ON THE KOSZUL ALGEBRA OF A LOCAL RING

WINFRIED BRUNS

Let (R, \mathfrak{m}, k) be a Noetherian local ring, and x a minimal system of generators of \mathfrak{m} . The Koszul complex $K.(\mathbf{x})$ is essentially independent of the choice of x, and thus an invariant of R (as an alternating algebra equipped with an anti-derivation of degree -1). Therefore one may write H.(R) for its homology; it carries the structure of an alternating k-algebra and is called the Koszul algebra of R. By the universal property of the exterior algebra $\wedge H_1(R)$, there is always a natural map $\lambda :: \wedge H_1(R) \rightarrow H.(R)$ which extends the identity on $H_1(R)$. (We refer to Bourbaki [2], Ch. X for notation and results related to the Koszul complex, to [2], Ch. III for exterior algebra, and to Matsumura [5] for commutative algebra.)

Using the methods of Tate [8], Assmus [1] gave the following beautiful characterization of complete intersections.

THEOREM 1. Let (R, \mathfrak{m}, k) be a Noetherian local ring. Then the following are equivalent:

(a) *R* is a complete intersection;

(b) $H_{1}(R)$ is (isomorphic with) the exterior algebra of $H_{1}(R)$;

(c) $H_1(R)$ is generated by $H_1(R)$;

(d) $H_2(R) = H_1(R)^2$.

In particular, R is a complete intersection if (and only if) λ . is surjective. In this note we want to describe complete intersections by the injectivity of λ .. More precisely, we shall prove the following theorem:

THEOREM 2. Let (R, \mathfrak{m}, k) be a Noetherian local ring containing a field. Then:

(a) $H_1(R)^i = 0$ for i > emb dim R - dim R;

(b) in particular, R is a complete intersection if (and only if) the natural map

$$\lambda :: \wedge H_1(R) \to H_1(R)$$

is injective.

Received June 20, 1991.

¹⁹⁹¹ Mathematics Subject Classification. (1985 Revision). Primary 13H10; Secondary 13D03.

^{© 1993} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

It is easy to see that part (a) of Theorem 2 implies part (b). In fact, if λ is injective, then (a) yields $\dim_k H_1(R) \leq \operatorname{emb} \dim R - \dim R$, and this holds if and only if R is a complete intersection (and $\dim_k H_1(R) = \operatorname{emb} \dim R - \dim R$); see [5], §21.

The crucial argument in proving part (a) of Theorem 2 will be the theorem of Evans-Griffith [3] on order ideals of minimal generators of syzygies. This explains the restriction to rings containing a field: the theorem of Evans-Griffith has not yet been proved in general. (Even if it should fail, Theorem 2 holds 'almost' for arbitrary local rings; cf. Remarks, (a).)

Since the Koszul algebra, the property of being a complete intersection, and the numerical invariants in Theorem 2 are stable under completion, we may assume that R is complete. Then R has a presentation R = S/I in which (S, n, k) is a regular local ring, and $I \subset n^2$ is an ideal of S. We choose a regular system of parameters y in S.

For the moment, let us consider more generally a (Noetherian) ring S, and ideals $I \subset \mathfrak{n}$ of S. Let $\mathbf{y} = y_1, \ldots, y_n$ generate \mathfrak{n} , and $\mathbf{a} = a_1, \ldots, a_m$ generate I. We write $a_i = \sum a_{ii} y_i$ with $a_{ji} \in S$.

Denote the canonical bases of S^n and S^m by f_1, \ldots, f_n and e_1, \ldots, e_m resp., and let $\varphi: S^m \to S^n$ be the map given by the matrix (a_{ji}) . Setting $u_i = \varphi(e_i) \in S^n$ we have $d_{\mathbf{a}}(e_i) = a_i = d_{\mathbf{y}}(u_i)$. Here $d_{\mathbf{a}}$ and $d_{\mathbf{y}}$ are the differentials in the Koszul complexes $K.(\mathbf{a})$ and $K.(\mathbf{y})$. Furthermore,

$$\wedge \varphi \colon K.(\mathbf{a}) \to K.(\mathbf{y}).$$

is a chain map. The induced map $H.(\mathbf{a}, S/I) \rightarrow H.(\mathbf{y}, S/I)$ actually yields a homomorphism

$$\Lambda: \Lambda(S/\mathfrak{n})^m \cong H.(\mathbf{a}, S/\mathfrak{n}) \to H.(\mathbf{y}, S/I)$$

of S/n-algebras: note that $H.(\mathbf{a}, S/I) \cong K.(\mathbf{a}) \otimes S/I \cong \wedge (S/I)^m$ and that $H.(\mathbf{y}, M)$ is annihilated by n for an arbitrary S-module M.

