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CONVERSION FROM NONSTANDARD MATRIX
ALGEBRAS TO STANDARD FACTORS OF TYPE II

TAKANORI HINOKUMA AND MASANAO OZAWA

1. Introduction

In the recent applications of nonstandard analysis the following method of
research has been acknowledged to be useful: To find a construction of a
standard .object by taking a standard part of a nonstandard object which is a
nonstandard extension of a standard object or a well-defined internal object.
By this method we can construct a complicated mathematical structure from
a much simpler structure in the nonstandard universe. Loeb’s construction [7]
of measure spaces from simpler internal measure spaces has been known as
one of the most successful results along with this line. For Banach space
theory Henson and Moore [5] have found a construction of Banach spaces,
called nonstandard hulls, from internal Banach spaces, and succeeded in
characterizing several deep properties of Banach spaces by simpler proper-
ties of the nonstandard hulls obtained from their nonstandard extensions. In
this paper we will apply this method to the theory of operator algebras. We
will give a construction of a factor of type II1 from a much simpler internal
matrix algebra, and investigate some properties of this factor by the methods
of infinitesimal analysis and hyperfinite combinatrics.
To summarize our construction in advance, let u be a nonstandard natural

number in an l-saturated nonstandard universe. Consider the internal
algebra of u u matrices over the internal complex numbers, and pay
attention to two norms on this algebra. One is the operator norm and the
other is the normalized Hilbert-Schmidt norm. Collect all matrices with finite
operator norm, and identify two such matrices if the normalized Hilbert-
Schmidt norm of their difference is infinitesimal. The resulting algebra,
equipped with the quotient norm that comes from the operator norm, is our
factor of type II 1. Section 2 covers the fact that this is really avon Neumann
algebra and a factor of type 111. Section 3 proves the nonseparability of its
representations, and Section 4 proves that it is not approximately finite. The
proofs of these two results simplifies considerably the corresponding proofs
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for the ultraproducts given by Feldman [4] and Widom [11]. In Section 5, the
relation of our construction to the ultraproduct construction of factors of
type 111 due to Wright [12] and Feldman [3] will be discussed. An interesting
open problem will be posed there: To what extent does the algebra con-
structed in our approach depend on the nonstandard integer v?
For the basic framework of nonstandard analysis we will refer to Stroyan-

Luxemburg [8], Hurd-Loeb [6] and Chang-Keisler [1] as standard textbooks.
Throughout this paper, we shall denote the nonstandard extension of A by
A instead of *A in order to reserve the symbol * for denoting the involution
of operator algebras. For the basic theorems and terminology of operator
algebras, we will refer the reader to Dixmier [2] and Takesaki [9]. Most
proofs will be written in more detail than required of specialists on operator
algebras in order to appeal to nonspecialists interested in nonstandard
analysis.

2. Construction of a factor of type 111

A nonstandard universe is called K-saturated if any family (Sili I) of
internal sets with card(l)< K satisfying the finite intersection property
always has a nonempty intersection. Throughout this paper, we will work
with a fixed R1-saturated nonstandard universe. Such a nonstandard universe
is obtained, for instance, by the usual bounded ultrapower construction
[1, page 284].

Let u be a nonstandard natural number and *C the internal complex
number field. Let *C be the u-dimensional internal unitary space with the
natural internal inner product and the internal norm l[" derived by the
inner product. Let M =*M(u) be the internal algebra of u u matrices over
*C. Naturally, M acts on *C as the internal linear operators, and let Poo be
the operator norm on M, i.e., poo(x) sup{llx[I [[:l[ _< 1, : *C}. Denote
by x* the adjoint of x M. Let z be the internal normalized trace on M,
i.e.,

"/’(X) (1//) E Xii for x (xij) M.
i=l

Then z defines an internal inner product (. ) on M by (x [y) -(y*x) for
x, y M. Its derived norm called the normalized Hilbert-Schmidt norm is
denoted by P2, i.e., p2(x) z(x*x)1/2 for x M. Denote by (M, p) and
(M, P2) the normed linear space structures on M equipped with these
respective norms. The principal galaxies finoo(M) of (M, p), and fin2(M) of
(M, P2), are defined as follows.

finoo(M) x Mlpo( x ) is finite},
fin2(M) {x Mlp:(x) is finite}.
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The principal monads/x=(0) of (M, p=), and 2(0) Of (M, PE), are defined as
follows.

txoo(O) {x Mlpoo(x) is infinitesimal},
/xE(0) {x MIpE(x) is infinitesimal}.

