ENDOMORPHISMS OF CERTAIN IRRATIONAL ROTATION C*-ALGEBRAS

BY
Kazunori Kodaka

1. Preliminaries for quadratic irrational numbers

First we will give definitions and well known facts on quadratic irrational numbers. Let $G L(2, \mathbf{Z})$ be the group of all 2×2-matrices over \mathbf{Z} with determinant ± 1. Let

$$
g=\left[\begin{array}{ll}
k & l \\
m & n
\end{array}\right] \in G L(2, \mathbf{Z})
$$

and θ be an irrational number. We define

$$
g \theta=\frac{m+n \theta}{k+l \theta}
$$

and we call g a fractional transformation. Furthermore if

$$
g \neq\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

then we say that g is non-trivial.
Let \mathbf{Q} be the ring of rational numbers. We suppose that θ is a quadratic irrational number. If $\theta=x+y \sqrt{d}$ where $x, y \in \mathbf{Q}$ and $d \in \mathbf{N}$, then we define $\theta^{\prime}=x-y \sqrt{d}$ and we call θ^{\prime} the conjugate of θ. We say that θ is reduced if $\theta>1$ and $-1<\theta^{\prime}<0$ where θ^{\prime} is the conjugate of θ.

For any quadratic irrational number θ there are a fractional transformation

$$
g=\left[\begin{array}{ll}
k & l \\
m & n
\end{array}\right] \in G L(2, \mathbf{Z})
$$

and a reduced quadratic irrational number θ_{1} such that

$$
\theta=g \theta_{1}=\frac{m+n \theta_{1}}{k+l \theta_{1}}
$$

And for any reduced quadratic irrational number θ_{1} there is a non-trivial fractional transformation $h \in G L(2, \mathbf{Z})$ such that $\theta_{1}=h \theta_{1}$. Hence since $\theta_{1}=g^{-1} \theta$, we can see that

$$
\theta=g \theta_{1}=g h \theta_{1}=g h g^{-1} \theta
$$

Since h is non-trivial, neither is $g h g^{-1}$. By the above arguments we see that for any quadratic irrational number θ there is a non-trivial fractional transformation

$$
g=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G L(2, \mathbf{Z})
$$

such that

$$
\theta=\frac{c+d \theta}{a+b \theta}
$$

Furthermore if $a+b \theta>1$ or $a+b \theta<0$, we can choose another non-trivial fractional transformation

$$
g_{1}=\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right] \in G L(2, \mathbf{Z})
$$

such that

$$
\theta=\frac{c_{1}+d_{1} \theta}{a_{1}+b_{1} \theta}, \quad 0<a_{1}+b_{1} \theta<1
$$

by an easy computation. Therefore if θ is a quadratic irrational number, there is a non-trivial fractional transformation

$$
g=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G L(2, \mathbf{Z})
$$

such that

$$
\theta=\frac{c+d \theta}{a+b \theta}, \quad 0<a+b \theta<1
$$

Let θ be a quadratic irrational number and

$$
g=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G L(2, \mathbf{Z})
$$

be as above. We will show that θ has its discriminant $D=5$ if and only if θ satisfies that there are integers s, t such that

$$
\left[\begin{array}{cc}
1-a & -b \\
s & t
\end{array}\right] \in G L(2, \mathbf{Z}) \quad \text { and } \quad \theta=\frac{s+t \theta}{(1-a)-b \theta}
$$

Lemma 1. Let θ be a quadratic irrational number and

$$
g=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G L(2, \mathbf{Z})
$$

be a non-trivial fractional transformation such that

$$
\theta=\frac{c+d \theta}{a+b \theta}, \quad 0<a+b \theta<1
$$

Then the following conditions are equivalent:
(i) There are integers s, t such that

$$
\left[\begin{array}{cc}
1-a & -b \\
s & t
\end{array}\right] \in G L(2, \mathbf{Z}) \quad \text { and } \quad \theta=\frac{s+t \theta}{(1-a)-b \theta}
$$

(ii) If $a d-b c=1$, then $a+d=1$ or 3 and if $a d-b c=-1$, then $a+d= \pm 1$.

Proof. Suppose condition (i) holds. Then

$$
\begin{equation*}
b \theta^{2}-(1-a-t) \theta+s=0 \tag{1}
\end{equation*}
$$

Since $\theta=(c+d \theta) /(a+b \theta)$,

$$
\begin{equation*}
b \theta^{2}+(a-d) \theta-c=0 \tag{2}
\end{equation*}
$$

By (1), (2) we obtain

$$
\begin{equation*}
(1-t-d) \theta-(s+c)=0 \tag{3}
\end{equation*}
$$

Since θ is irrational, by (3) we have $t=1-d$ and $s=-c$. Furthermore
since

$$
\left[\begin{array}{cc}
1-a & -b \\
s & t
\end{array}\right] \in G L(2, \mathbf{Z})
$$

we have

$$
(1-a)(1-d)-b c= \pm 1
$$

Thus we see that $a+d=1+a d-b c \pm 1$. Therefore we obtain condition (ii).

