ENDOMORPHISMS OF CERTAIN IRRATIONAL ROTATION C*-ALGEBRAS

BY

KAZUNORI KODAKA

1. Preliminaries for quadratic irrational numbers

First we will give definitions and well known facts on quadratic irrational numbers. Let $GL(2, \mathbb{Z})$ be the group of all 2×2 -matrices over \mathbb{Z} with determinant ± 1 . Let

$$g = \begin{bmatrix} k & l \\ m & n \end{bmatrix} \in GL(2, \mathbf{Z})$$

and θ be an irrational number. We define

$$g\theta = \frac{m+n\theta}{k+l\theta}$$

and we call g a fractional transformation. Furthermore if

 $g \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix},$

then we say that g is non-trivial.

Let **Q** be the ring of rational numbers. We suppose that θ is a quadratic irrational number. If $\theta = x + y\sqrt{d}$ where $x, y \in \mathbf{Q}$ and $d \in \mathbf{N}$, then we define $\theta' = x - y\sqrt{d}$ and we call θ' the *conjugate* of θ . We say that θ is reduced if $\theta > 1$ and $-1 < \theta' < 0$ where θ' is the conjugate of θ .

For any quadratic irrational number θ there are a fractional transformation

$$g = \begin{bmatrix} k & l \\ m & n \end{bmatrix} \in GL(2, \mathbf{Z})$$

© 1992 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received January 18, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46L80; Secondary 46L99.

and a reduced quadratic irrational number θ_1 such that

$$\theta = g\theta_1 = \frac{m + n\theta_1}{k + l\theta_1}.$$

And for any reduced quadratic irrational number θ_1 there is a non-trivial fractional transformation $h \in GL(2, \mathbb{Z})$ such that $\theta_1 = h\theta_1$. Hence since $\theta_1 = g^{-1}\theta$, we can see that

$$\theta = g\theta_1 = gh\theta_1 = ghg^{-1}\theta.$$

Since h is non-trivial, neither is ghg^{-1} . By the above arguments we see that for any quadratic irrational number θ there is a non-trivial fractional transformation

$$g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbf{Z})$$

such that

$$\theta = \frac{c+d\theta}{a+b\theta}.$$

Furthermore if $a + b\theta > 1$ or $a + b\theta < 0$, we can choose another non-trivial fractional transformation

$$g_1 = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} \in GL(2, \mathbf{Z})$$

such that

$$\theta = \frac{c_1 + d_1\theta}{a_1 + b_1\theta}, \quad 0 < a_1 + b_1\theta < 1,$$

by an easy computation. Therefore if θ is a quadratic irrational number, there is a non-trivial fractional transformation

$$g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbf{Z})$$

such that

$$\theta = \frac{c + d\theta}{a + b\theta}, \quad 0 < a + b\theta < 1.$$

Let θ be a quadratic irrational number and

$$g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbf{Z})$$

be as above. We will show that θ has its discriminant D = 5 if and only if θ satisfies that there are integers s, t such that

$$\begin{bmatrix} 1-a & -b \\ s & t \end{bmatrix} \in GL(2, \mathbf{Z}) \text{ and } \theta = \frac{s+t\theta}{(1-a)-b\theta}.$$

LEMMA 1. Let θ be a quadratic irrational number and

$$g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbf{Z})$$

be a non-trivial fractional transformation such that

$$\theta = \frac{c + d\theta}{a + b\theta}, \quad 0 < a + b\theta < 1.$$

Then the following conditions are equivalent:

(i) There are integers s, t such that

$$\begin{bmatrix} 1-a & -b \\ s & t \end{bmatrix} \in GL(2, \mathbb{Z}) \quad and \quad \theta = \frac{s+t\theta}{(1-a)-b\theta}.$$

(ii) If ad - bc = 1, then a + d = 1 or 3 and if ad - bc = -1, then $a + d = \pm 1$.

Proof. Suppose condition (i) holds. Then

(1)
$$b\theta^2 - (1-a-t)\theta + s = 0.$$

Since $\theta = (c + d\theta)/(a + b\theta)$,

(2)
$$b\theta^2 + (a-d)\theta - c = 0.$$

By (1), (2) we obtain

(3)
$$(1-t-d)\theta - (s+c) = 0.$$

Since θ is irrational, by (3) we have t = 1 - d and s = -c. Furthermore

since

$$\begin{bmatrix} 1-a & -b \\ s & t \end{bmatrix} \in GL(2, \mathbf{Z}),$$

we have

$$(1-a)(1-d) - bc = \pm 1.$$

Thus we see that $a + d = 1 + ad - bc \pm 1$. Therefore we obtain condition (ii).

