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ON ONE-DIMENSIONAL METRIC FOLIATIONS
IN EINSTEIN SPACES

BY

Hong KyunG Pak

1. Introduction

Let (M, g, ) be a compact Einstein manifold with a one-dimensional
metric foliation . We shall give a sufficient condition that the leaf space
M/ admits a Kahler-Einstein Satake manifold structure in a natural way.
The main result (Theorem 5) somewhat improves a well-known result of L.
Bérard Bergery [Be, Theorem 9.76] for principal S!-bundles with a compact
Einstein basis.

2. A structure theorem of (M, g, %)

Let & be a one-dimensional metric foliation (equivalently, & is a
Riemannian flow) on a compact Riemannian manifold (M, g) of dimension

:= k + 1. The metric g induces the orthogonal splitting TM = F & #,
where # is identified with the normal bundle Q = TM/ &, by means of g.

Let V be the Levi-Civita connection with curvature tensor R on (M, g).
Let D be the canonical transversal Levi-Civita connection on # with
respect to the metric gl and RP its curvature tensor [KT2), [TV]. The
O’Neill structure tensors T and A of type (1,2) for & and & are naturally
defined by

(2.1) TpE, = HNyp VE, + V' Vyp HE,
and
(2.2) AgE, = HN g VE, + WVXEIJK’EZ,

for arbitrary vector fields E, and E, on M. Here we denote by #( ) and
H( ) the Fpart and Hpart of () respectively. Let N := Trace T be the
mean curvature vector field for .%. Hereafter, we denote by 1 one of the two
vertical vector fields of unit length, and by X,Y, Z basic vector fields.
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Lemma 1. If F is isoparametric, i.e., the mean curvature one-form k, or
equivalently N, of F is basic (see [GG] ), then AV is basic for any basic
vector field X.

Proof. We note that A4V is basic if and only if Vg(AxV,Y) = 0 for any
basic vector fields X and Y. Then we have, by using O’Neill’s formulas,

—2Vg(AxV,Y) = 2Vg(AyY,V)
=28((VyA)xY,V) + 28( Ay xY + AxV,Y,V)
= g(VyN, X) - g(VXN,Y)
=dk(Y, X),

so that A,V is basic if and only if d«(X,Y) = 0. The well-known fact [KT2]
that « is closed whenever it is basic completes the proof.

LemMMA 2.  There exists on M a Riemannian metric g with respect to which &
is metric and the cohomology class [k] = 0 if and only if there exists on M a
Riemannian metric g with respect to which & is a geodesic, metric foliation.

Proof. By assumption, k = df for a basic function f on M. We claim that
e 'V is Killing. Obviously (L,-r,,g)V,V) =0, and the vanishing of
(L,-r,gXX,Y) follows from the fact that [['(F), #] c I'(F). Here and
hereafter, we denote by & the space of basic vector fields for & and by
I'( ) the space of sections of ( ). Since

gV, [V, X]) =g(V, Ty X) = —x(X),
we have
(Lo-r8)(V,X) = —g([e "V, V], X)—-g(V,[eTV, X])

= —g(V, e[V, X] - X(e")V)
- 0.

Finally, if we renormalize the metric by
g=egloa+ gla,

g is a bundle-like metric and eV is a unit Killing vector field for (M, &).
Thus & is a geodesic, metric foliation with respect to g.
The converse is trivial.

Hereafter, we denote g and V instead of g and eV given in the proof of
Lemma 2 respectively. Then % is a one-dimensional geodesic, metric folia-
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tion generated by a unit Killing vector field V on (M, g). Now, we assume
that (M, g, &) is Einstein and transversally Einstein, i.e., Ric = ¢,g for a
real constant ¢, and the transversal Ricci curvature tensor Ric? satisfies
Ric? = c,gl| 4 for a real constant c,. Since & is a geodesic foliation, the
O’Neill formulas for the curvatures imply that

c18(X, X) = Ric(X, X) =g(Ryy X,V) + Lg(Ryy, X,Y,)

= Zg(R)I?Y,, XaYa) —2g(AxV, AxV)
(23

If

c,8(X, X) — 214, V1%

Then, setting ¢ := (¢, — ¢;)/2, where c¢ is nonnegative and using the polar-
ization trick, we have

(2.3) 8(AxV, AyV) = cg(X,Y).

Note that ¢ = 0 if and only if A is identically zero. In this case (M, g) is
locally a Riemannian product. In what follows we exclude this case and then
we may put ¢ = 1.

Let J be the endomorphism of & defined by
(2.4) J(X) =AxV (V is fixed).

