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LOCAL BOUNDARY REGULARITY OF THE BERGMAN
PROJECTION IN NON-PSEUDOCONVEX DOMAINS

PEIMING MA

1. Introduction

Let 12 be a bounded domain in Cn with smooth boundary. The Bergman
projection P associated to II is the orthogonal projection from the space of
square-integrable functions on 12 onto the subspace consisting of holomor-
phic functions. The global or local boundary regularity of the Bergman
projection, as well as the boundary extendibility of the Bergman kernel
function K(z, w), was proved to have important applications in studying the
boundary behavior of biholomorphic and proper holomorphic mappings of fl
[5], [8], [9], [15]. If 12 is a pseudoconvex domain, many results have been
obtained as consequences of the 0-Neumann theory. For instance, the
Bergman projection for a pseudoconvex domain is locally regular, or, satisfies
certain pseudolocal estimates at all boundary points of finite type in the sense
of D’Angelo [14]. Also the main theorem in [19] states that K(z, w) is smooth
in both variables up to the boundary off the boundary diagonal in a strictly
pseudoconvex domain. In [3] or [10] the same conclusion has been general-
ized for weakly pseudoconvex domains of finite type. It has also been shown
for smoothly bounded Reinhardt domains [7], which are not necessarily
pseudoconvex, that the Bergman projection is globally regular and that the
Bergman kernel function behaves nicely on the boundary. Namely, the
well-known condition R is satisfied (see Definition 2.1). Thus any derivative
of K(z, w) in the z-variable has uniform polynomial growth in the w-variable.
See [1] and [4] for some other types of domains that satisfy condition R.
When the smoothly bounded domain is assumed to be arbitrary, little is

known about the boundary regularity of the Bergman projection. In [2],
Barrett presented a non-pseudoconvex bounded Hartogs domain D with
smooth boundary which does not satisfy condition R. Actually, in his example
the subspace of bounded holomorphic functions is not dense in the space
H(D) of square-integrable holomorphic functions. So there is a smooth
function b which is compactly supported in D such that the Bergman
projection Pb of b is not bounded. It is easily seen that for some point w in
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D, there are "bad" boundary points where the Bergman kernel K(.,w)
cannot be locally bounded. But, K(.,w) does extend near some "good"
boundary points. In fact, it is shown in this paper that for an arbitrary
smoothly bounded domain, there are always points, called extreme boundary
points, such that the Bergman projection associated to this domain is locally
regular at them--in the sense that certain pseudolocal estimates hold for the
Bergman projection (Theorem 4.1). It will then follow that the Bergman
kernel function K(., w) is locally smooth near these boundary points for any
fixed w inside f. To describe the most simple example of an extreme point,
take any big ball that contains 12, shrink it until it touches a boundary point
of f. Then such a point is an extreme boundary point.

It will also be shown that, under the condition of global regularity, if the
boundary of a domain is real analytic near a strictly pseudoconvex boundary
point of extreme type, then its Bergman kernel function has holomorphic
extension past the point.

In the proof of the results, the method developed by Bell in [3] has been
adopted. By making use of Bell’s idea of comparison of domains, it is possible
to apply Catlin’s subelliptic estimates [13] at points of finite type for pseudo-
convex domains to do the job here.
The main results are proved in 4. In 2 the necessary notation is given

and the extreme boundary points are defined. Section 3 is a review of the
cLNeumann problem which is the essential tool for carrying out some of the
proofs in this paper.
Acknowledgement. This paper grew out of my thesis which I wrote at

Purdue University under the guidance of Steve Bell. I am sincerely thankful
to him.

2. Preliminaries

Throughout this paper, is a smoothly bounded domain in Cn. So there is
a real-valued function r, which is smooth (i.e., has continuous derivatives of
all orders), such that 1 {z Cn; r(z) < 0} and the gradient of r does not
vanish on the boundary c91" {z cn; r(z)= 0} of 12. The function r is
called the defining function of f.
L2(f) is the usual Hilbert space consisting of all square-integrable func-

tions on f with respect to the Lebesgue measure dV in Cn R2. The inner
product of any two functions u, v in L2(I)) is (u, v) fuU dV. The closed
subspace consisting.of holomorphic functions is denoted by H(12). For any
integer s > 0, the Sobolev space WS(f) stands for the class of functions
having all derivatives in the distribution sense of order less than or equal to s
in L2(12). All WS(12), where each s > 0 is an integer, are Hilbert spaces. The
inner product ( .,. ) for W(f) is given by