Next, suppose condition (ii) holds. Then by easy computation we can see that

$$\begin{bmatrix} 1-a & -b \\ -c & 1-d \end{bmatrix} \in GL(2, \mathbb{Z}) \text{ and } \frac{-c+(1-d)\theta}{(1-a)-b\theta} = \theta, \text{ Q.E.D.}$$

The quadratic equation for θ can be written in the form

$$k\theta^2 + l\theta + m = 0$$

where k, l, m are relatively prime integers and k > 0. Let $D = l^2 - 4km > 0$ be the discriminant of θ . Let

$$g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbf{Z})$$

be a non-trivial fractional transformation such that

$$\theta = \frac{c + d\theta}{a + b\theta}, \quad 0 < a + b\theta < 1.$$

The $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ can be written in the form

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \frac{t+ls}{2} & ks \\ -ms & \frac{t-ls}{2} \end{bmatrix}$$

where s, t are integers such that

$$t^2 - Ds^2 = 4$$
 if $ad - bc = 1$

or

$$t^2 - Ds^2 = -4$$
 if $ad - bc = -1$.

LEMMA 2. Let θ be a quadratic irrational number and $k\theta^2 + l\theta + m = 0$ be its quadratic equation where k, l, m are relatively prime integers and k > 0. Let

$$g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbf{Z})$$

be a non-trivial fractional transformation such that

$$\theta = \frac{c+d\theta}{a+b\theta}, \quad 0 < a+b\theta < 1.$$

If θ and g satisfy condition (ii) in Lemma 1, then the discriminant D of θ is equal to 5.

Proof. We have the following fact:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \frac{t+ls}{2} & ks \\ -ms & \frac{t-ls}{2} \end{bmatrix}$$

where s, t are integers such that

$$t^2 - Ds^2 = 4 \quad \text{if } ad - bc = 1$$

or

$$t^2 - Ds^2 = -4$$
 if $ad - bc = -1$.

We suppose that ad - bc = 1 and a + d = 1. Then t = 1. Hence $Ds^2 = -3$. This is a contradiction since D > 0. We suppose that ad - bc = 1 and a + d = 3. Then t = 3. Hence $Ds^2 = 5$. Since D > 0 and s is an integer, $s = \pm 1$ and D = 5. We suppose that ad - bc = -1 and $a + d = \pm 1$. Then $t = \pm 1$. Hence $Ds^2 = 5$. Since D > 0 and s is an integer, $s = \pm 1$ and D = 5. We suppose that ad - bc = -1 and $a + d = \pm 1$. Then $t = \pm 1$. Hence $Ds^2 = 5$. Since D > 0 and s is an integer, $s = \pm 1$ and D = 5, Q.E.D.

LEMMA 3. Let θ be a quadratic irrational number and $k\theta^2 + l\theta + m = 0$ be its quadratic equation where k, l, m are relatively prime integers and k > 0. If the discriminant D of θ is equal to 5, then there is a non-trivial fractional transformation

$$g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbf{Z})$$

satisfying

$$\theta = \frac{c + d\theta}{a + b\theta}, \quad 0 < a + b\theta < 1$$

and condition (ii) in Lemma 1.

Proof. Since $k\theta^2 + l\theta + m = 0$ and D = 5, $\theta = (-l \pm \sqrt{5})/2k$. Since D is odd, so is l. Let $l = 2l_1 - 1$ where l_1 is an integer. Then $l_1^2 - l_1 - km = 1$ since D = 5. And

$$\theta = \frac{-2l_1 + 1 \pm \sqrt{5}}{2k}.$$

We suppose that

$$\theta = \frac{-2l_1 + 1 + \sqrt{5}}{2k}.$$

Let

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} l_1 - 1 & k \\ -m & -l_1 \end{bmatrix}.$$

Then

$$ad - bc = (l_1 - 1)(-l_1) + km = -(l_1^2 - l_1 - km) = -1$$

since $l_1^2 - l_1 - km = 1$. Hence

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbb{Z}) \text{ and } a + d = -1.$$

Since $m = -l\theta - k\theta^2$ and $l = 2l_1 - 1$,

$$\frac{c+d\theta}{a+b\theta} = \frac{-m-l_1\theta}{l_1-1+k\theta}$$
$$= \frac{(2l_1-1)\theta+k\theta^2-l_1\theta}{l_1-1+k\theta}$$
$$= \frac{((l_1-1)+k\theta)\theta}{l_1-1+k\theta} = \theta.$$