Then (2.3) implies that

g(J?X,Y) = g(AAXVV, Y)=—g(AxV,AyV) = —g(X,Y),
i.e., J2 = —Id. Thus in this way we have an almost complex structure on &,
constant along the leaves by Lemma 1. Therefore, we can suppose that k is
even, e.g., k = 2n.

Lemma 3. Q(X,Y) = g(X, JY) is a basic closed 2-form for X and Y € &.

Proof. Clearly Q is a basic 2-form. Let 8 be the dual one-form of V.
Then we have

do(X,Y) = —6([X,Y]) = —2g(AxY,V) = -20(X,Y),
which implies that () is closed.

LeEmMMA 4.  The transversal scalar curvature Scal® of F is nonnegative.
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Proof. By the O’Neill formulas for the Ricci curvatures, we have

(2.5) [MRic(V,V) dvol,, = fMIAIZdvolM,

(2.6) Y Ric( X, X,) = Scal® — 2|4/

By (2.5), we have ¢, > 0, and hence
(2.7) Scal? = 2nc,|X,|* + 214]* = 0.
Define a tensor .# of type (1,2) on &# by

(28) A (X, X) =KX, Y] +I[IX,Y] +I[X,]Y] - [IX,]Y]},
X, Ye %,

which is a basic vector field. We say that J is integrable if .# identically
vanishes. Such a foliation % has a complex structure only in the normal
direction [KT1].

Now by Lemma 4, & is a geodesic, transversally Einstein, metric foliation
with nonnegative transversal scalar curvature. With an argument similar to
the proof of Sekigawa [Se], we have

(2.9) DI =0.

Thus by Lemma 3 and (2.9), .#” vanishes identically, i.e., J is a complex
structure.

Now if all the leaves of & are closed, the leaf space M/ % is a compact
Satake manifold [Mo] with the almost Kihler structure J := 7, J, where
7: M — M/ is the canonical projection. Moreover, we have proved that J
is a complex structure in the sense of Kamber-Tondeur [KT1]. Thus M/ & is
a compact Kahler-Einstein Satake manifold.

Summing up, we have:

TueoreMm 5. Let (M, %) be a manifold of dimension k + 1 with a
one-dimensional foliation &. Then there exists on M a Riemannian metric g
with respect to which & is metric and the cohomology class [k] = 0 if and only
if there exists on M a Riemannian metric g with respect to which & is a
geodestic, metric foliation. Moreover, if (M, g, &) is locally irreducible, Ein-
stein and transversally Einstein, and if all the leaves of & are closed, then the
leaf space M/ admits a natural compact Kdihler-Einstein Satake metric
whose Kdihler form o is given by Q) = w*w up to a scalar factor, and the
projection w: M — M/ is a Satake morphism.
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Remarks. (A) In case that a leaf of % is not closed in the Theorem 5,
the leaves of % are all diffeomorphic to R!. In this case, the behavior of
leaves is more complicated. That is, since each leaf . is generated by a
nonsingular unit Killing vector field on a compact Riemannian manifold
(M, g), the closure .Z of £ is a compact, Abelian subgroup in the compact
isometry group of (M, g), so a torus T’ of dimension r (2 < r < m) (we refer
to [Mo, Appendix Al, [Ka]). But our arguments are not applicable when
dim &> 1.

(B) A. Ranjan [R] proved that if Ric < 0, a compact Riemannian manifold
M cannot have a one-dimensional metric foliation.

(O) Theorem 5 is related to the following result.

ProrposITION 6 (See L. Bérard Bergery [Be, Theorem 9.76]). Let (B, h) be
a compact Einstein manifold and w: M — (B, h) be a principal S'-bundle,
classified by the integral cohomology of B. Then M admits a (unique) S'-
invariant Einstein Riemannian metric g such that  is a Riemannian submer-
sion with totally geodesic fibres if and only if we have either (a) A = 0, and a
finite covering of M is the Riemannian product B X § 1 or (b) A # 0, and there
exists on B a Kihler structure (J, h, ) such that m*w = (.

(D) Ph. Tondeur-L. Vanhecke [TV] proved that if a one-dimensional
metric foliation on a locally irreducible symmetric space (M, g) with geodesic
leaves is transversally symmetric, the ambient space (M, g) is of constant
curvature, and conversely. And D. Gromoll-K. Grove [GG] also proved that
if & is a one-dimensional metric foliation on a nonnegative constant
curvature space, % is either flat or homogeneous, equivalently isoparamet-
ric.

(E) In case that (B, h, J, w) is a Kahler-Einstein space of negative Ricci
curvature, the metric g on M may be replaced by an Einstein Lorentz metric
with signature (1, dim B). For such examples, see [Be], [Mal], [NT].
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