(u,v) _, (D’u,D’v), u,v W(I’).
lal<s
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Here D", with a (al, a2,... a2n) a multi-index, is a short-hand notation
for

and lal al "1" +a2n. The norm I1" I1 of WS(I) induced by the
inner product of WS(f) is Ilull-- <u,u>/2 for u in W(f). In particular
W(f) L2(f)and (u,v)o (u,v), Ilullo-- Ilull for u,v in L2(f). How-
ever, when addressing the inner product, or the norm of L2(f) the notation
with no subscripts will always be used.
The closure in WS(f) of the space C(f) of smooth functions with

compact support in f is denoted as W(f). If s > 0 is an integer, W-(f) is
by duality a subspace of the distribution space .’(f)whose elements
uniquely extend to be linear continuous functionals on W(f). If s is an
arbitrary real number, W(f) can be defined by interpolation [21]. The norm
of an element u in W-(O), s > 0 is then

The notation ( ,. > now denotes the pairing between the dual spaces which
can also be regarded as the action of a distribution on a function. There is no
confusion with the L2-inner product since the usages coincide when both are
applicable. Also the dual space (W(f))* of WS(f) has norm for u
(w(n))*

Ilull*- sup{l(u, 4,)1; e c(), 114,11 1},

where C(O) is the space of functions with bounded continuous derivatives
of all orders in f. Certainly (W(f))* c W-S(f) and Ilull- _< Ilull*- for u
in (WS(f))*. However, if u is harmonic then Ilull*--< Cllull- with C
independent of u [11]. By Sobolev’s lemma, the intersection of all the spaces
W(f), s R, is Coo(f).

DEFINITION 2.1. A domain 12 is said to satisfy condition R, if the Bergman
projection P of 12 maps Coo(O) into Coo(O). For z0 Ol), the domain fl is
said to satisfy local condition R at z0 if P maps Coo(O) into the subspace of
L2(O) consisting of holomorphic functions which are smooth up to the
boundary near z0.

There are many examples of domains which satisfy condition R, and also
domains which satisfy local condition R at certain points. For instance, a
smooth bounded pseudoconvex domain satisfies local condition R at all the
boundary points of finite type (see Catlin [13]).

It is well-known that the global condition R has many equivalences. For
example, f satisfies condition R if and only if for every real number s > 0,
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there exists N > 0 such that the Bergman projection P of f/ admits the
estimates

lieu I1 C u IIs +N

for any u in C(O). Also, it is provided in [7] that condition R holding in f/
is equivalent to the following: for any real number s > 0 there are positive
constants C and m, so that for all w f, the Bergman kernel function
K(z, w) satisfies

IIg(’,w) I1 -< Cd(w) -m,

where d(w)= d(w, 0f/) is the distance from w to 0f. Another simple
consequence of condition R is that the Bergman kernel function has the
property that K(., w) Coo(O)for any w in 12.
The following fact will be used in proving the main results: there is a linear

differential operator * of finite order with coefficients in C(f/) such that
p.s p for each integer s > 0. Also

(2.1) a, ,. w,+’c(n) -, wd(n)

is bounded, where N > 0 is a constant depending on s. The operator .s was
first constructed by Bell [5].
The rest of the section will give a description of a special kind of boundary

points for any smoothly bounded domain in Cn. These will be the points
which possess a certain extremity property and include, for instance, all the
boundary points which maximize the distance to any fixed point in Cn. The
following is the precise definition.

DEFINITION 2.2. Let f be a bounded domain in Cn with smooth bound-
ary. A point z0 on the boundary Of of f is said to be an extreme boundary
point, or a point of extreme type, if there is a bounded pseudoconvex domain
D in Cn such that

(i)
(ii)

D contains f/ and cgD coincides with 0f near z0, and
z0 is a point of finite type of D in the sense of D’Angelo [14].

Since the set of finite type points is open [14], it follows that the set of
extreme boundary points is open in 91"/. For any f/ given, there always exist
strictly pseudoconvex domains containing f/, with boundaries tangential to
the boundary of . It can be proved that these tangent points are of extreme
type, thus showing the existence of extreme boundary points for any smoothly
bounded domain.
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PROPOSITION 2.3. Let -1 be an arbitrary bounded domain with smooth
boundary in Cn. Suppose that -2 is a smoothly bounded pseudoconvex domain
containing fl, the boundary 012 intersects 01 at a unique point zo which is a
strictly pseudoconvex boundary point of f2. Then there is a smoothly bounded
domain D such that:

(i) D is strictly pseudoconvex and contains 11;
(ii) there is an open neighborhood V of zo so that OD coincides with 0-

inV.