By properties of norms these sets are linear spaces over C. By the hull
completeness theorem [6, page 155], the quotient space A?/2 finE(M)//ZE(0)
turns out to be a Hilbert space, called the nonstandard hull of (M, PE), with
inner product (. I" ) and norm I1" 112 defined by

and

(x +/xa(0)ly +/xE(0)) (xly)

for x, y finE(M). In the rest of this paper, we will write 2 x +/2(0) for
all x finE(M). Similarly, the nonstandard hull /1:/= fin=(M)//x=(0)of
(M, p=) is a Banach *-algebra equipped with the operations inherited from
the matricial operations and norm /3= defined by/3=(x +/x=(0)) =p=(x) for
x fin=(M). In what follows, we will write $ x +/x=(0). Now, it is easy to
see that the norm/3= satisfies the C*-condition, i.e.,/3=($*$) --/3=($)2 for all
2 /1/=, and hence (//=,/3=) is a C*-algebra.
By transfer principle, we have PE(X) < Poo(X) for all x M, and hence we

have the following chain of linear subspaces,

oo(0) _/z2(O) t finoo(M)
_

finoo(M)
_
fin2(M )

_
M.

In the rest of this section, we will examine the structure of another quotient
space /defined by

fin(M)/(2(O) fin(M)),

and prove that it is a factor of type II 1. Let J2 be a linear subspace of M=
defined by

J2 (2(O) r3 fin(M))/(O).

Then clearly the relation h?/=/oo/J2 holds. Thus we can define the quotient
norm I1" Iloo on ./inherited from //oo, i.e.,

I1 + 12 inf/3oo( + )) inf p( x + y),
J2 Y /2(0) fin(M)
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for x finoo(M). Since there is an obvious one-to-one correspondence be-
tween + J2 h/and 2 h/2 for x finoo(M), we identify them so that we
write 2 + J2 for x fin=(M) and that h?/___ /2.

LEMMA 2.1. The space J2 is a closed two-sided ideal of the C*-algebra lloo
and hence (1, II ) is a C*-algebra.

Proof By transfer principle, we have p2(a*)=p2(a) and p2(xa)<
poo(X)pz(a) for all a, x M, and hence if a J2 and M= then a*, $a J2
so that 6.2 J2 by taking the adjoint. Thus J2 is a two-sided ideal of Moo. To
show the closedness of J2, suppose that /=(n- )"-* 0 for a sequence
"n J2 and $ Moo. Then we have

p2(X) p2(X Xn) . opoo(X Xn) oo(, ’n),

for all n, so that by the assumption we have p2(x) ,p, i.e., $ J2. Thus J2
is a closed two-sided ideal of Moo and hence M Moo/J2 is a C*-algebra
[9, page 31]. t3

To show that 3/ is a W*-algebra, i.e., a C*-algebra which has a faithful
*-representation as avon Neumann algebra on a Hilbert space, we consider
the following representation. By transfer principle, we have p2(ax)<
poo(a)p2(x) for any a finoo(M) and x fin2(M). Thus, given a finoo(M),
the relation 7too(a)2 ax for all x fin2(M) defines a bounded operator
7r=(a) on /2 such that IIr(a) li _</L(). By transfer principle, r= is an
isometric and hence faithful representation of A?/= on 3/2. Now, let H be the
7roo(lloo)-invariant subspace generated by ], where 1 M is the unit matrix.
Obviously, M is dense in H. Since ! is a cyclic vector for H, the subrepresen-
tation of 7too restricted to H is unitarily equivalent to the GNS-representation
of h/oo induced by the positive linear functional ? such that ,() (21])
-(x) [9, page 39, Theorem 9.14]. Since ? is a tracial state, i.e., ,() ?($)
for all x, y finoo(M), the kernel of this representation is the set of all
such that ?(*) 0, and this is just J2. Thus this subrepresentation induces
the faithful representation 7r of h/on H such that 7r(a)2 ax for all a M
and 2 H. Denote by , the tracial state on h/defined by ,(2) = z(x) for
x finoo(M). In what follows, we will draw no distinction between the
C*-algebra /and the operator algebra 7r()l/) acting on the Hilbert space H.
We will refer to the representation {Tr, H} as the canonical representation
of