Next, suppose condition (ii) holds. Then by easy computation we can see that

$$
\left[\begin{array}{cc}
1-a & -b \\
-c & 1-d
\end{array}\right] \in G L(2, \mathbf{Z}) \quad \text { and } \quad \frac{-c+(1-d) \theta}{(1-a)-b \theta}=\theta, \quad \text { Q.E.D. }
$$

The quadratic equation for θ can be written in the form

$$
k \theta^{2}+l \theta+m=0
$$

where k, l, m are relatively prime integers and $k>0$. Let $D=l^{2}-4 k m>0$ be the discriminant of θ. Let

$$
g=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G L(2, \mathbf{Z})
$$

be a non-trivial fractional transformation such that

$$
\theta=\frac{c+d \theta}{a+b \theta}, \quad 0<a+b \theta<1
$$

The $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ can be written in the form

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
\frac{t+l s}{2} & k s \\
-m s & \frac{t-l s}{2}
\end{array}\right]
$$

where s, t are integers such that

$$
t^{2}-D s^{2}=4 \quad \text { if } a d-b c=1
$$

or

$$
t^{2}-D s^{2}=-4 \quad \text { if } a d-b c=-1
$$

Lemma 2. Let θ be a quadratic irrational number and $k \theta^{2}+l \theta+m=0$ be its quadratic equation where k, l, m are relatively prime integers and $k>0$. Let

$$
g=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G L(2, \mathbf{Z})
$$

be a non-trivial fractional transformation such that

$$
\theta=\frac{c+d \theta}{a+b \theta}, \quad 0<a+b \theta<1
$$

If θ and g satisfy condition (ii) in Lemma 1 , then the discriminant D of θ is equal to 5 .

Proof. We have the following fact:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
\frac{t+l s}{2} & k s \\
-m s & \frac{t-l s}{2}
\end{array}\right]
$$

where s, t are integers such that

$$
t^{2}-D s^{2}=4 \quad \text { if } a d-b c=1
$$

or

$$
t^{2}-D s^{2}=-4 \quad \text { if } a d-b c=-1
$$

We suppose that $a d-b c=1$ and $a+d=1$. Then $t=1$. Hence $D s^{2}=-3$. This is a contradiction since $D>0$. We suppose that $a d-b c=1$ and $a+d=3$. Then $t=3$. Hence $D s^{2}=5$. Since $D>0$ and s is an integer, $s= \pm 1$ and $D=5$. We suppose that $a d-b c=-1$ and $a+d= \pm 1$. Then $t= \pm 1$. Hence $D s^{2}=5$. Since $D>0$ and s is an integer, $s= \pm 1$ and $D=5$, Q.E.D.

Lemma 3. Let θ be a quadratic irrational number and $k \theta^{2}+l \theta+m=0$ be its quadratic equation where k, l, m are relatively prime integers and $k>0$. If the discriminant D of θ is equal to 5, then there is a non-trivial fractional transformation

$$
g=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G L(2, \mathbf{Z})
$$

satisfying

$$
\theta=\frac{c+d \theta}{a+b \theta}, \quad 0<a+b \theta<1
$$

and condition (ii) in Lemma 1.

Proof. Since $k \theta^{2}+l \theta+m=0$ and $D=5, \theta=(-l \pm \sqrt{5}) / 2 k$. Since D is odd, so is l. Let $l=2 l_{1}-1$ where l_{1} is an integer. Then $l_{1}^{2}-l_{1}-k m=1$ since $D=5$. And

$$
\theta=\frac{-2 l_{1}+1 \pm \sqrt{5}}{2 k}
$$

We suppose that

$$
\theta=\frac{-2 l_{1}+1+\sqrt{5}}{2 k}
$$

Let

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
l_{1}-1 & k \\
-m & -l_{1}
\end{array}\right]
$$

Then

$$
a d-b c=\left(l_{1}-1\right)\left(-l_{1}\right)+k m=-\left(l_{1}^{2}-l_{1}-k m\right)=-1
$$

since $l_{1}^{2}-l_{1}-k m=1$. Hence

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G L(2, \mathbf{Z}) \quad \text { and } \quad a+d=-1
$$

Since $m=-l \theta-k \theta^{2}$ and $l=2 l_{1}-1$,

$$
\begin{aligned}
\frac{c+d \theta}{a+b \theta} & =\frac{-m-l_{1} \theta}{l_{1}-1+k \theta} \\
& =\frac{\left(2 l_{1}-1\right) \theta+k \theta^{2}-l_{1} \theta}{l_{1}-1+k \theta} \\
& =\frac{\left(\left(l_{1}-1\right)+k \theta\right) \theta}{l_{1}-1+k \theta}=\theta .
\end{aligned}
$$

Furthermore

$$
a+b \theta=l_{1}-1+k \frac{-2 l_{1}+1+\sqrt{5}}{2 k}=\frac{-1+\sqrt{5}}{2} .
$$

Hence $0<a+b \theta<1$. We suppose that $\theta=\left(-2 l_{1}+1-\sqrt{5}\right) / 2 k$. Let