Therefore, z0 is an extreme boundary point of fl by definition. For any
smoothly bounded domain 1", the Nebenhiille of f is the interior of the
intersection of all pseudoconvex domains containing f (see [16]). It is clear
that the point z0 of Proposition 2.3 is in the boundary of the Nebenhfille of
fl. The proof of the proposition is easy to see geometrically, it is however
lengthy and tedious, is thus omitted.

3. Estimates for the -Neumann problem

The proof of local regularity of the Bergman projection at boundary points
of finite type for a pseudoconvex domain is based on certain pseudolocal
estimates of the g-Neumann operator of the form

(Definitions of the notation involved will be given later.) For the purpose
here it would be desirable to show the same estimates at extreme boundary
points. The goal of this section is therefore to study the 0-Neumann problem
at boundary points of finite type which will then be applied in the next
section to prove the main results.

Let D be a bounded pseudoconvex domain in Cn. The g-operator is a
closed and densely defined operator acting on L2(t,,q)(D).., the space of
(p, q)-forms with square-integrable coefficients on D. Let 0* be its Hilbert
space adjoint. Then 0* is also closed and densely defined. And the complex
Laplacian 0-* + cS*g is surjective to Lp,q)(D) from a subspace of Lt,,q)(D).
Therefore if the quadratic form

Q(v,w) (ov,Ow) + (o*v,O*w)

is defined for all (p, q)-forms v and w in the domains of and *, the
inverse operator N of 00" + 00", called the Neumann operator [17], satisfies
Q(Nf, g) (f,g) for any (p,q)-forms f and g with square-integrable
coefficients and with g in the intersection of the domains of c and O-*. Now
suppose that OD is smooth in a neighborhood U of a given boundary point z0
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and that a subelliptic estimate holds in U for the -Neumann problem. Then
there is a positive number e < 1/2, which is called the order of the subellip-
tic estimate, so that

(3.1) Ilull <_ c(o(u,u) + ilull

for every smooth (p, q)-form u which is in the domains of c and * and
supported in U.

In [13], Catlin proved a necessary and sufficient condition for a subelliptic
estimate to hold in a pseudoconvex domain. Therefore, (3.1) is valid in a
neighborhood U of z0 for all (0, 1)-forms u if and only if z0 0D is a point
of finite type in the sense of D’Angelo. Fix such a z0. Let r and ’2 be a pair
of real-valued smooth functions supported in U with ’ 1 in a neighbor-
hood of the support of r1. The classical a priori estimates for the 0-Neumann
problem [17] give that for every smooth (0, 1)-form f in L2(0,1)(D),

(3.2) I1’1Nf11(2/2) C(ll2fll + Ilfl12), k 0,1,2,...,

where the constant C is independent 6f f. Hence if u is in C(D)with
u L2

o, )(D), then

k 0,1,2,

Nevertheless, for the purpose of this paper, it is necessary that the global
term IIull 2 be replaced by Ilull 2,

PROPOSITION 3.1. For all u in Coo(D) with u L(Eo,1)(D) and s >_ O,

(3.3) Ilffl*gull2/ _< C(llff2ull2 + Ilu 112).

Proof It follows from (3.1) that,
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For any v in L2(o,i)(D), since Nv is in the domain of c* and *N is a
bounded operator from L2(o,1)(D) to L2(D),

I<gu,v>l I<u,a*Nv>l IlullllO-*Nvll
Cllull Ilvll Cllull 2 + allvll 2

Putting v Nau and 8 1/2 in the above inequality gives IlNu 2

Thus N is bounded from L2(D) to L2(0,1)(D) and the estimate

holds. Now, similar to the proof of (3.2), the following estimates can be
obtained by induction:

Ilfflgu (+2) C(llg’=aull + Ilull), k 0,1,2,

It is clear from interpolation that

(3.4)
if0<s <2e,

ifs > 0.

