ON ONE-DIMENSIONAL METRIC FOLIATIONS IN EINSTEIN SPACES

BY

HONG KYUNG PAK

1. Introduction

Let (M, g, \mathcal{F}) be a compact Einstein manifold with a one-dimensional metric foliation \mathcal{F} . We shall give a sufficient condition that the leaf space M/\mathcal{F} admits a Kähler-Einstein Satake manifold structure in a natural way. The main result (Theorem 5) somewhat improves a well-known result of L. Bérard Bergery [Be, Theorem 9.76] for principal S^1 -bundles with a compact Einstein basis.

2. A structure theorem of (M, g, \mathcal{F})

Let \mathscr{F} be a one-dimensional metric foliation (equivalently, \mathscr{F} is a Riemannian flow) on a compact Riemannian manifold (M,g) of dimension m:=k+1. The metric g induces the orthogonal splitting $TM=\mathscr{F}\oplus\mathscr{H}$, where \mathscr{H} is identified with the normal bundle $Q:=TM/\mathscr{F}$, by means of g. Let ∇ be the Levi-Civita connection with curvature tensor R on (M,g). Let D be the canonical transversal Levi-Civita connection on \mathscr{H} with respect to the metric $g|_{\mathscr{H}}$ and R^D its curvature tensor [KT2], [TV]. The O'Neill structure tensors T and A of type (1,2) for \mathscr{F} and \mathscr{H} are naturally defined by

$$(2.1) T_{E_1}E_2 := \mathscr{H}\nabla_{\mathscr{V}_{E_1}}\mathscr{V}E_2 + \mathscr{V}\nabla_{\mathscr{V}_{E_1}}\mathscr{H}E_2$$

and

$$(2.2) A_{E_1}E_2 := \mathscr{H}\nabla_{\mathscr{H}_E_1}\mathscr{V}E_2 + \mathscr{V}\nabla_{\mathscr{H}_E_1}\mathscr{H}E_2,$$

for arbitrary vector fields E_1 and E_2 on M. Here we denote by $\mathcal{V}(\)$ and $\mathcal{H}(\)$ the \mathcal{F} -part and \mathcal{H} -part of () respectively. Let $N:=\operatorname{Trace} T$ be the mean curvature vector field for \mathcal{F} . Hereafter, we denote by V one of the two vertical vector fields of unit length, and by X,Y,Z basic vector fields.

Received November 13, 1990.

1991 Mathematics Subject Classification. Primary 53C12; Secondary 57R30.

Lemma 1. If $\mathscr F$ is isoparametric, i.e., the mean curvature one-form κ , or equivalently N, of $\mathscr F$ is basic (see [GG]), then A_XV is basic for any basic vector field X.

Proof. We note that A_XV is basic if and only if $Vg(A_XV,Y) = 0$ for any basic vector fields X and Y. Then we have, by using O'Neill's formulas,

$$\begin{aligned}
-2Vg(A_XV,Y) &= 2Vg(A_XY,V) \\
&= 2g((\nabla_V A)_X Y, V) + 2g(A_{\nabla_V X}Y + A_X \nabla_V Y, V) \\
&= g(\nabla_Y N, X) - g(\nabla_X N, Y) \\
&= d\kappa(Y, X),
\end{aligned}$$

so that A_XV is basic if and only if $d\kappa(X,Y) = 0$. The well-known fact [KT2] that κ is closed whenever it is basic completes the proof.

LEMMA 2. There exists on M a Riemannian metric g with respect to which \mathcal{F} is metric and the cohomology class $[\kappa] = 0$ if and only if there exists on M a Riemannian metric \bar{g} with respect to which \mathcal{F} is a geodesic, metric foliation.

Proof. By assumption, $\kappa = df$ for a basic function f on M. We claim that $e^{-f}V$ is Killing. Obviously $(L_{e^{-f}V}g)(V,V)=0$, and the vanishing of $(L_{e^{-f}V}g)(X,Y)$ follows from the fact that $[\Gamma(\mathcal{F}),\mathcal{B}] \subset \Gamma(\mathcal{F})$. Here and hereafter, we denote by \mathcal{B} the space of basic vector fields for \mathcal{F} and by $\Gamma(\)$ the space of sections of $(\)$. Since

$$g(V, [V, X]) = g(V, T_V X) = -\kappa(X),$$

we have

$$\begin{split} (L_{e^{-f}V}g)(V,X) &= -g\big([e^{-f}V,V],X\big) - g\big(V,[e^{-f}V,X]\big) \\ &= -g\big(V,e^{-f}[V,X] - X(e^{-f})V\big) \\ &= 0. \end{split}$$

Finally, if we renormalize the metric by

$$\bar{g} := e^{2f} g|_{\mathscr{F}} + g|_{\mathscr{H}},$$

 \bar{g} is a bundle-like metric and $e^{-f}V$ is a unit Killing vector field for (M, \mathcal{F}) . Thus \mathcal{F} is a geodesic, metric foliation with respect to \bar{g} .