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
-l_{1} & -k \\
m & l_{1}-1
\end{array}\right]
$$

Then

$$
a d-b c=-l_{1}\left(l_{1}-1\right)+k m=-\left(l_{1}^{2}-l_{1}-k m\right)=-1
$$

since $l_{1}^{2}-l_{1}-k m=1$. Hence

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G L(2, \mathbf{Z}) \quad \text { and } \quad a+d=-1
$$

Since $m=-l \theta-k \theta^{2}$ and $l=2 l_{1}-1$,

$$
\frac{c+d \theta}{a+b \theta}=\frac{m+\left(l_{1}-1\right) \theta}{-l_{1}-k \theta}=\frac{\left(-l_{1}-k \theta\right) \theta}{-l_{1}-k \theta}=\theta
$$

Furthermore

$$
a+b \theta=-l_{1}-k \frac{-2 l_{1}+1-\sqrt{5}}{2 k}=\frac{-1+\sqrt{5}}{2}
$$

Hence $0<a+b \theta<1$. Therefore we obtain the conclusion. Q.E.D.
Remark 4. By the above proof we can take

$$
g=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G L(2, \mathbf{Z})
$$

so that

$$
\frac{1}{2}<a+b \theta=\frac{-1+\sqrt{5}}{2}<\frac{2}{3}, a+d=-1 \text { and } a d-b c=-1
$$

Proposition 5. Let θ be a quadratic irrational number and $k \theta^{2}+l \theta+m$ $=0$ be its quadratic equation. Then the discriminant D of θ is equal to 5 if and only if there is a non-trivial fractional transformation $g=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in G L(2, \mathbf{Z})$ satisfying

$$
\theta=\frac{c+d \theta}{a+b \theta}, \quad 0<a+b \theta<1
$$

and condition (i) in Lemma 1.
Proof. This is immediate by Lemmas 1, 2, and 3. Q.E.D.

2. Construction of endomorphisms of certain irrational rotation C^{*}-algebras

Let A be a unital C^{*}-algebra and $M_{n}(A)$ be the algebra of all $n \times n$ matrices over A for any $n \in \mathbf{N}$ and we identify $M_{n}(A)$ with $A \otimes M_{n}(\mathbf{C})$. Let I_{n} be the unit element in $M_{n}(\mathbf{C})$. For any unitary element $x \in M_{n}(A)$ we denote by $[x]$ the corresponding class in $K_{1}(A)$.

Let θ be an irrational number and A_{θ} be the corresponding irrational rotation C^{*}-algebra. Let u and v be unitary elements in A_{θ} with $u v=e^{2 \pi i \theta} v u$ which generate A_{θ}. Then it is well known that $K_{1}\left(A_{\theta}\right)=\mathbf{Z}[u] \oplus \mathbf{Z}[v]$. Let τ be the unique tracial state on A_{θ}. We extend τ to the unnormalized finite trace on $M_{n}\left(A_{\theta}\right)$. We also denote it by τ. Let m and l be integers which generate \mathbf{Z} with $m+l \theta \neq 0$. We also assume $l \neq 0$. Let $V_{\theta}(m, l: k)$ be the standard module defined in Rieffel [7] where $k \in \mathbf{N}$. Since $V_{\theta}(m, l: k)$ is a finitely generated projective right A_{θ}-module, it corresponds to a projection in some $M_{n}\left(A_{\theta}\right)$. We also denote it by $V_{\theta}(m, l: k)$. Moreover throughout this paper we assume that endomorphisms of A_{θ} are unital.

Lemma 6. With the above notations let f be a projection in $M_{n}\left(A_{\theta}\right)$ where n is a positive integer. Then $\tau\left(V_{\theta}(m, l: k)\right)=\tau(f)$ if and only if $V_{\theta}(m, l: k)$ is isomorphic to $f A_{\theta}^{n}$ as a module.

Proof. It is clear that $\tau\left(V_{\theta}(m, l: k)\right)=\tau(f)$ if $V_{\theta}(m, l: k)$ is isomorphic to $f A_{\theta}^{n}$. Suppose that $\tau\left(V_{\theta}(m, l: k)\right)=\tau(f)$. Then by Rieffel [7, Corollary 2.5], $V_{\theta}(m, l: k)$ is isomorphic to $f A_{\theta}^{n}$, Q.E.D.

From now on we suppose that θ is a quadratic irrational number with its discriminant $D=5$. Then by Proposition 5 there is a non-trivial fractional transformation

$$
g=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G L(2, \mathbf{Z})
$$

such that

$$
\theta=\frac{c+d \theta}{a+b \theta}, \quad 0<a+b \theta<1
$$

and there are integers s, t such that

$$
\left[\begin{array}{cc}
1-a & -b \\
s & t
\end{array}\right] \in G L(2, \mathbf{Z}) \quad \text { and } \quad \theta=\frac{s+t \theta}{(1-a)-b \theta}
$$

Moreover by Rieffel [6, Theorem 1] there is a projection $q \in A_{\theta}$ such that $\tau(q)=a+b \theta$.