As in [17], assume that the neighborhood U is contained in a special
coordinate system xl, x2,...,x.,,_l,XEn so that XEn r, a local defining_
function of D near z0. If u is in C(D U), i.e., u is an element in C(D)
and is supported in U, define the tangential differential operator A of order
by

At"’(:, x2n) (1 + 112)t/2a(, X2n )

where (:, X2n) is the tangential Fourier transform of U(XI,... X2n) per-
formed in the first (2n- 1) variables. Let 9-/1 and TiE be two real-valued
functions in C(U)with the property that TIE 1 in a neighborhood of the
support of r/l, TII 1 in a neighborhood of the support of srl, and ’2 1 in a
neighborhood of the support of r/2. Then by the triangle inequality,

IIA*+YI*NulI2 C(llr,las+la,Nu 2 +11(1

Because (1 Tll)AS+e" is a pseudodifferential operator of order

(3.5) [l(1 -71)A*+Y1a*gaull _< Clla*gaull <_ Cllull 2
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And since $$*N$ ,

where a cut-off function r/2 has been slided in the inner products, since one
of the terms in the inner product has support contained in the set where
r/2 1. Also the fact that the commutator of two pseudodifferential opera-
tors has order one less than the sum of their orders is used (see [17,
Appendix]). The generalized Schwarz inequality I<u,v>l _< CIIAtull IIA-tvll
for u, v supported in U now yields

1171A+ff1*gu 112 -< CIInzgullzz+zll7Ag’lu II
/ O(ll,ozgull+,ll,oA+’*gull)

< C(ll2gu z
+2 + ff2u I1)

+ O(llzgull+llA+*gull)
c(Nu+, + u)
+ Cll2gull+ + llA+ff*gull 2

Let 6 1/2. Then

IIA+l*gull2 C(ll2gull+2 + 11ff2ull)
for some new constant C. Combining this with (3.5) gives

A’+’;#N < C(Nu+2 + 112ull + Ilull
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Apply (3.4) to the term ll’02Nulls+2 with cut-off functions ’02 and ’2; then

ll’0zNull 2 2 2
/2 -< C(ll’2ull / Ilull ).

Therefore,

IIA+YI*Ncull 2 C(llff2ull2 + Ilul12).
Finally the fact that 3D is noncharacteristic and that the 3-Neumann problem
is elliptic over the interior implies (3.3).

For a sufficiently small neighborhood U of z0, if ’1 and sr2 are supported
in U as before with ’2 1 in a neighborhood of the support of srl, (3.3) is
actually true for all functions in L2(D).

PROPOSITION 3.2. If u is a function in L2(D) satisfying that [[g’2ulls < -t-o%
then (lO*NOu is in W+(D) and (3.3) is valid for u.

Proof. From Kohn’s formula P I- O’NO where P is the Bergman
projection associated to the domain D and I the identity operator [20], c*Ng
is the projection of LZ(D) to the orthogonal complement space of H(D) in
L2(D). Thus g*Ngu is well defined and is a function in LZ(D) if u is in
L2(D). Without loss of generality, assume that the support of ’2 is contained
in U, which is the neighborhood of z0 as in (3.1).

CLAIM. Let u be given as above. For a sufficiently small neighborhood U
of z0 there is a sequence of functions Ul, u2,.., on D which are restrictions
of smooth functions on Cn with the property that u u in LZ(D) and

srzCU srzU in W(D)as j

Once the claim is proved, applying (3.3) to uj uk shows that {l*Nuj}
is a Cauchy sequence in W+(D). Since_ l*Nuj converges to l*Nu in
L2(D), it follows that (l*Nu --, lO*NOu in W+(D) and letting j +
in the estimates (3.3)with u replaced by u will imply

(3.6) iil.gul[2 C(112u112 2
+ < + Ilull )

for u L2(D).

Proof of the claim. Fix the unit normal vector n at z0 pointing toward the
outside of D. For a positive number a, let D be the a-translation of D in
the direction n. So D {z + an; z D}. By shrinking U in the subelliptic
estimates (3.1) if necessary, assume that the distance between OD and OD in
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U is greater than or equal to a constant times a. Let {X,, a > 0} be a family
of smooth real-valued functions defined in C so that X 1 in a neighbor-
hood of D and X(z) 0 if d(z, D), the distance of z to D is greater than
or equal to a 2.