Furthermore

$$a + b\theta = l_1 - 1 + k \frac{-2l_1 + 1 + \sqrt{5}}{2k} = \frac{-1 + \sqrt{5}}{2}.$$

Hence $0 < a + b\theta < 1$. We suppose that $\theta = (-2l_1 + 1 - \sqrt{5})/2k$. Let

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -l_1 & -k \\ m & l_1 - 1 \end{bmatrix}.$$

Then

$$ad - bc = -l_1(l_1 - 1) + km = -(l_1^2 - l_1 - km) = -1$$

since $l_1^2 - l_1 - km = 1$. Hence

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbf{Z}) \text{ and } a + d = -1.$$

Since $m = -l\theta - k\theta^2$ and $l = 2l_1 - 1$,

$$\frac{c+d\theta}{a+b\theta} = \frac{m+(l_1-1)\theta}{-l_1-k\theta} = \frac{(-l_1-k\theta)\theta}{-l_1-k\theta} = \theta.$$

Furthermore

$$a + b\theta = -l_1 - k \frac{-2l_1 + 1 - \sqrt{5}}{2k} = \frac{-1 + \sqrt{5}}{2}$$

Hence $0 < a + b\theta < 1$. Therefore we obtain the conclusion. Q.E.D.

Remark 4. By the above proof we can take

$$g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbf{Z})$$

so that

$$\frac{1}{2} < a + b\theta = \frac{-1 + \sqrt{5}}{2} < \frac{2}{3}, a + d = -1 \text{ and } ad - bc = -1.$$

PROPOSITION 5. Let θ be a quadratic irrational number and $k\theta^2 + l\theta + m = 0$ be its quadratic equation. Then the discriminant D of θ is equal to 5 if and only if there is a non-trivial fractional transformation $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbb{Z})$ satisfying

$$\theta = rac{c+d heta}{a+b heta}, \quad 0 < a+b heta < 1$$

and condition (i) in Lemma 1.

Proof. This is immediate by Lemmas 1, 2, and 3. Q.E.D.

2. Construction of endomorphisms of certain irrational rotation C^* -algebras

Let A be a unital C*-algebra and $M_n(A)$ be the algebra of all $n \times n$ matrices over A for any $n \in \mathbb{N}$ and we identify $M_n(A)$ with $A \otimes M_n(\mathbb{C})$. Let I_n be the unit element in $M_n(\mathbb{C})$. For any unitary element $x \in M_n(A)$ we denote by [x] the corresponding class in $K_1(A)$.

Let θ be an irrational number and A_{θ} be the corresponding irrational rotation C^* -algebra. Let u and v be unitary elements in A_{θ} with $uv = e^{2\pi i\theta}vu$ which generate A_{θ} . Then it is well known that $K_1(A_{\theta}) = \mathbb{Z}[u] \oplus \mathbb{Z}[v]$. Let τ be the unique tracial state on A_{θ} . We extend τ to the unnormalized finite trace on $M_n(A_{\theta})$. We also denote it by τ . Let m and l be integers which generate \mathbb{Z} with $m + l\theta \neq 0$. We also assume $l \neq 0$. Let $V_{\theta}(m, l:k)$ be the standard module defined in Rieffel [7] where $k \in \mathbb{N}$. Since $V_{\theta}(m, l:k)$ is a finitely generated projective right A_{θ} -module, it corresponds to a projection in some $M_n(A_{\theta})$. We also denote it by $V_{\theta}(m, l:k)$. Moreover throughout this paper we assume that endomorphisms of A_{θ} are unital.

LEMMA 6. With the above notations let f be a projection in $M_n(A_\theta)$ where n is a positive integer. Then $\tau(V_\theta(m, l:k)) = \tau(f)$ if and only if $V_\theta(m, l:k)$ is isomorphic to fA_θ^n as a module.

Proof. It is clear that $\tau(V_{\theta}(m, l: k)) = \tau(f)$ if $V_{\theta}(m, l: k)$ is isomorphic to fA_{θ}^{n} . Suppose that $\tau(V_{\theta}(m, l: k)) = \tau(f)$. Then by Rieffel [7, Corollary 2.5], $V_{\theta}(m, l: k)$ is isomorphic to fA_{θ}^{n} , Q.E.D.

From now on we suppose that θ is a quadratic irrational number with its discriminant D = 5. Then by Proposition 5 there is a non-trivial fractional transformation

$$g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbf{Z})$$

such that

$$\theta = \frac{c + d\theta}{a + b\theta}, \quad 0 < a + b\theta < 1$$

and there are integers s, t such that

$$\begin{bmatrix} 1-a & -b \\ s & t \end{bmatrix} \in GL(2, \mathbf{Z}) \text{ and } \theta = \frac{s+t\theta}{(1-a)-b\theta}.$$

Moreover by Rieffel [6, Theorem 1] there is a projection $q \in A_{\theta}$ such that $\tau(q) = a + b\theta$.