THEOREM 2.2. The representation {Tr, H} is weakly closed and hence ll is a
yon Neumann algebra.
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Proof. From [2, page 45, Theorem 2] and [2, page 307, Lemma 1], it
suffices to show that the unit ball, denoted by B below, of (3/, I1" I1) is
complete with respect to the Hilbert space norm II I1=, For any standard
positive integer n, consider the internal metric space (An, dn) defined by

( 1)An X MIp(x) < 1 + - and dn(x,y) =/92(x -y).

Then by the hull completeness theorem [6, p. 155] its nonstandard hull is
complete, and hence

1)lp(x) _< +
is complete with respect to the Hilbert space norm. Therefore, so is B
oo 1B

Let P be the internal lattice of all projections in M, and L the lattice of
all projections in h/. It is easy to see that the canonical map x 2 maps P
into L. The following lifting theorem for projections will be useful in later
discussions.

LEMMA 2.3. The canonical map x P L is surjective; i.e., for any
projection 1I there is a projection e M such that .

Proof Let 2 be a projection in and let f x*x M. Then f is an
internal positive definite matrix and hence has the spectral form as follows"

where :i ) zi denotes the projection whose range is the subspace spanned by
the proper vector sci *C. On the other hand, since is a projection in//,
both x* -x and x2-x are in /x2(0). It follows that f-x is also in /x2(0)
from the relations,

f- x x*x x (x* x)x + x 2 x.

Thus f . Let

{ 1)max ilA > - and e E i ) i"
i=1
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Then e is a projection in M and we have f by the following calculations:

P2(e f)2 1 " 1 2--_,I1-Ail2/ IAil
i=l i=rl+l- i=

"’l 1 Ail + - i= +
-IAil

4 4
-v IAilZll Ail2 -I-

i=l i=rl+l

4 IA2/ A/I2
i=l

4P2(f2 f)2 = O.

I1 AiI2IAil 2

It follows that and this completes the proof.

Now the following theorem concludes our construction of a standard
factor M of type 111 from a nonstandard matrix algebra M.

THEOREM 2.4. The yon Neumann algebra M is a factor of type H1.

Proofi Let be a projection in the center of M. We will prove that 0
or 1. By Lemma 2.3, we may assume that e is a projection in M so that e
is of the form:

’0

e= Ei(R) L,
i---1

where (i11 < < v0) is an orthonormal basis of the range of e. Let
(sCull <i < v) be an orthonormal basis of *C extending (:gll <i < v0).
We may assume vo < v/2 without any loss of generality; otherwise, consider
1 & Let w be the partial isometry such that

[ Vo+ if 1 < < V0,
Wi

0 otherwise.

Then it is easy to see that ew 0, we w and that w*w e, and hence
p2(ew we) p2(w). Since is in the center of 3/, we have I1 112 0.
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Thus we obtain

llll2 ,r(e*e) ,r(e) /-(w*w)
p2(w) p2(ew we) I1 ffll

--0.

It follows that 0 and therefore is a factor. The restriction of the trace, to the projection lattice L is a dimension function of L. Since the range of
restricted to P is the internal set {0, 1/,,..., (v 1)/v, 1}, the range of ,

restricted to L is obtained by taking the standard parts to be [0, 1]. Therefore
is of type II1. D

3. Nonseparability of representations of

In this section, we show that no non-trivial representations of/(/are on a
separable Hilbert space.

LEMMA 3.1. The Hilbert space H of the canonical representation {Tr, H} of
1 is not separable.