Let "0, and ’02 be another pair of smooth real-valued functions supported
in U so that ’02 1 in a neighborhood of the support of */1 and 71 1 in a
neighborhood of the support of sr2, where ’1 and ’2 are chosen above to be
supported in U, so that (3.3) holds.
For a extremely small, consider the family of functions {u, a > 0} defined

by,

u,(z) "02(z)x,(z)u(z an) + (1 "02(z))u(z),

where u is a function in L2(D). After shrinking U if necessary, assume that
"02u is in WS(D). By the definition of ’02 and X, the function u, extends to
be defined on D to U if u(z) is set to equal zero for z in U\D. It is
obvious that u - u in LE(D) as a -- 0. Since

"01( z)$u,( z) "0,( z)O-Xo,( z)u( z an) + "0,( z)x,( z)u( z an),

"01(Z)Ua(Z) is a function in L2(U) and (’01ua)(z)= "01(z)u(z- an) if
z D, which implies that ’01u "015u in WS(D). It is therefore sufficient
to prove the claim for u,, in place of u with a small. Now fix such an a.
Choose any sequence of smooth functions $,, $2,... defined in Cn so that

bj converges to u,, in LZ(D). For 6j positive and tending to zero as j + 0%
define

u. (’0,u) p,; + (1 ’01)j,

where paj(z)= np(z/j) and p is a unit test function with support con-
tained in the unit ball. Since ’01u has compact support in U, the function u
is by its definition the restriction of a smooth function on C for every j and

,lull[ + I1(1 ’01)((j- u )ll
rtau l[ / CII4,y- u,,ll --, 0

as j - + oo. For 6 sufficiently small,

(3.7) 20Uj

zD.
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Now

and 3X vanishes in a neighborhood of D. And again if 8j is sufficiently small
then

rg.((971u), p) rg(r/lU(. an)), p for z 6 D.

Hence (3.7) implies

 u )I1=--II ff=(WlU("- an)). p.- g’aCU(.- an)ll
an)), pj ’01u( an)ll - 0

as j --, + oo. The claim is thus proved; so is the proposition.

The above local density argument works as well for any linear differential
operator with smooth coefficients replacing the operator.

If the 0-Neumann operator on D is further assumed to be globally regular,
then a similar argument as above implies that [11, Proposition 3.5] for any
s>0,

(3.8)

for all u La(D). This is the case, for example, when D is a smoothly
bounded pseudoconvex domain with all boundary points being finite type.

4. Main results

The following theorem is a simple consequence of estimates (3.6).

THEOREM 4.1. For any smoothly bounded domain 1 in Cn, the Bergman
projection P of 1 satisfies weak pseudo-local estimates at any extreme boundary
point zo. Namely, there is a neighborhood U of zo so that for any pair of
real-valued functions 1, 2 in C(U) supported in U with 2 =- 1 near the
support of 1, and any real number s >_ O,

(4.1) IIleull C(llg’aull + Ilull),

for all u in L2().
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Proofi Let D be a pseudoconvex domain defined in Definition 2.2 which
circumscribes 12 so that OD coincides with 01-1 near z0. Fix a neighborhood U
as in (3.6) and any real-valued functions , st2 in C(U)with 2-- 1 in a
neighborhood of the support of st1.

Extend the function u and Pu to be defined in D by letting their values
outside equal to zero. Then u- Pu is in L2(D) and is orthogonal to
holomorphic functions in 12, hence orthogonal to holomorphic functions in D
which are considered as functions in 12 by restriction. So if Po is the
Bergman projection of D, then

(4.2) Po(u Pu) O.

Choose a smooth real-valued function r/such that 1 1 in a neighborhood
of the support of ’1 and st2 1 in a neighborhood of the support of r/. It
follows from (3.6) that

II’leUll II l(eu eoeu)I1 + Ilffeoull
_< c(ll a(eu)ll _ + Ileull) + IIc,eoull,,

where e > 0 is a small number associated to the subelliptic estimate in (3.1)
at z0. Hence

The last term in the above estimates is bounded by C(llC2ull + Ilull), so the
result follows.

An immediate consequence of Theorem 4.1 is the next corollary.

COROLLARY 4.2. Every smoothly bounded domain satisfies local condition
R at all its extreme boundary points.

Proof For any u in C(O), it follows from (4.1) that II’lPUlls is bounded
for all s >_ 0. By Sobolev’s Lemma, Pu is smooth up to the boundary near the
extreme boundary point z0. Therefore, 1) satisfies local condition R at z0.

The simple equation (4.2) in Theorem 4.1, relating the Bergman projec-
tions of the two domains, also implies that if D is a smoothly bounded
pseudoconvex domain of finite type in Cn, and A is any compact subset of D,
then the Bergman projection PD\A of D \A satisfies condition R.

Indeed, if u Coo(D \A) then PD\Au extends holomorphically inside D.
Corollary 4.2 implies that the function PD\Au extends smoothly near any
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boundary point of D \A. Hence condition R holds for D. This result is
proved in [4] in a much more general setting.
More can be said about local condition R. It is easy to show the following

proposition which is analogous to the equivalences of global condition R.