LEMMA 7. With the above notations, $qA_{\theta}q$ is isomorphic to A_{θ} .

Proof. Since $qA_{\theta}q$ is a full corner of A_{θ} , it is strongly Morita equivalent to A_{θ} and qA_{θ} is the $qA_{\theta}q - A_{\theta}$ -equivalence bimodule. By Rieffel [7, Theorem 1.4],

$$\tau(V_{\theta}(a,b:1)) = a + b\theta.$$

On the other hand by the assumption $\tau(q) = a + b\theta$. Hence by Lemma 6, qA_{θ} is isomorphic to $V_{\theta}(a, b: 1)$ as a module. Thus by Rieffel [7, Theorem 1.1 and Corollary 2.6], $qA_{\theta}q$ is isomorphic to A_{η} where $\eta = (c + d\theta/a + b\theta)$. However by the assumptions, $\theta = (c + d\theta)/(a + b\theta)$. Therefore $qA_{\theta}q$ is isomorphic to A_{θ} , Q.E.D.

LEMMA 8. With the above notations $q^{\perp}A_{\theta}q^{\perp}$ is isomorphic to A_{θ} where $q^{\perp} = 1 - q$.

Proof. In the same way as in the above lemma, $q^{\perp}A_{\theta}q^{\perp}$ is isomorphic to A_{η} where

$$\eta = \frac{s+t\theta}{(1-a)-b\theta}$$

However by the assumptions,

$$\theta = \frac{s+t\theta}{(1-a)-b\theta}$$

Therefore $q^{\perp}A_{\theta}q^{\perp}$ is isomorphic to A_{θ} , Q.E.D.

We denote by ϕ_1 an isomorphism of A_{θ} onto $qA_{\theta}q$ and by ϕ_2 an isomorphism of A_{θ} onto $q^{\perp}A_{\theta}q^{\perp}$. Let ϕ be an endomorphism defined by $\phi(x) = \phi_1(x) + \phi_2(x)$ for any $x \in A_{\theta}$. We consider an endomorphism $\phi^3 = \phi \circ \phi \circ \phi$ of A_{θ} . We denote it by Φ . Then by an easy computation we can see that there are an orthogonal family $\{p_j\}_{j=1}^8$ of projections in A_{θ} with $\sum_{j=1}^8 p_j = 1$ and isomorphisms χ_j (j = 1, 2, ..., 8) of A_{θ} onto $p_jA_{\theta}p_j$ such that $\Phi = \sum_{j=1}^8 \chi_j$.

 $\Phi = \sum_{j=1}^{8} \chi_j.$ For j = 1, 2, ..., 8 let ψ_j be the isomorphism of $K_1(p_j A_\theta p_j)$ onto $K_1(A_\theta)$ defined by

$$\psi_j([x]) = [x + (1 - p_j) \otimes I_n]$$

for any unitary element $x \in M_n(p_i A_\theta p_i)$.

LEMMA 9. With the above notations, $\Phi_* = \sum_{j=1}^8 \psi_j \circ \chi_{j*}$ on $K_1(A_{\theta})$.

Proof.

$$\begin{split} \left[\Phi(u) \right] &= \left[\sum_{j=1}^{8} \chi_{j}(u) \right] = \left[\prod_{j=1}^{8} \left(\chi_{j}(u) + (1-p_{j}) \right) \right] \\ &= \sum_{j=1}^{8} \left[\chi_{j}(u) + (1-p_{j}) \right] \\ &= \sum_{j=1}^{8} \psi_{j}(\left[\chi_{j}(u) \right]) = \sum_{j=1}^{8} (\psi_{j} \circ \chi_{j*})([u]). \end{split}$$

Similarly

$$[\Phi(v)] = \sum_{j=1}^{8} (\phi_{j} \circ \chi_{j*})([v]).$$

Therefore we obtain the conclusion. Q.E.D.

Let $SL(2, \mathbb{Z})$ be the group of 2×2 -matrices over \mathbb{Z} with determinant 1. For any

$$h = \begin{bmatrix} k & l \\ m & n \end{bmatrix} \in SL(2, \mathbb{Z})$$

let α_h be the automorphism of A_{θ} defined by

$$\alpha_h(u) = u^k v^m, \quad \alpha_h(v) = u^l v^n.$$

Furthermore for any $h \in GL(2, \mathbb{Z})$ let det(h) be its determinant.