Proof Let (e10 < k < v 1) be an internal sequence of pairwise or-
thogonal minimal projections in M =*M(v). For any internal natural number
with 0 < < v 1, define u(l) e M by the following internal relation

v-1 2klzri
u(l)= E exp

k=0

ek

Then by transfer principle we have poo(.....u(l))= 1 and z(u(l’..)* u(l)) al, 1, for
all l, l’ with 0 < l, 1’ < v 1. Thus u(l) /(/ H and Ilu(l) u(r)112 -if l’. Since the cardinality of the internal set {0, 1,..., , 1} is at least
20, H is not separable. D

THEOREM 3.2. Every non-trivial representation ofM must be on a non-sep-
arable Hilbert space.

Proof. From [9, page 352, Theorem 5.1], every representation of a factor
of type 111 on a separable Hilbert space is normal. Since every non-trivial
normal representation of a factor is faithful [2, page 46, Corollary 3], we can
restrict our attention to faithful normal representations. Let ’ be avon
Neumann algebra, on a Hilbert space , *-isomorphic to //. It suffices to
prove that g’ is not separable. The commutant " is a factor either of type
II1 or Of type IIo. If it is of type II, by [9, page 305, Proposition 1.40], "
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can be spacially decomposed as

where dim(Jg’) o and //is a factor of type II on a Hilbert space /. In
this case, //’ on Yf has a type 111 commutant and is *-isomorphic to//by
the commutation theorem for tensor products [9, page 226, Theorem 5.9].
Hence, the assertion for the type II case will conclude that the Hilbert space
/is not separable so that g’ is not separable. Thus we can assume that
is of type 111 It is well known that this case is completely classified up to
unitary equivalence by the coupling constant c of /[9, page 340, Theorem
3.11]. In the case where c 1, {’, } is unitarily equivalent to the canoni-
cal representation {r(h/), H}, and hence, by Lemma 3.1, is not separa-
ble. Consider the case where c > 1. Let e’ be a projection in e" with trace
1/c. Then the reduced von Neumann algebra ’e’ on e’o has the coupling
constant 1 from [9, page 340, Proposition 3.10(ii)], and hence the assertion for
c 1 concludes that e’, and afortiori f, is not separable. Consider the
case where c < 1. Let e’ be a projection in 7r(/)’ with trace c. Then the
reduced von Neumann algebra 7r(/)e, on e’H has the coupling constant c
and hence unitarily equivalent to /on . Since there is a subprojection f’
of e’ with trace 1/n for some positive integer n, the Hilbert space H is
covered by the ranges of n pairwise orthogonal projections equivalent to f’.
Thus obviously

R 0 < dim(H) < n dim(),

and hence is not separable.

4. Non-approximate-finiteness of h/

In order to indicate the dependence of the nonstandard natural number v,
we will denote by/(/(v) in this section the factor 5/of type 111 constructed
from the internal matrix algebra *M(v)..The purpose of this section is to
prove that /(v) is not approximately finite. The approximate finiteness is
usually defined for factors on separable Hilbert spaces as follows. A factor
is called approximately finite if there exists an increasing sequence ’n of
finite type I subfactors of /g which generate ’. A natural generalization of
this definitionto factors of type II on arbitrary Hilbert spaces was proposed
by Widom [11] as follows. A factor ’ of type 111 is called approximately finite
if given a /g (i 1,..., n) and e > 0 we can find a type I subfactor .4/of

’ containing elements b (i 1,..., n) such that Ila bill2 < e, where for
any x , IIx II z z(x*x)X/2 and r stands for the normalized trace on ’.
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Since A?/is of type 111 but not representable on a separable Hilbert space, as
shown in the preceding sections, we adopt this definition.
For n N, the algebra of n n matrices over the complex number field C

is denoted by M(n); for this algebra, - stands for the normalized trace, poo
the operator norm, and P2 the normalized Hilbert-Schmidt norm, just as for
the nonstandard algebra *M(v). An embedding of M(m) into M(n) is a
*-isomorphism from M(rn) into M(n) which maps the identity lm Of M(rn)
to the identity 1 of M(n). A system of k-th order matrix units in avon
Neumann algebra d/is a family of k 2 elements ct of d’ (a,/3 1,..., k)
satisfying the following properties:

c,tcr [ c if/3=y,
0 if/3 y,

k

(c")* =c and c
=1

Many well-known results on matrix algebras will play important roles in
applications of nonstandard analysis to the theory of operator algebras.
Among them we will refer to the following two lemmas [10].