Lemma 7. With the above notations, $q A_{\theta} q$ is isomorphic to A_{θ}.
Proof. Since $q A_{\theta} q$ is a full corner of A_{θ}, it is strongly Morita equivalent to A_{θ} and $q A_{\theta}$ is the $q A_{\theta} q-A_{\theta}$-equivalence bimodule. By Rieffel [7, Theorem 1.4],

$$
\tau\left(V_{\theta}(a, b: 1)\right)=a+b \theta
$$

On the other hand by the assumption $\tau(q)=a+b \theta$. Hence by Lemma 6, $q A_{\theta}$ is isomorphic to $V_{\theta}(a, b: 1)$ as a module. Thus by Rieffel [7, Theorem 1.1 and Corollary 2.6], $q A_{\theta} q$ is isomorphic to A_{η} where $\eta=(c+d \theta / a+b \theta)$. However by the assumptions, $\theta=(c+d \theta) /(a+b \theta)$. Therefore $q A_{\theta} q$ is isomorphic to A_{θ}, Q.E.D.

Lemma 8. With the above notations $q^{\perp} A_{\theta} q^{\perp}$ is isomorphic to A_{θ} where $q^{\perp}=1-q$.

Proof. In the same way as in the above lemma, $q^{\perp} A_{\theta} q^{\perp}$ is isomorphic to A_{η} where

$$
\eta=\frac{s+t \theta}{(1-a)-b \theta}
$$

However by the assumptions,

$$
\theta=\frac{s+t \theta}{(1-a)-b \theta}
$$

Therefore $q^{\perp} A_{\theta} q^{\perp}$ is isomorphic to A_{θ}, Q.E.D.
We denote by ϕ_{1} an isomorphism of A_{θ} onto $q A_{\theta} q$ and by ϕ_{2} an isomorphism of A_{θ} onto $q^{\perp} A_{\theta} q^{\perp}$. Let ϕ be an endomorphism defined by $\phi(x)=\phi_{1}(x)+\phi_{2}(x)$ for any $x \in A_{\theta}$. We consider an endomorphism $\phi^{3}=$ $\phi \circ \phi \circ \phi$ of A_{θ}. We denote it by Φ. Then by an easy computation we can see that there are an orthogonal family $\left\{p_{j}\right\}_{j=1}^{8}$ of projections in A_{θ} with $\sum_{j=1}^{8} p_{j}$ $=1$ and isomorphisms $\chi_{\mathrm{j}}(j=1,2, \ldots, 8)$ of A_{θ} onto $p_{j} A_{\theta} p_{j}$ such that $\Phi=\sum_{j=1}^{8} \chi_{j}$.

For $j=1,2, \ldots, 8$ let ψ_{j} be the isomorphism of $K_{1}\left(p_{j} A_{\theta} p_{j}\right)$ onto $K_{1}\left(A_{\theta}\right)$ defined by

$$
\psi_{j}([x])=\left[x+\left(1-p_{j}\right) \otimes I_{n}\right]
$$

for any unitary element $x \in M_{n}\left(p_{j} A_{\theta} p_{j}\right)$.

Lemma 9. With the above notations, $\Phi_{*}=\sum_{j=1}^{8} \psi_{j} \circ \chi_{j *}$ on $K_{1}\left(A_{\theta}\right)$.
Proof.

$$
\begin{aligned}
{[\Phi(u)] } & =\left[\sum_{j=1}^{8} \chi_{j}(u)\right]=\left[\prod_{j=1}^{8}\left(\chi_{j}(u)+\left(1-p_{j}\right)\right)\right] \\
& =\sum_{j=1}^{8}\left[\chi_{j}(u)+\left(1-p_{j}\right)\right] \\
& =\sum_{j=1}^{8} \psi_{j}\left(\left[\chi_{j}(u)\right]\right)=\sum_{j=1}^{8}\left(\psi_{j} \circ \chi_{j *}\right)([u])
\end{aligned}
$$

Similarly

$$
[\Phi(v)]=\sum_{j=1}^{8}\left(\phi_{j} \circ \chi_{j *}\right)([v])
$$

Therefore we obtain the conclusion. Q.E.D.
Let $S L(2, \mathbf{Z})$ be the group of 2×2-matrices over \mathbf{Z} with determinant 1 . For any

$$
h=\left[\begin{array}{ll}
k & l \\
m & n
\end{array}\right] \in S L(2, \mathbf{Z})
$$

let α_{h} be the automorphism of A_{θ} defined by

$$
\alpha_{h}(u)=u^{k} v^{m}, \quad \alpha_{h}(v)=u^{l} v^{n} .
$$

Furthermore for any $h \in G L(2, \mathbf{Z})$ let $\operatorname{det}(h)$ be its determinant.
Theorem 10. With the above notations there is an endomorphism Φ_{0} of A_{θ} with $\Phi_{0 *}$ an arbitrary endomorphism of $K_{1}\left(A_{\theta}\right)$.