THEOREM 10. With the above notations there is an endomorphism Φ_0 of A_{θ} with Φ_{0*} an arbitrary endomorphism of $K_1(A_{\theta})$.

Proof. By Lemma 9 there is an endomorphism $\Phi = \sum_{j=1}^{8} \chi_j$ of A_{θ} such that

$$\Phi_* = \sum_{j=1}^8 \psi_j \circ \chi_{j*} \quad \text{on } K_1(A_\theta).$$

Since $\psi_j \circ \chi_{j*}$ is an automorphism of $K_1(A_{\theta})$ for j = 1, 2, ..., 8, there is an element

$$h_j = \begin{bmatrix} k_j & l_j \\ m_j & n_j \end{bmatrix} \in GL(2, \mathbf{Z})$$

such that

$$(\psi_j \circ \chi_{j*})([u]) = k_j[u] + m_j[v],$$

 $(\psi_j \circ \chi_{j*})([v]) = l_j[u] + n_j[v].$

For $g_1, g_2, \ldots, g_8 \in SL(2, \mathbb{Z})$ let $\Phi_{g_1, g_2, \ldots, g_8}$ be an endomorphism of A_{θ} defined by

$$\Phi_{g_1,g_2,\ldots,g_8} = \sum_{j=1}^8 \chi_j \circ \alpha_{g_j}.$$

Then, as in Lemma 9,

$$\Phi_{g_1, g_2, \dots, g_{8*}} = \sum_{j=1}^{8} \psi_j \circ \chi_{j*} \circ \alpha_{g_j*}$$

on $K_1(A_{\theta})$. Since $K_1(A_{\theta}) \cong \mathbb{Z}^2$, we can consider α_{g_j*} and $\psi_j \circ \chi_{j*}$ (j = 1, 2, ..., 8) as elements in $GL(2, \mathbb{Z})$. Then since $\alpha_{g_j*} = g_j \in SL(2, \mathbb{Z})$ and

$$\psi_j \circ \chi_{j*} = h_j \in GL(2, \mathbb{Z}) \ (j = 1, 2, \dots, 8),$$

we can easily see that

$$\Phi_{g_1,g_2,\ldots,g_{8*}} = \sum_{j=1}^8 h_j g_j.$$

For any r_1, r_2, r_3 and $r_4 \in \mathbb{Z}$ we can find elements $g_1, g_2, \ldots, g_8 \in SL(2, \mathbb{Z})$ satisfying

$$(1) h_{1}g_{1} + h_{2}g_{2} = \begin{cases} \begin{bmatrix} r_{1} & 0\\ 0 & 0 \end{bmatrix} & \text{if } \det(h_{1}h_{2}) = 1\\ \begin{bmatrix} r_{1} & 2\\ 0 & 0 \end{bmatrix} & \text{if } \det(h_{1}h_{2}) = -1, \end{cases}$$

$$(2) h_{3}g_{3} + h_{4}g_{4} = \begin{cases} \begin{bmatrix} 0 & r_{2}\\ 0 & 0 \end{bmatrix} & \text{if } \det(h_{3}h_{4}) = 1\\ \begin{bmatrix} 0 & r_{2}\\ 2 & 0 \end{bmatrix} & \text{if } \det(h_{3}h_{4}) = -1, \end{cases}$$

$$(3) h_{5}g_{5} + h_{6}g_{6} = \begin{cases} \begin{bmatrix} 0 & 0\\ r_{3} & 0\\ r_{3} & 0 \end{bmatrix} & \text{if } \det(h_{5}h_{6}) = 1\\ \begin{bmatrix} 0 & 2\\ r_{3} & 0 \end{bmatrix} & \text{if } \det(h_{5}h_{6}) = -1, \end{cases}$$

$$(4) h_{7}g_{7} + h_{8}g_{8} = \begin{cases} \begin{bmatrix} 0 & 0\\ 0 & r_{4}\\ 2 & r_{4} \end{bmatrix} & \text{if } \det(h_{7}h_{8}) = 1\\ \begin{bmatrix} 0 & 0\\ 2 & r_{4} \end{bmatrix} & \text{if } \det(h_{7}h_{8}) = -1. \end{cases}$$

Hence we can see that for any $z \in M_2(\mathbb{Z})$ there are $g_{1,0}, g_{2,0}, \ldots, g_{8,0} \in SL(2, \mathbb{Z})$ such that $(\Phi_{g_{1,0}, g_{2,0}, \ldots, g_{8,0}})_* = z$ on $K_1(A_\theta)$ by (1), (2), (3) and (4) where $M_2(\mathbb{Z})$ is the set of all 2×2 -matrices over \mathbb{Z} . Let $\Phi_0 = \Phi_{g_{1,0}, g_{2,0}, \ldots, g_{8,0}}$. Then we obtain the conclusion. Q.E.D.