PROPOSITION 4.3. Let 12 be a smoothly bounded domain in Cn and let zo
be a boundary point of 12. Then the following three conditions are equivalent.

(i) 12 satisfies local condition R at Zo;
(ii) there exists an open neighborhood U of zo so that if X is a smooth

function supported in U, then for all s > O, and any function u Coo(ll), the
Bergman projection P of 12 admits the estimates

(4.3) Ilxeull CllulI/N,

for some positive N depending on s;
(iii) there exists an open neighborhood U of zo so that if X is a smooth

function supported in U, then for all s >_ O, the Bergman kernel function
K(z, w) satisfies

(4.4) Ilxg(’, w)Ils < Cd(w) -m, all w ,
for some positive m depending on s.

Proof It will be shown that (i) (ii) = (iii) = (i).
That (i) implies (ii) follows from the closed graph theorem. Suppose that f

satisfies local condition R at z0. It suffices to prove (4.3) for s which is a
nonnegative integer. Let U1, U2,... be a sequence of open neighborhoods of
z0 with the properties that each Uk + is relatively compact in Uk and that the
diameter of Uk tends to zero as k + oo. Define a sequence of subspaces
El, F2,... of H(I)) by

C=(Sa n n/-/(sa),

and let F U= 1Fk Each Fk is a Fr6chet space with seminorms

{P0 I1" Vs IIw(au), s 1,2,... }.
If k > j, Fk can be viewed as containing F.. Hence F, endowed with the
inductive linear topology (the topology defined so that each embedding of F
into F is continuous) is a reduced and strict inductive limit, is thus a
complete Fr6chet space.
By assumption the Bergman projection P of f maps C(O) into F. Since

C(O) is also a Fr6chet space, by applying a form of the closed graph
theorem, it can be concluded that there is an integer k such that P(Coo(l))) is
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contained in Fk and that P" C(O)---> Fk is continuous, provided that P
from Coo(O) to F is a closed mapping.
To prove the closedness of P, let un Coo(X2) be so that un 0 in Coo(f)

and that Pun --> g in F. The set A {g, Pun, n 1, 2,..., is bounded in F,
so A is contained and bounded in Fk for some k. But then un

---) 0 in L2(f),
which implies that Pun

--) 0 in Fk. So g 0 and the graph of P is closed.
The continuity of P: Coo() --, Fk implies that for any integer s > 0 and u

in Coo(O), there exists an N which depends on s,

This certainly implies (4.3).
The proof that (ii)= (iii) and that (iii) (i)will be an imitation of the

method in proving the global theorems used in [1] and [7].
For each w f, choose a polydisc centered at w whose polyradius is

1/2d(w) in the complex direction normal to gf and is uniformly O(d(w)1/2) in
the complex tangential directions. Let f be a linear isomorphism of this
polydisc with the unit polydisc and let 4) be a smooth radial function
compactly supported in the unit polydisc with fcnb dVz 1. Let bw
Idet[f,]12(b f), where f’ is the complex Jacobian of f. If u H(f), then

dVz f o(u f-1)b dVz (uo f-l)(0) u(w).

So Pb, K(., w). And IIwll/N Cd(w)-(s+N+n+l). Thus for any w f,

Ilxg(.,w)ll IIxP(hwll -< CIl(hll/N _< Cd(w) -(s+N+n+l).

So (4.4) follows with m s + N + n + 1.
Finally, suppose (iii) holds. From (2.1), if u is in Coo(O), apply (I) to u then

CSu is in W(O). With s m + n + 1,

IOu(w)l CIlOulld(w) m,
and by Fubini’s theorem

Ilxeu I1

cf llxg(’, w)II,lO’u(w)IdV 

< Cfd(w)-mllulld(w)mdgw
<- CII’u I1 -< Cllu II/N < / oo.
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Since s is an arbitrary positive integer and X 1 near z0, it is clear from
Sobolev’s lemma that Pu extends smoothly up to the boundary near z0. The
proof is thus completed.

The above proposition and Corollary 4.2 imply the following result.

COROLLARY 4.4. Assume that zo is an extreme boundary point of 12 in C.
Then for any w fixed in 12, the Bergman kernel K(z, w) as a function of z is C
smooth up to the boundary near zo.