LEMMA 4.1. Given > 0 we can choose an e e(6) > 0 so that for any
n N there exists an a a(n, 6) M(n) with po(a) < 1 such that, when
b M(n) commutes with a projection e M(n) with 6 < ’(e) < 1 6, then
pz(a -b) > e.

LEMMA 4.2. (1) There exists an embedding ofM(m) into M(n) if and only if
n is divisible by m.

(2) Let n be divisible by m, say n ink. Then a M(n) belongs to the range
of some embedding of M(m) into M(n) if and only if a commutes with all
elements of at least one system of k-th order matrix units in M(n).

The following lifting lemma will be useful for our purpose.

LEMMA 4.3. (1) Let (ili 1,..., n) be a resolution of the identity of
ill(v) with $(i) 1/n for all 1,..., n and suppose that v is divisible by n.
Then there exists an internal resolution of the identity (fili 1,..., n) of
*M(v) such that r(fi) 1/n and fii i (i 1,..., n).

(2) Let (t3) be an n-th order matrix units of 2t(v) and suppose that v is
divisible by n. Then there exists an internal n-th order matrix units ( dt) of
*M(v) such that dt ,t (a, 1,..., n).
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Proof (1). By Lemma 2.3, we may assume that e (i 1,..., n) are
internal projections. Let fl be a projection such that ’(fl) 1/n and that
fl > el or fl < el. From "(1) 1/n we have fl 1. Let

e (1 fl)e2(1 fl).

" be^’ Moreover, let e2Then 0 < e < 1 -fl. Since fl _t. , we have e e.
the projection obtained from the positive matrix e as in the proof of Lemma

-’ ^’ Since z(e) < z(1 -fl) and 1/n <2.3. Then e2 < 1 -fl and e2 --’-e2 e2.
"r(1 --fl), we can choose a projection f2 satisfying the following conditions"
(1) f2 _t_ fl, (2) z(f2) l/n, and (3) f2 >- e or f2 -< e. It is easily seen that
f2--2. Similarly, we can inductively choose a projection fi satisfying (1)
fi _1_ fl + +fi-1, (2) r(fi)= l/n, and (3) fi i. Then (fili 1,...,n)
is the desired sequence.

(2) From the above discussion, we may assume that (c"[a 1,..., n) is
an internal resolution of the identity of *M(v) such that -(c) --1/n
(a 1,..., n). Thus it suffices to show that if t*t 1, tt* 2 and e and
e2 are internal projections with ,r(e 1) "r(e2) then there exists an internal
matrix v such that v*v el, vv*= e2 and t . Let y eEue and
h y* y. Since a is the partial isometry with the initial projection 1 and the
final projection 2, we have p--t and f 1. Let f be the projection
obtained from the positive matrix h as in the proof of Lemma 2.3. It follows
from the construction of f that f _< e and j-- t 1. By polar decomposi-
tion, we have y zx/- for some partial isometry z. Let w zf. Then, we
obtain

Moreover,

w*w < f < rp(h) < e and ww* < rp( y) < e2,

where rp(x) stands for the range projection of x. Since ,r(e1) ,r(e2) we
have

-(e w’w) z( e2 ww* ),

and hence there exists a matrix s such that s*s e w*w and ss* e2
ww*. Let v w + s. Then v*v el, vv* e2 and t3 t. rq

The structure of h/(v) is stable under finite perturbations of v as follows.

LEMMA 4.4. If u is nonstandard and n is standard then ll(u) and lI(u + n)
are *-isomorphic.
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Proof It suffices to show that /t/(v) is *-isomorphic to /l/(v + 1). For
a (aij) *M(v), we define 7r(a) (’rr(a)ij) M(v + 1) as follows:

aij’rt’( a)ij
0

ifi#v+ landj.v+ 1,
otherwise.