3. The minimizing index for a C*-subalgebra

Let θ and $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbb{Z})$ be as in Section 2. Then by Remark 4 we can assume that

$$\frac{1}{2} < a + b\theta = \frac{-1 + \sqrt{5}}{2} < \frac{2}{3},$$

a + d = -1 and ad - bc = -1. Let q be a projection in A_{θ} with $\tau(q) = a + b\theta$ and let ϕ_1 (resp. ϕ_2) be the isomorphism of A_{θ} onto $qA_{\theta}q$ (resp. $q^{\perp}A_{\theta}q^{\perp}$) as in Section 2. Let ϕ be the endomorphism of A_{θ} defined by $\phi(x) = \phi_1(x) + \phi_2(x)$ for any $x \in A_{\theta}$.

Let E_1 be the linear map of A_{θ} onto $\phi(A_{\theta})$ defined by

$$E_1(x) = qxq + \phi_2(\phi_1^{-1}(qxq))$$

for any $x \in A_{\theta}$ and let E_2 be the linear map of A_{θ} onto $\phi(A_{\theta})$ defined by

$$E_{2}(x) = \phi_{1}(\phi_{2}^{-1}(q^{\perp}xq^{\perp})) + q^{\perp}xq^{\perp}$$

for any $x \in A_{\theta}$. By an easy computation we can see that E_1 and E_2 are conditional expectations of A_{θ} onto $\phi(A_{\theta})$. Furthermore let $E = \frac{1}{2}(E_1 + E_2)$. Then by an easy computation we see that E is a faithful conditional expectation of A_{θ} onto $\phi(A_{\theta})$.

LEMMA 11. There is a unitary element $w \in A_{\theta}$ such that $q \ge w^*q^{\perp}w$.

Proof. Let τ_1 be the unique tracial state on $qA_{\theta}q$. Then by Rieffel [6, Theorem 1],

$$\tau_1(\operatorname{Proj}(qA_{\theta}q)) = \mathbf{Z} + \mathbf{Z}\theta \cap [0,1]$$

since $qA_{\theta}q$ is isomorphic to A_{θ} where $\operatorname{Proj}(qA_{\theta}q)$ is the set of all projections in $qA_{\theta}q$. On the other hand since $qA_{\theta}q$ is a C*-subalgebra of A_{θ} , by the uniqueness of the tracial state,

$$\tau_1 = \tau(q)^{-1}\tau = \frac{1}{a+b\theta}\tau.$$

Hence

$$\frac{1}{a+b\theta}\tau(\operatorname{Proj}(qA_{\theta}q))=\mathbf{Z}+\mathbf{Z}\theta\cap[0,1].$$

We claim that there is a projection $\tilde{q} \in qA_{\theta}q$ such that $\tau(\tilde{q}) = \tau(q^{\perp}) = 1 - a - b\theta$. In fact it is sufficient to show that there are $m, n \in \mathbb{Z}$ such that

$$(a + b\theta)(m + n\theta) = 1 - a - b\theta, \quad 0 < m + n\theta < 1.$$

By the assumption on θ , $\theta = (c + d\theta)/(a + b\theta)$. Thus

$$b\theta^2 = (d-a)\theta + c.$$

Let m = -(d + 1) and n = b. Then by the above equation

$$(a+b\theta)(m+n\theta) = (a+b\theta)(-(d+1)+b\theta)$$

= $-ad - a + (ab - bd - b)\theta + b^2\theta^2$
= $bc - ad - a - b\theta$.

Since ad - bc = -1, $(a + b\theta)(m + n\theta) = 1 - a - b\theta$. Moreover

 $m + n\theta = -(d + 1) + b\theta = a + b\theta$

since a + d = -1. Hence $0 < m + n\theta < 1$. Thus there is a projection $\tilde{q} \in qA_{\theta}q$ such that

$$\tau(\tilde{q})=1-a-b\theta.$$

By Rieffel [7, Corollary 2.5] there is a unitary element $w \in A_{\theta}$ such that $q^{\perp} = w\tilde{q}w^*$. Hence $w^*q^{\perp}w = \tilde{q} \leq q$. Q.E.D.