The converse is trivial.

Hereafter, we denote g and V instead of \bar{g} and $e^{-f}V$ given in the proof of Lemma 2 respectively. Then \mathcal{F} is a one-dimensional geodesic, metric folia-

tion generated by a unit Killing vector field V on (M,g). Now, we assume that (M,g,\mathcal{F}) is Einstein and transversally Einstein, i.e., Ric = c_1g for a real constant c_1 and the transversal Ricci curvature tensor Ric^D satisfies Ric^D = $c_2g|_{\mathcal{H}}$ for a real constant c_2 . Since \mathcal{F} is a geodesic foliation, the O'Neill formulas for the curvatures imply that

$$\begin{split} c_1 g(X,X) &= \mathrm{Ric}(X,X) = g(R_{XV}X,V) + \sum_{\alpha} g(R_{XY_{\alpha}}X,Y_{\alpha}) \\ &= \sum_{\alpha} g(R_{XY_{\alpha}}^DX,Y_{\alpha}) - 2g(A_XV,A_XV) \\ &= c_2 g(X,X) - 2|A_XV|^2. \end{split}$$

Then, setting $c := (c_2 - c_1)/2$, where c is nonnegative and using the polarization trick, we have

$$(2.3) g(A_X V, A_Y V) = cg(X, Y).$$

Note that c = 0 if and only if A is identically zero. In this case (M, g) is locally a Riemannian product. In what follows we exclude this case and then we may put c = 1.

Let J be the endomorphism of \mathscr{H} defined by

(2.4)
$$J(X) := A_X V \quad (V \text{ is fixed}).$$

Then (2.3) implies that

$$g(J^2X,Y) = g(A_{A_YV}V,Y) = -g(A_XV,A_YV) = -g(X,Y),$$

i.e., $J^2 = -\text{Id}$. Thus in this way we have an almost complex structure on \mathcal{H} , constant along the leaves by Lemma 1. Therefore, we can suppose that k is even, e.g., k = 2n.

LEMMA 3. $\Omega(X,Y) := g(X,JY)$ is a basic closed 2-form for X and $Y \in \mathcal{B}$.

Proof. Clearly Ω is a basic 2-form. Let θ be the dual one-form of V. Then we have

$$d\theta(X,Y) = -\theta([X,Y]) = -2g(A_XY,V) = -2\Omega(X,Y),$$

which implies that Ω is closed.

Lemma 4. The transversal scalar curvature $Scal^D$ of \mathcal{F} is nonnegative.

Proof. By the O'Neill formulas for the Ricci curvatures, we have

(2.5)
$$\int_{M} \operatorname{Ric}(V, V) \, d\operatorname{vol}_{M} = \int_{M} |A|^{2} \, d\operatorname{vol}_{M},$$

(2.6)
$$\sum_{\alpha} \operatorname{Ric}(X_{\alpha}, X_{\alpha}) = \operatorname{Scal}^{D} - 2|A|^{2}.$$

By (2.5), we have $c_1 \ge 0$, and hence

(2.7)
$$\operatorname{Scal}^{D} = 2nc_{1}|X_{\alpha}|^{2} + 2|A|^{2} \ge 0.$$

Define a tensor \mathcal{N} of type (1,2) on \mathcal{H} by

(2.8)
$$\mathcal{N}(X,X) := \mathcal{H}\{[X,Y] + J[JX,Y] + J[X,JY] - [JX,JY]\},\ X,Y \in \mathcal{B}.$$

which is a basic vector field. We say that J is integrable if \mathcal{N} identically vanishes. Such a foliation \mathcal{F} has a complex structure only in the normal direction [KT1].

Now by Lemma 4, \mathcal{F} is a geodesic, transversally Einstein, metric foliation with nonnegative transversal scalar curvature. With an argument similar to the proof of Sekigawa [Se], we have

$$(2.9) DJ = 0.$$

Thus by Lemma 3 and (2.9), \mathcal{N} vanishes identically, i.e., J is a complex structure.

Now if all the leaves of \mathscr{F} are closed, the leaf space M/\mathscr{F} is a compact Satake manifold [Mo] with the almost Kähler structure $\tilde{J} := \pi_* J$, where $\pi : M \to M/\mathscr{F}$ is the canonical projection. Moreover, we have proved that J is a complex structure in the sense of Kamber-Tondeur [KT1]. Thus M/\mathscr{F} is a compact Kähler-Einstein Satake manifold.