Proof. By Lemma 9 there is an endomorphism $\Phi=\sum_{j=1}^{8} \chi_{j}$ of A_{θ} such that

$$
\Phi_{*}=\sum_{j=1}^{8} \psi_{j} \circ \chi_{j *} \quad \text { on } K_{1}\left(A_{\theta}\right)
$$

Since $\psi_{j}{ }^{\circ} \chi_{j *}$ is an automorphism of $K_{1}\left(A_{\theta}\right)$ for $j=1,2, \ldots, 8$, there is an element

$$
h_{j}=\left[\begin{array}{ll}
k_{j} & l_{j} \\
m_{j} & n_{j}
\end{array}\right] \in G L(2, \mathbf{Z})
$$

such that

$$
\begin{aligned}
& \left(\psi_{j} \circ \chi_{j *}\right)([u])=k_{j}[u]+m_{j}[v] \\
& \left(\psi_{j} \circ \chi_{j *}\right)([v])=l_{j}[u]+n_{j}[v] .
\end{aligned}
$$

For $g_{1}, g_{2}, \ldots, g_{8} \in S L(2, \mathbf{Z})$ let $\Phi_{g_{1}, g_{2}, \ldots, g_{8}}$ be an endomorphism of A_{θ} defined by

$$
\Phi_{g_{1}, g_{2}, \ldots, g_{8}}=\sum_{j=1}^{8} \chi_{j} \circ \alpha_{g_{j}}
$$

Then, as in Lemma 9,

$$
\Phi_{g_{1}, g_{2}, \ldots, g_{8 *}}=\sum_{j=1}^{8} \psi_{j} \circ \chi_{j *} \circ \alpha_{g_{j} *}
$$

on $K_{1}\left(A_{\theta}\right)$. Since $K_{1}\left(A_{\theta}\right) \cong \mathbf{Z}^{2}$, we can consider $\alpha_{g_{j} *}$ and $\psi_{j}{ }^{\circ} \chi_{j *}(j=$ $1,2, \ldots, 8)$ as elements in $G L(2, \mathbf{Z})$. Then since $\alpha_{g_{j} *} \stackrel{\sigma_{j}}{=} g_{j} \in S L(2, \mathbf{Z})$ and

$$
\psi_{j} \circ \chi_{j *}=h_{j} \in G L(2, \mathbf{Z})(j=1,2, \ldots, 8)
$$

we can easily see that

$$
\Phi_{g_{1}, g_{2}, \ldots, g_{8 *}}=\sum_{j=1}^{8} h_{j} g_{j}
$$

For any r_{1}, r_{2}, r_{3} and $r_{4} \in \mathbf{Z}$ we can find elements $g_{1}, g_{2}, \ldots, g_{8} \in \operatorname{SL}(2, \mathbf{Z})$ satisfying
(1) $h_{1} g_{1}+h_{2} g_{2}= \begin{cases}{\left[\begin{array}{ll}r_{1} & 0 \\ 0 & 0\end{array}\right]} & \text { if } \operatorname{det}\left(h_{1} h_{2}\right)=1 \\ {\left[\begin{array}{cc}r_{1} & 2 \\ 0 & 0\end{array}\right]} & \text { if } \operatorname{det}\left(h_{1} h_{2}\right)=-1,\end{cases}$
(2) $h_{3} g_{3}+h_{4} g_{4}= \begin{cases}{\left[\begin{array}{ll}0 & r_{2} \\ 0 & 0\end{array}\right]} & \text { if } \operatorname{det}\left(h_{3} h_{4}\right)=1 \\ {\left[\begin{array}{ll}0 & r_{2} \\ 2 & 0\end{array}\right]} & \text { if } \operatorname{det}\left(h_{3} h_{4}\right)=-1,\end{cases}$
(3) $h_{5} g_{5}+h_{6} g_{6}= \begin{cases}{\left[\begin{array}{ll}0 & 0 \\ r_{3} & 0\end{array}\right]} & \text { if } \operatorname{det}\left(h_{5} h_{6}\right)=1 \\ {\left[\begin{array}{ll}0 & 2 \\ r_{3} & 0\end{array}\right]} & \text { if } \operatorname{det}\left(h_{5} h_{6}\right)=-1,\end{cases}$
(4) $h_{7} g_{7}+h_{8} g_{8}= \begin{cases}{\left[\begin{array}{ll}0 & 0 \\ 0 & r_{4}\end{array}\right]} & \text { if } \operatorname{det}\left(h_{7} h_{8}\right)=1 \\ {\left[\begin{array}{ll}0 & 0 \\ 2 & r_{4}\end{array}\right]} & \text { if } \operatorname{det}\left(h_{7} h_{8}\right)=-1 .\end{cases}$

Hence we can see that for any $z \in M_{2}(\mathbf{Z})$ there are $g_{1,0}, g_{2,0}, \ldots, g_{8,0} \in$ $\operatorname{SL}(2, \mathbf{Z})$ such that $\left(\Phi_{g_{1,0},} g_{2,0}, \ldots, g_{8,0}\right)_{*}=z$ on $K_{1}\left(A_{\theta}\right)$ by (1), (2), (3) and (4) where $M_{2}(\mathbf{Z})$ is the set of all 2×2-matrices over \mathbf{Z}. Let $\Phi_{0}=\Phi_{g_{1,0}, g_{2,0}, \ldots, g_{8,0}}$. Then we obtain the conclusion. Q.E.D.