LEMMA 12. There are a projection $\bar{q} \in A_{\theta}$ and a unitary element $z \in A_{\theta}$ such that $z\bar{q}z^* = q - w^*q^{\perp}w$ and $\bar{q} \leq q^{\perp}$.

Proof. Let $\operatorname{Proj}(q^{\perp}A_{\theta}q^{\perp})$ be the set of all projections in $q^{\perp}A_{\theta}q^{\perp}$. We will find a projection $\overline{q} \in q^{\perp}A_{\theta}q^{\perp}$ such that $\tau(\overline{q}) = \tau(q - w^*q^{\perp}w)$. In the same way as in Lemma 11, we can see that

$$\frac{1}{1-a-b\theta}\tau\left(\operatorname{Proj}(q^{\perp}A_{\theta}q^{\perp})\right)=\mathbf{Z}+\mathbf{Z}\theta\cap[0,1].$$

Hence it is sufficient to show that there are $m, n \in \mathbb{Z}$ such that

$$(1-a-b\theta)(m+n\theta) = \tau(q-w^*q^{\perp}w)$$

= (2a-1) + 2b\theta, 0 < m + n\theta < 1.

By the assumption on θ , $\theta = (c + d\theta)/(a + b\theta)$. Thus

$$b\theta^2 = (d-a)\theta + c.$$

Let m = -(d + 1) and n = b. Then by the above equation

$$(1 - a - b\theta)(m + n\theta) = (1 - a - b\theta)(-(d + 1) + b\theta)$$

= -(1 - a)(d + 1) + (d - a + 2)b\theta - b^2\theta^2
= ad - bc + a - d - 1 + 2b\theta.

Since ad - bc = -1 and a + d = -1, $(1 - a - b\theta)(m + n\theta) = 2a - 1 + 2b\theta$. Moreover

$$m + n\theta = -(d + 1) + b\theta = a + b\theta$$

since a + d = -1. Hence $0 < m + n\theta < 1$. Thus there is a projection $\bar{q} \in q^{\perp}A_{\theta}q^{\perp}$ such that $\tau(\bar{q}) = (2a - 1) + 2b\theta$. By Rieffel [7, Corollary 2.5] there is a unitary element $z \in A_{\theta}$ such that $z\bar{q}z^* = q - w^*q^{\perp}w$. Therefore we obtain the conclusion. Q.E.D.

THEOREM 13. Let $q, q^{\perp}, \overline{q}$ and w, z be as in Lemmas 11 and 12. A family

$$\{(2q,q), (2q^{\perp}, q^{\perp}), (2q^{\perp}wq, qw^{*}), (2w^{*}q^{\perp}, q^{\perp}w), (2z\bar{q}, q^{\perp}z^{*})\}$$

is a quasi-basis for E where E is the conditional expectation defined in the beginning of this section.

Proof. We will show that for any $x \in A_{\theta}$,

$$x = 2qE(qx) + 2q^{\perp}E(q^{\perp}x) + 2q^{\perp}wqE(qw^*x) + 2w^*q^{\perp}E(q^{\perp}wx) + 2z\bar{q}E(q^{\perp}z^*x) = 2E(xq)q + 2E(xq^{\perp})q^{\perp} + 2E(xq^{\perp}wq)qw^* + 2E(xw^*q^{\perp})q^{\perp}w + 2E(xz\bar{q})q^{\perp}z^*.$$

For any $x \in A_{\theta}$ we see by an easy computation that

$$qE(qx) = \frac{1}{2}qxq,$$

$$q^{\perp}E(q^{\perp}x) = \frac{1}{2}q^{\perp}xq^{\perp},$$

$$q^{\perp}wqE(qw^*x) = \frac{1}{2}q^{\perp}wqw^*xq = \frac{1}{2}q^{\perp}xq$$

since $q \ge w^*q^{\perp}w$ by Lemma 11. And we see that

$$w^{*}q^{\perp}E(q^{\perp}wx) = \frac{1}{2}w^{*}q^{\perp}wxq^{\perp},$$

$$z\bar{q}E(q^{\perp}z^{*}x) = \frac{1}{2}(z\bar{q}\phi_{1}(\phi_{2}^{-1}(q^{\perp}z^{*}xq^{\perp})) + z\bar{q}q^{\perp}z^{*}xq^{\perp}).$$