Let 1 be the envelope of holomorphy of f. So 1 is a Riemann domain
over Cn such that any holomorphic function on 12 can be extended holomor-
phically to . Since the envelope of a product of two domains is the product
of their envelopes, it is clear that the Bergman kernel function K(z, w)
extends to be holomorphic in z-variable and antiholomorphic in w-variable in. For brevity, assume c Cn. Now fix w in . From [18, Theorem
1.2.4 and Lemma 5.4.1], there exist a compact set F and an .open set O, so
that 1) F O 12; 2)If(w)[ < SUPFIf[, for all f H(I); 3) SUPFIf[ <
CfolfldV. Therefore

0 12-3-K(z,w) < sup
F

8---K(z,r) < C 8----K(z,’) d,

for any multi-index a. It now follows from the above corollary that the
absolute value of tg’K(z, w)/3z is uniformly bounded when z varies in II
near z0. So an extension of the previous corollary is proved.

COROLLARY 4.5. Assume that the envelope of holomorphy of 12 is
contained in C. Then the same conclusion in Corollary 4.4 holds for any point

Also notice that the above results imply that all the derivatives of K(., w)
vary uniformly for w in compact subsets of 12. Thus K(zo, w) is well defined
and antiholomorphic in 12 as a function of w.

If the multi-index a is taken to be (0,..., 0) in the previous inequality, by
integrating on 12 with respect to z, then

flg(z,w)!2 c

Cfog( , )dY < +oo.

So K(., w), for all w , is an square-integrable function on 12.
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When 2 satisfies global regularity estimates, the extension of K(z, w) in
both variables is possible.

THEOREM 4.6. Let f be a smoothly bounded domain in Cn satisfying
condition R. Assume that zo is an extreme boundary point of 12. Then for any
point wo , wo 4: Zo, there are disjoint open neighborhoods U ofzo and V of
wo, so that

w) u)

The proof of the theorem differs only in minor part from the proof of
Theorem 1 in [3]. From the definition of the extreme boundary points, there
is a pseudoconvex domain D containing I such that the boundary of D
coincides with the boundary of f near z0, which is a point of finite type.
When there is an additional assumption that D satisfies condition R, by
applying known results an easy proof can be found for this theorem. Also if
all the intersection points of OD and 012 are of finite type, the pseudoconvex
domain can be altered to become a finite type domain which therefore
satisfies condition R. This follows from Catlin’s bumping theorem for do-
mains of finite type [12] and the proof of Proposition 2.3.

Proof under the additional assumption. Fix neighborhoods U of z0 and V
of w0 respectively so that the intersection of U and V is empty and
D n U 12 c U. For any multi-index /3 (fix,..., fin), let D# denote
(Ot/Ol,)... (Ot/Offn). Since DgK(z, w) L2(12) as a function of z, if it is
regarded as a function in L2(D) by zero extension, then

PD(D#K( ", w))( z) DgKD( Z, w),

where PD and KD(’," ) are the Bergman projection and kernel associated to
D. For w 2 f3 V let ’1 and if2 be the smooth cut-off functions supported
in U as in Theorem 4.1. For any s > 0, from (3.8) and the fact that
II’lO#g( w)llw’(a) is equal to II’IDK( w)llw,(D),

(4.5)
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where N is an arbitrary positive constant, e is as before, and C does not
depend on w. Since f satisfies condition R and DK(., w) has support in
and is holomorphic in f it follows that

DK(. w)ll*w-(D, < D#K(" w)I1"-(.) < ClID#K(" w)I1,-,,>.

If N is chosen big enough the last term is uniformly bounded for w V.
Then so is the first term above. The second term following the equal sign in
(4.5) can be treated in different cases. If w0 is in D, then the neighborhood V
of w0 can be so chosen that V D. Then clearly the second term is
uniformly bounded. If w0 is on the boundary 0D, since D satisfies condition
R, by Theorem 2 of [3] (or [10]) the function Ko(z,w) extends in both
variables up to the boundary off the boundary diagonal. So it is still uniformly
bounded for w V. Hence the proof is concluded by applying Sobolev’s
lemma. El
As in Theorem 3 of [3], the weak pseudolocal estimates at extreme

boundary points can be strengthened if the global condition R is satisfied.

THEOREM 4.7. Let f be a smoothly bounded domain in Cn satisfying
condition R. Assume that zo is an extreme boundary point of f. Then the
Bergman projection P of f satisfies strong pseudolocal estimates at zo. Namely,
there is a neighborhood U of zo, so that for any pair of smooth real-valued
functions 1 and 2 supported in U and 2 1 in a neighborhood of the
support of 1, for any s >_ 0 and an arbitrary integer N > O,

IIg’eull C(llff2ull + Ilull*-ev),

for all u in L2().