3. The minimizing index for a \mathbf{C}^{*}-subalgebra

Let θ and $g=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in G L(2, \mathbf{Z})$ be as in Section 2. Then by Remark 4 we can assume that

$$
\frac{1}{2}<a+b \theta=\frac{-1+\sqrt{5}}{2}<\frac{2}{3}
$$

$a+d=-1$ and $a d-b c=-1$. Let q be a projection in A_{θ} with $\tau(q)=a$ $+b \theta$ and let ϕ_{1} (resp. ϕ_{2}) be the isomorphism of A_{θ} onto $q A_{\theta} q$ (resp. $q^{\perp} A_{\theta} q^{\perp}$) as in Section 2. Let ϕ be the endomorphism of A_{θ} defined by $\phi(x)=\phi_{1}(x)+\phi_{2}(x)$ for any $x \in A_{\theta}$.

Let E_{1} be the linear map of A_{θ} onto $\phi\left(A_{\theta}\right)$ defined by

$$
E_{1}(x)=q x q+\phi_{2}\left(\phi_{1}^{-1}(q x q)\right)
$$

for any $x \in A_{\theta}$ and let E_{2} be the linear map of A_{θ} onto $\phi\left(A_{\theta}\right)$ defined by

$$
E_{2}(x)=\phi_{1}\left(\phi_{2}^{-1}\left(q^{\perp} x q^{\perp}\right)\right)+q^{\perp} x q^{\perp}
$$

for any $x \in A_{\theta}$. By an easy computation we can see that E_{1} and E_{2} are conditional expectations of A_{θ} onto $\phi\left(A_{\theta}\right)$. Furthermore let $E=\frac{1}{2}\left(E_{1}+E_{2}\right)$. Then by an easy computation we see that E is a faithful conditional expectation of A_{θ} onto $\phi\left(A_{\theta}\right)$.

Lemma 11. There is a unitary element $w \in A_{\theta}$ such that $q \geq w^{*} q^{\perp} w$.
Proof. Let τ_{1} be the unique tracial state on $q A_{\theta} q$. Then by Rieffel [6, Theorem 1],

$$
\tau_{1}\left(\operatorname{Proj}\left(q A_{\theta} q\right)\right)=\mathbf{Z}+\mathbf{Z} \theta \cap[0,1]
$$

since $q A_{\theta} q$ is isomorphic to A_{θ} where $\operatorname{Proj}\left(q A_{\theta} q\right)$ is the set of all projections in $q A_{\theta} q$. On the other hand since $q A_{\theta} q$ is a C^{*}-subalgebra of A_{θ}, by the uniqueness of the tracial state,

$$
\tau_{1}=\tau(q)^{-1} \tau=\frac{1}{a+b \theta} \tau
$$

Hence

$$
\frac{1}{a+b \theta} \tau\left(\operatorname{Proj}\left(q A_{\theta} q\right)\right)=\mathbf{Z}+\mathbf{Z} \theta \cap[0,1]
$$

We claim that there is a projection $\tilde{q} \in q A_{\theta} q$ such that $\tau(\tilde{q})=\tau\left(q^{\perp}\right)=1-$ $a-b \theta$. In fact it is sufficient to show that there are $m, n \in \mathbf{Z}$ such that

$$
(a+b \theta)(m+n \theta)=1-a-b \theta, \quad 0<m+n \theta<1
$$

By the assumption on $\theta, \theta=(c+d \theta) /(a+b \theta)$. Thus

$$
b \theta^{2}=(d-a) \theta+c
$$

Let $m=-(d+1)$ and $n=b$. Then by the above equation

$$
\begin{aligned}
(a+b \theta)(m+n \theta) & =(a+b \theta)(-(d+1)+b \theta) \\
& =-a d-a+(a b-b d-b) \theta+b^{2} \theta^{2} \\
& =b c-a d-a-b \theta
\end{aligned}
$$

Since $a d-b c=-1,(a+b \theta)(m+n \theta)=1-a-b \theta$. Moreover

$$
m+n \theta=-(d+1)+b \theta=a+b \theta
$$

since $a+d=-1$. Hence $0<m+n \theta<1$. Thus there is a projection $\tilde{q} \in$ $q A_{\theta} q$ such that

$$
\tau(\tilde{q})=1-a-b \theta .
$$

By Rieffel [7, Corollary 2.5] there is a unitary element $w \in A_{\theta}$ such that $q^{\perp}=w \tilde{q} w^{*}$. Hence $w^{*} q^{\perp} w=\tilde{q} \leq q$. Q.E.D.

Lemma 12. There are a projection $\bar{q} \in A_{\theta}$ and a unitary element $z \in A_{\theta}$ such that $z \bar{q} z^{*}=q-w^{*} q^{\perp} w$ and $\bar{q} \leq q^{\perp}$.