Since $\bar{q} \leq q^{\perp}$ by Lemma 12, $\bar{q}q^{\perp} = \bar{q}$ and $\bar{q}q = 0$. Thus we obtain

$$z\overline{q}E(q^{\perp}z^*x) = \frac{1}{2}z\overline{q}z^*xq^{\perp} = \frac{1}{2}(q^{\perp}w^*q^{\perp}w)xq^{\perp}$$

since $z\bar{q}z^* = q - w^*q^{\perp}w$ by Lemma 12. Therefore

$$qE(qx) + q^{\perp}E(q^{\perp}x) + q^{\perp}wqE(qw^*x)$$
$$+ w^*q^{\perp}E(q^{\perp}wx) + z\overline{q}E(q^{\perp}z^*x) = \frac{1}{2}x.$$

Next for any $x \in A_{\theta}$,

$$E(xq)q = \frac{1}{2}qxq,$$

$$E(xq^{\perp})q^{\perp} = \frac{1}{2}q^{\perp}xq^{\perp},$$

$$E(xq^{\perp}wq)qw^{*} = \frac{1}{2}qxq^{\perp}wqw^{*} = \frac{1}{2}qxq^{\perp}$$

since $q \ge w^*q^{\perp}w$ by Lemma 11. And we see that

$$E(xw^*q^{\perp})q^{\perp}w = \frac{1}{2}q^{\perp}xw^*q^{\perp}w,$$
$$E(xz\bar{q})q^{\perp}z^* = \frac{1}{2}q^{\perp}xz\bar{q}q^{\perp}z^* = \frac{1}{2}q^{\perp}xz\bar{q}z^*$$

since $\bar{q} \leq q^{\perp}$ by Lemma 12. Thus since $z\bar{q}z^* = q - w^*q^{\perp}w$ by Lemma 12,

$$E(xz\overline{q})q^{\perp}z^*=\frac{1}{2}q^{\perp}x(q-w^*q^{\perp}w).$$

Therefore

$$E(xq)q + E(xq^{\perp})q^{\perp} + E(xq^{\perp}wq)qw^* + E(xw^*q^{\perp})q^{\perp}w$$
$$+ E(xz\bar{q})q^{\perp}z^* = \frac{1}{2}x, \qquad Q.E.D.$$

COROLLARY 14. Let E be the conditional expectation in the beginning of this section. Then Index E = 4.

Proof.

Index
$$E = 2q + 2q^{\perp} + 2q^{\perp}wqw^* + 2w^*q^{\perp}w + 2z\bar{q}q^{\perp}z^*$$

= $2 + 2q^{\perp} + 2w^*q^{\perp}w + 2z\bar{q}z^*$
= $2 + 2q^{\perp} + 2w^*q^{\perp}w + 2(q - w^*q^{\perp}w)$
= 4

by Lemmas 11 and 12, Q.E.D.

Let $\varepsilon_0(A_\theta, \phi(A_\theta))$ be the set of all expectations of A_θ onto $\phi(A_\theta)$ of index-finite type. We define the minimizing index $[A_\theta: \phi(A_\theta)]_0$ by

$$[A_{\theta}:\phi(A_{\theta})]_{0} = \min\{\operatorname{Index} F | F \in \varepsilon_{0}(A_{\theta},\phi(A_{\theta}))\}.$$

COROLLARY 15. With the above notations, $[A_{\theta}: \phi(A_{\theta})]_0 = 4$.

Proof. This is immediate by Corollary 14 and Watatani [8, Theorem 2, 12.3].

REFERENCES

- 1. O. BRATTELI, G.A. ELLIOTT, F.M. GOODMAN and P.E.T. JØRGENSEN, Smooth Lie group actions on non-commutative tori, Nonlinearity, vol. 2 (1989), pp. 271–286.
- 2. A. KUMMAN, On localizations and simple C*-algebras, Pacific J. Math., vol. 112 (1984), pp. 141-192.
- 3. S. LANG, Introduction to Diophantine approximations, Addison-Wesley, Reading, Mass., 1966.
- 4. G.K. PEDERSEN, C*-algebras and their automorphism groups, Academic Press, San Diego, 1979.
- 5. M.V. PIMSNER and D. VOICULESCU, Imbedding the irrational rotation C*-algebra into an AF-algebra, J. Operator Theory, vol. 4 (1980), pp. 201–210.
- M.A. RIEFFEL, C*-algebras associated with irrational rotations, Pacific J. Math., vol. 93 (1981), pp. 415-429.
- 7. _____, The cancellation theorem for projective modules over irrational rotation C*-algebras, Proc. London Math. Soc., vol. 47 (1983), pp. 285–302.
- 8. Y. WATATANI, Index for C*-subalgebras, Mem. Amer. Math. Soc., no. 424, Amer. Math. Soc., Providence, R.I., 1990.

Ryukyu University Nishihara-cho, Okinawa, Japan