Then the mapping 7r is an internal injective *-homomorphism from M(v) to
M(v + 1). If poo(a) is finite then poo(Tr(a)) is also finite, and moreover

____20( 1 E 17r(a)il
1 lailv + 1

i,j=l
P +-----’i,j=l

v 1
v+l v laiyl 2 11112,

i,j=l

Therefore we can define a *-isomorphism ,- from/I;/(v) into/r(v + 1) by the
relation (t/)---r(a). It is easy to see that -(])= lv+ 1. For any c
(v + 1),

d ,(i.)e,(i.) {Tr(1.)cTr(1.)}

and 7r(lv)cTr(l) is clearly in the range of r. It follows that is onto.
Therefore, A?/(v) is *-isomorphic to M(v + 1). ra

Now we prove the main theorem.

THEOREM 4.5. I/I(v) is not approximately finite.

Proof Let in Lemma 4.1 be 1/4 and choose a standard e > 0 satisfying
the condition of that lemma. Then, by transfer principle, there exists an
a =*a(v, 1/4) *M(v) with poo(a) < 1, such that when b *M(v) commutes
with a projection f *M(v)with 1/4 < -(f)< 3/4, then p2(a- b)> e,
and hence I1 ,112 >- e. Therefore i suffices to show that, for any , A?/(v)
which belongs to a finite type I subfactor, we can choose b which commutes
with some projection f M with 1/4 < z(f) < 3/4. Let ./// be an /n-sub-
factor of /(v) and (d31a, 1,..., n) an n-th order matrix units of //.
By Lemma 4.4, we may assume that v is divisible by n, and hence by Lemma
4.3 we may assume that (d) is an internal n-th order matrix units. Let

n
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Suppose //. We may assume that b g’n. Since ’n determines an
internal embedding of *M(n) into *M(v), b commutes with all elements of at
least one system of (= v/n)-th order matrix units (c la,/3 1,..., r) by
Lemma 4.2 and transfer principle. Hence b also commutes with f
By the definition of -th order matrix units, it is easily seen that f is a
projection and -(c’) -(ctt). Therefore,

E (c

It follows that 1/4 < -(f)< 3/4. Thus 37/(,) is not approximately finite.

5. Remarks and problems

Although we have confined our attention to a nonstandard natural number
u, if our construction is applied to a standard natural number n instead, we
have obviously the trivial relation //(n) -= M(n). Thus, their structures are
completely classified by the invariant n.
The structure of the factor h/(u) depends in principle both on the

underlying nonstandard universe and on the nonstandard natural number u.
In Lemma 4.4, we have shown that ]/(u) and A?/(/z) are *-isomorphic when
v -/x is finite. However, a general problem as to when/Q(u) and A?/(/z) are
*-isomorphic has not been solved.
Suppose that the nonstandard universe is constructed as a bounded ultra-

power of a given superstructure with respect to an index set I and a
countably incomplete ultrafilter over I. Then the nonstandard natural
number u is represented by a family (nili I) of natural numbers. In this
case, the factor 37/(u) can be constructed also by the following ultraproduct
construction due to Wright [12]. For each I, let /= M(ni) be the
algebra of n >( n matrices over C acting on the n dimensional unitary space
C"i. Let et= Y’.rCni and let ’ be the von Neumann subalgebra of
_’() consisting of all operators which are of the form x Eixi, where
X i, and Ilxll sup/ i poo(xi) < " Let 7" be the canonical trace on /
normalized so that 7/(1/) 1, where 1 is the identity in /. Define a state f
on ’ by

f(x) lim ,Fi(xi)

for each x Eixi in .. Then f is a tracial state of .’ and

f x ’lf(x*x) 0}
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is a two-sided ideal. Wright [12] and Feldman [3] showed that ’/.o is a
factor of type II 1. In this case, we can observe that g/.W is *-isomorphic to
our factor/Q(v). The detail goes beyond the scope of the present paper and
it will be published elsewhere.
Turning to the isomorphism problem, even in the case of ultraproducts we

have no clue as to whether all of them are isomorphic. Since our approach
provides us with a route for discussing certain number theoretical characters
of ,, it is interesting whether there is an internal or external property of v
which distinguishes the structures of/(/(,).
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