Proof. Let $\operatorname{Proj}\left(q^{\perp} A_{\theta} q^{\perp}\right)$ be the set of all projections in $q^{\perp} A_{\theta} q^{\perp}$. We will find a projection $\bar{q} \in q^{\perp} A_{\theta} q^{\perp}$ such that $\tau(\bar{q})=\tau\left(q-w^{*} q^{\perp} w\right)$. In the same way as in Lemma 11, we can see that

$$
\frac{1}{1-a-b \theta} \tau\left(\operatorname{Proj}\left(q^{\perp} A_{\theta} q^{\perp}\right)\right)=\mathbf{Z}+\mathbf{Z} \theta \cap[0,1]
$$

Hence it is sufficient to show that there are $m, n \in \mathbf{Z}$ such that

$$
\begin{aligned}
(1-a-b \theta)(m+n \theta) & =\tau\left(q-w^{*} q^{\perp} w\right) \\
& =(2 a-1)+2 b \theta, \quad 0<m+n \theta<1
\end{aligned}
$$

By the assumption on $\theta, \theta=(c+d \theta) /(a+b \theta)$. Thus

$$
b \theta^{2}=(d-a) \theta+c
$$

Let $m=-(d+1)$ and $n=b$. Then by the above equation

$$
\begin{aligned}
(1-a-b \theta)(m+n \theta) & =(1-a-b \theta)(-(d+1)+b \theta) \\
& =-(1-a)(d+1)+(d-a+2) b \theta-b^{2} \theta^{2} \\
& =a d-b c+a-d-1+2 b \theta .
\end{aligned}
$$

Since $a d-b c=-1$ and $a+d=-1,(1-a-b \theta)(m+n \theta)=2 a-1+$ $2 b \theta$. Moreover

$$
m+n \theta=-(d+1)+b \theta=a+b \theta
$$

since $a+d=-1$. Hence $0<m+n \theta<1$. Thus there is a projection $\bar{q} \in$ $q^{\perp} A_{\theta} q^{\perp}$ such that $\tau(\bar{q})=(2 a-1)+2 b \theta$. By Rieffel [7, Corollary 2.5] there is a unitary element $z \in A_{\theta}$ such that $z \bar{q} z^{*}=q-w^{*} q^{\perp} w$. Therefore we obtain the conclusion. Q.E.D.

Theorem 13. Let q, q^{\perp}, \bar{q} and w, z be as in Lemmas 11 and 12. A family

$$
\left\{(2 q, q),\left(2 q^{\perp}, q^{\perp}\right),\left(2 q^{\perp} w q, q w^{*}\right),\left(2 w^{*} q^{\perp}, q^{\perp} w\right),\left(2 z \bar{q}, q^{\perp} z^{*}\right)\right\}
$$

is a quasi-basis for E where E is the conditional expectation defined in the beginning of this section.

Proof. We will show that for any $x \in A_{\theta}$,

$$
\begin{aligned}
x= & 2 q E(q x)+2 q^{\perp} E\left(q^{\perp} x\right)+2 q^{\perp} w q E\left(q w^{*} x\right) \\
& +2 w^{*} q^{\perp} E\left(q^{\perp} w x\right)+2 z \bar{q} E\left(q^{\perp} z^{*} x\right) \\
= & 2 E(x q) q+2 E\left(x q^{\perp}\right) q^{\perp}+2 E\left(x q^{\perp} w q\right) q w^{*} \\
& +2 E\left(x w^{*} q^{\perp}\right) q^{\perp} w+2 E(x z \bar{q}) q^{\perp} z^{*} .
\end{aligned}
$$

For any $x \in A_{\theta}$ we see by an easy computation that

$$
\begin{aligned}
q E(q x) & =\frac{1}{2} q x q \\
q^{\perp} E\left(q^{\perp} x\right) & =\frac{1}{2} q^{\perp} x q^{\perp} \\
q^{\perp} w q E\left(q w^{*} x\right) & =\frac{1}{2} q^{\perp} w q w^{*} x q=\frac{1}{2} q^{\perp} x q
\end{aligned}
$$

since $q \geq w^{*} q^{\perp} w$ by Lemma 11. And we see that

$$
\begin{aligned}
w^{*} q^{\perp} E\left(q^{\perp} w x\right) & =\frac{1}{2} w^{*} q^{\perp} w x q^{\perp} \\
z \bar{q} E\left(q^{\perp} z^{*} x\right) & =\frac{1}{2}\left(z \bar{q} \phi_{1}\left(\phi_{2}^{-1}\left(q^{\perp} z^{*} x q^{\perp}\right)\right)+z \bar{q} q^{\perp} z^{*} x q^{\perp}\right)
\end{aligned}
$$