Summing up, we have:

Theorem 5. Let (M, \mathcal{F}) be a manifold of dimension k+1 with a one-dimensional foliation \mathcal{F} . Then there exists on M a Riemannian metric g with respect to which \mathcal{F} is metric and the cohomology class $[\kappa] = 0$ if and only if there exists on M a Riemannian metric \bar{g} with respect to which \mathcal{F} is a geodestic, metric foliation. Moreover, if $(M, \bar{g}, \mathcal{F})$ is locally irreducible, Einstein and transversally Einstein, and if all the leaves of \mathcal{F} are closed, then the leaf space M/\mathcal{F} admits a natural compact Kähler-Einstein Satake metric whose Kähler form ω is given by $\Omega = \pi^*\omega$ up to a scalar factor, and the projection $\pi: M \to M/\mathcal{F}$ is a Satake morphism.

- Remarks. (A) In case that a leaf of \mathcal{F} is not closed in the Theorem 5, the leaves of \mathcal{F} are all diffeomorphic to \mathbb{R}^1 . In this case, the behavior of leaves is more complicated. That is, since each leaf \mathcal{L} is generated by a nonsingular unit Killing vector field on a compact Riemannian manifold (M, g), the closure $\overline{\mathcal{L}}$ of \mathcal{L} is a compact, Abelian subgroup in the compact isometry group of (M, g), so a torus T' of dimension r $(2 \le r \le m)$ (we refer to [Mo, Appendix A], [Ka]). But our arguments are not applicable when dim $\mathcal{F} > 1$.
- (B) A. Ranjan [R] proved that if Ric < 0, a compact Riemannian manifold M cannot have a one-dimensional metric foliation.
 - (C) Theorem 5 is related to the following result.

PROPOSITION 6 (See L. Bérard Bergery [Be, Theorem 9.76]). Let (B,h) be a compact Einstein manifold and $\pi \colon M \to (B,h)$ be a principal S^1 -bundle, classified by the integral cohomology of B. Then M admits a (unique) S^1 -invariant Einstein Riemannian metric g such that π is a Riemannian submersion with totally geodesic fibres if and only if we have either (a) A = 0, and a finite covering of M is the Riemannian product $B \times S^1$, or (b) $A \neq 0$, and there exists on B a Kähler structure (\tilde{J}, h, ω) such that $\pi^*\omega = \Omega$.

- (D) Ph. Tondeur-L. Vanhecke [TV] proved that if a one-dimensional metric foliation on a locally irreducible symmetric space (M, g) with geodesic leaves is transversally symmetric, the ambient space (M, g) is of constant curvature, and conversely. And D. Gromoll-K. Grove [GG] also proved that if $\mathscr F$ is a one-dimensional metric foliation on a nonnegative constant curvature space, $\mathscr F$ is either flat or homogeneous, equivalently isoparametric.
- (E) In case that (B, h, J, ω) is a Kähler-Einstein space of negative Ricci curvature, the metric g on M may be replaced by an Einstein Lorentz metric with signature $(1, \dim B)$. For such examples, see [Be], [Ma], [NT].

REFERENCES

- [Be] A.L. Besse, Einstein manifolds, Erg. Mat., vol. 3, Folge 10, Springer-Verlag, New York, 1987.
- [GG] D. Gromoll and K. Grove, "One-dimensional metric foliations in constant curvature spaces" in *Differential geometry and complex analysis*, ed. I. Chavel and H.M. Farkas, Springer-Verlag, New York, 1985, 165–168.
- [Ka] S. Kashiwabara, A fibering of Riemannian manifolds admitting 1-parameter groups of motions, Tôhoku Math. J., vol. 17 (1965), pp. 266-270.
- [KT1] F. KAMBER and Ph. TONDEUR, G-foliations and their characteristic classes, Bull. Amer. Math. Soc., vol. 84 (1978), pp. 1086-1124.
- [KT2] _____, "Foliations and metrics" in *Differential geometry*, eds. R. Brooks, A. Gray,
 B.L. Reinhart, Progress in Math., vol. 32, Birkhaüser, Boston, 1983, pp. 163–193.
- [Ma] M.A. Magid, Submersion from anti-de Sitter space with totally geodesic fibres, J. Differential Geom., vol. 16 (1981), pp. 323-331.
- [Mo] P. Molino, Riemannian foliations, Progress in Math., vol. 73, Birkhäuser, Boston, 1988.
- [NT] S. NISHIKAWA and PH. TONDEUR, Transversal infinitesimal automorphisms for harmonic Kähler foliations, Tohoku Math. J., vol. 40 (1988), pp. 599-611.

- [O] B. O'Neill, The fundamental equations of a submersion, Mich. Math. J., vol. 13 (1966), pp. 459–469.
- [R] A. Ranjan, Structural equations and integral formula for foliated manifolds, Geom. Dedicata, vol. 20 (1986), pp. 85-91.
- [Se] K. Sekigawa, On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan, vol. 39 (1987), pp. 677–684.
- [TV] Ph. Tondeur and L. Vanhecke, *Transversally symmetric Riemannian foliations*, Tohoku Math. J., vol. 42 (1990), pp. 307–317.

Kanazawa, Japan