Proof It follows from Theorem 1 that

I[leulls-< IIg’le(2u)II, + IIle((1 )u)ll
_< C(llK2ull + 1lK2ull) + IlKiP((1 K2)u)ll

cl[2Ul[s + [IsrxP((X ’2)u)lls.

Since

srl(Z)P((1 sr2)u)(z) fal(Z)K(z,w)(1 2(w))u(w)dVw,

and the support of ’1, which is contained in U, does not meet the support of
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1 ’2, Theorem 4.6 clearly implies that for any positive integer N,

Therefore,

for all u in C(O). r

IIle((1 Cllull*_ .

IlffleUll C(ll’2ull + Ilull*--v)

Observe that in view of the proof of Theorem 1 in [3], it is possible to show
the same smooth extension result for the kernel function in Theorem 4.6 for
both w0 and z0 being extreme, without the global regularity assumption of
the Bergman projection.

If the boundary of a pseudoconvex domain D is real analytic near a strictly
pseudoconvex boundary point z0, then the 0-Neumann operator applied to
any (0, 1)-form u with square-integrable coefficients, whose support is a
positive distance away from z0, gives a function Nu which extends to be real
analytic near z0 (see [22] and [23]). From this, some analytic extension results
of the Bergman kernel have been derived in [6]. In the rest of the section,
such behavior of the Bergman kernel K(.,. ) associated to an arbitrary
smoothly bounded domain 1] will be studied at strictly pseudoconvex bound-
ary points of extreme type, without assuming the global pseudoconvexity.

THEOREM 4.8. Let fl be a smoothly bounded domain in Cn which satisfies
condition R. Assume that zo is a strictly pseudoconvex boundary point of
extreme type and that the boundary Of is real analytic near zo. Then for any
open neighborhood Vofzo, there exists a neighborhood U ofzo, with U V, so
that the Bergman kernel K(z, w) extends to be in C(U ( \ V)) as a

function which is holomorphic in z and anti-holomorphic in w on U (f \ V).

Proof. Let D be a pseudoconvex domain containing 1] so that 0D and
91] coincides near z0. Let V be an arbitrary neighborhood of z0. Without
loss of generality, assume that there is another open neighborhood W of z0,
with V W and D n W 1] n W. From Theorem 4.5, there exists a neigh-
borhood U of z0 so that K(.,. ) C(( c U) ( \ V))with U V.

Fix X, a real-valued function in C (Cn) which is compactly supported in W
and equal to one in a neighborhood of V. Then h ((1 x)h) defines a
bounded linear operator from the subspace of holomorphic functions in
W+N(I) into Wd(fl), where is defined in (2.1). For any multi-index a,
set

X w K(.,w) + ,t,
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Then q,(., w) W2(’) can be considered as in W2(D) by zero extension. If
PD and KD(’," ) are the Bergman projection and the kernel function
associated to D, then clearly

O,, KD(. w) PD(q,(’, w) ).

Kohn’s formula PD I- *N implies that

$(’, w) 0-----Kz(., w) + c*N$$,(., w).

Since z0 is a strictly pseudoconvex point of D, after shrinking U if necessary,
by Theorem 1 of [6], O’KD( w)/O extends to be in C(U (fl \ V)) and
to be holomorphic in z and anti-holomorphic in w in U ( \ V). And

OO,(.,w) (X) O,-----K(’, w) + 2 (1 X)wK(.,w)

which is equal to zero in a neighborhood of V. Hence *Ncq(., w) extends
to be holomorphic past z0 for each w fixed. Moreover, the family of
functions

w) w \ v}

is uniformly bounded in W norm on the set U. The same Baire category
argument in [6] shows that after again shrinking U if needed, O*NOq,(., w)
extends holomorphically to U. Also for w 12 \ V,

where the constants are independent of w 12 \ V. Therefore

XwK(.,w) q(.,w) 2 (1 -X)wK(.,w)

is uniformly bounded in any compact subset of U. Since the multi-index a is
arbitrary, from Sobolev’s lemma K(z,w) C(U (ll \ V)) and is holo-
morphic in z and anti-holomorphic in w in U (12 \ V). rq

Also as before, for w in 1, the envelope of 12, the same argument as
above shows that K(., w) extends to be analytic past all strictly pseudoconvex
extreme boundary points.
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