Since $\bar{q} \leq q^{\perp}$ by Lemma $12, \bar{q} q^{\perp}=\bar{q}$ and $\bar{q} q=0$. Thus we obtain

$$
z \bar{q} E\left(q^{\perp} z^{*} x\right)=\frac{1}{2} z \bar{q} z^{*} x q^{\perp}=\frac{1}{2}\left(q-w^{*} q^{\perp} w\right) x q^{\perp}
$$

since $z \bar{q} z^{*}=q-w^{*} q^{\perp} w$ by Lemma 12. Therefore

$$
\begin{aligned}
& q E(q x)+q^{\perp} E\left(q^{\perp} x\right)+q^{\perp} w q E\left(q w^{*} x\right) \\
& \quad+w^{*} q^{\perp} E\left(q^{\perp} w x\right)+z \bar{q} E\left(q^{\perp} z^{*} x\right)=\frac{1}{2} x
\end{aligned}
$$

Next for any $x \in A_{\theta}$,

$$
\begin{aligned}
E(x q) q & =\frac{1}{2} q x q \\
E\left(x q^{\perp}\right) q^{\perp} & =\frac{1}{2} q^{\perp} x q^{\perp} \\
E\left(x q^{\perp} w q\right) q w^{*} & =\frac{1}{2} q x q^{\perp} w q w^{*}=\frac{1}{2} q x q^{\perp}
\end{aligned}
$$

since $q \geq w^{*} q^{\perp} w$ by Lemma 11. And we see that

$$
\begin{aligned}
E\left(x w^{*} q^{\perp}\right) q^{\perp} w & =\frac{1}{2} q^{\perp} x w^{*} q^{\perp} w \\
E(x z \bar{q}) q^{\perp} z^{*} & =\frac{1}{2} q^{\perp} x z \bar{q} q^{\perp} z^{*}=\frac{1}{2} q^{\perp} x z \bar{q} z^{*}
\end{aligned}
$$

since $\bar{q} \leq q^{\perp}$ by Lemma 12. Thus since $z \bar{q} z^{*}=q-w^{*} q^{\perp} w$ by Lemma 12,

$$
E(x z \bar{q}) q^{\perp} z^{*}=\frac{1}{2} q^{\perp} x\left(q-w^{*} q^{\perp} w\right)
$$

Therefore

$$
\begin{align*}
& E(x q) q+E\left(x q^{\perp}\right) q^{\perp}+E\left(x q^{\perp} w q\right) q w^{*}+E\left(x w^{*} q^{\perp}\right) q^{\perp} w \\
& \quad+E(x z \bar{q}) q^{\perp} z^{*}=\frac{1}{2} x
\end{align*}
$$

Corollary 14. Let E be the conditional expectation in the beginning of this section. Then Index $E=4$.

Proof.

$$
\begin{aligned}
\text { Index } E & =2 q+2 q^{\perp}+2 q^{\perp} w q w^{*}+2 w^{*} q^{\perp} w+2 z \bar{q} q^{\perp} z^{*} \\
& =2+2 q^{\perp}+2 w^{*} q^{\perp} w+2 z \bar{q} z^{*} \\
& =2+2 q^{\perp}+2 w^{*} q^{\perp} w+2\left(q-w^{*} q^{\perp} w\right) \\
& =4
\end{aligned}
$$

by Lemmas 11 and 12, Q.E.D.

Let $\varepsilon_{0}\left(A_{\theta}, \phi\left(A_{\theta}\right)\right)$ be the set of all expectations of A_{θ} onto $\phi\left(A_{\theta}\right)$ of index-finite type. We define the minimizing index $\left[A_{\theta}: \phi\left(A_{\theta}\right)\right]_{0}$ by

$$
\left[A_{\theta}: \phi\left(A_{\theta}\right)\right]_{0}=\min \left\{\operatorname{Index} F \mid F \in \varepsilon_{0}\left(A_{\theta}, \phi\left(A_{\theta}\right)\right)\right\}
$$

Corollary 15. With the above notations, $\left[A_{\theta}: \phi\left(A_{\theta}\right)\right]_{0}=4$.
Proof. This is immediate by Corollary 14 and Watatani [8, Theorem 2, 12.3].

References

1. O. Bratteli, G.A. Elliott, F.M. Goodman and P.E.T. J $\phi_{\text {Rgensen, Smooth Lie group }}$ actions on non-commutative tori, Nonlinearity, vol. 2 (1989), pp. 271-286.
2. A. Kumidan, On localizations and simple C^{*}-algebras, Pacific J. Math., vol. 112 (1984), pp. 141-192.
3. S. Lang, Introduction to Diophantine approximations, Addison-Wesley, Reading, Mass., 1966.
4. G.K. Pedersen, C^{*}-algebras and their automorphism groups, Academic Press, San Diego, 1979.
5. M.V. Pimsner and D. Voiculescu, Imbedding the irrational rotation C^{*}-algebra into an AF-algebra, J. Operator Theory, vol. 4 (1980), pp. 201-210.
6. M.A. Rieffel, C^{*}-algebras associated with irrational rotations, Pacific J. Math., vol. 93 (1981), pp. 415-429.
7. \qquad , The cancellation theorem for projective modules over irrational rotation C^{*}-algebras, Proc. London Math. Soc., vol. 47 (1983), pp. 285-302.
8. Y. Watatani, Index for C^{*}-subalgebras, Mem. Amer. Math. Soc., no. 424, Amer. Math. Soc., Providence, R.I., 1990.
