also recall the disk algebra A(D) is the uniform algebra of
functions continuous on the closed disk D, analytic on the open disk D, and
endowed with the uniform norm. The following is well known.

PROPOSITION 4.9. Let H(A) consist offunctions analytic on D. The opera-
tor M on H(A) is polynomially bounded if and only if the disk algebra A(D) is
contained in the set of multipliers of H(A).

Proof If M is polynomially bounded, then there is a constant C such
that Ilp(Mz)ll <- Cllpll for all polynomials p. Let {Pn}=0 be a sequence of
polynomials in A(D) converging to b. Since {p,} is Cauchy, {p,(Mz)} is
Cauchy. Thus Pn(Mz) converges to T where T is a bounded operator on
H(A). Since Tf lim Pnf and Pnf converges pointwise to bf on D, Tf ckf
for f in H(A). Thus b A(D).

For the converse, assume the disk algebra is contained in the multipliers of
H(A). Let W: A(D) B(H(A)) be given by W(b)= M6. To show Mz is
polynomially bounded it suffices to show W is continuous. For this we use the
Closed Graph Theorem. Suppose gn converges to g in A(D) and W(gn)
Mg, converges to T in B(H(A)). Then for each f in H(A), Tf lim Mgnf
lim gf. Thus {gf} is convergent in H(A) and hence (gnf)(z) converges
pointwise for z in D. Since (g,,f)(z) converges pointwise to (gf)(z), Tf is an
analytic function that agrees with gf on D. Hence Tf gf and T Mg. By
the Closed Graph Theorem there is a constant C such that IIMII _< CIlll
for all 4) in A(D). m
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COROLLARY 4.10. If A is bounded, then Mz on H(A) is polynomially
bounded if and only if R(A1/2) is invariant under T4, for all ch A(D).
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