One has natural homomorphisms

$$\rho: H.(\mathbf{a}, S/\mathfrak{n}) \to \operatorname{Tor}^{S}(S/I, S/\mathfrak{n}),$$

$$\sigma: H.(\mathbf{v}, S/I) \to \operatorname{Tor}^{S}(S/\mathfrak{n}, S/I).$$

By a standard argument of homological algebra, $\operatorname{Tor}^{S}(S/I, S/n) = \operatorname{Tor}^{S}(S/n, S/I)$. So we have two maps from $H.(\mathbf{a}, S/n)$ to $\operatorname{Tor}^{S}(S/I, S/n)$, namely ρ . and $\sigma \cdot \circ \Lambda$. The proof of Theorem 2 hinges on the fact that these maps are essentially equal—under the proper identification of $\operatorname{Tor}^{S}(S/I, S/n)$ and $\operatorname{Tor}^{S}(S/n, S/I)$. This may be a well-known fact, but we do not have a reference, and the argument is short.

We choose free resolutions F. and G. of S/I and S/n resp. Then there are chain maps $K.(\mathbf{a}) \rightarrow F. \rightarrow S/I$ and $K.(\mathbf{y}) \rightarrow G. \rightarrow S/n$. Taking tensor

products yields a commutative diagram

$$\begin{array}{cccc} K.(\mathbf{a}) \otimes S/\mathfrak{n} & \stackrel{\alpha}{\longleftarrow} & K.(\mathbf{a}) \otimes K.(\mathbf{y}) \stackrel{\beta}{\longrightarrow} S/I \otimes K.(\mathbf{y}) \\ & & \downarrow & & \downarrow \\ F. \otimes S/\mathfrak{n} & \longleftarrow & F. \otimes G. & \longrightarrow & S/I \otimes G.. \end{array}$$

The standard argument referred to above is that the bottom row induces an isomorphism

$$H.(F.\otimes S/\mathfrak{n}) \stackrel{\cong}{\leftarrow} H.(F.\otimes G.) \stackrel{\cong}{\to} H.(S/I \otimes G.).$$

This is the identification of

 $\operatorname{Tor}^{S}(S/I, S/\mathfrak{n}) \cong H.(F. \otimes S/\mathfrak{n}) \text{ and } \operatorname{Tor}^{S}(S/\mathfrak{n}, S/I) \cong H.(S/I \otimes G.)$

which we will use in the following.

LEMMA 1. One has $\rho_s = (-1)^s \sigma_s \circ \Lambda_s$.

Proof. Let e_1, \ldots, e_m and f_1, \ldots, f_n be bases of S^m and S^n and choose elements $u_i \in S^n$ with $d_y(u_i) = d_a(e_i)$. It is enough to show that

$$\rho_s(\bar{e}_{i_1}\wedge\ldots\wedge\bar{e}_{i_s})=(-1)^s\sigma_s(\bar{u}_{i_1}\wedge\ldots\wedge\bar{u}_{i_s}),$$

and in view of the diagram above it suffices to exhibit a cycle $z \in K.(\mathbf{a}) \otimes K.(\mathbf{y})$ such that $\alpha(z) = \overline{e}_{i_1} \wedge \ldots \wedge \overline{e}_{i_s}$ and $\beta(z) = (-1)^s (\overline{u}_{i_1} \wedge \ldots \wedge \overline{u}_{i_s})$. We choose

 $z = (e_{i_1} \otimes 1 - 1 \otimes u_{i_1}) \cdots (e_{i_s} \otimes 1 - 1 \otimes u_{i_s}).$

In order to see that z is a cycle one uses that the product of cycles in $K.(\mathbf{a}) \otimes K.(\mathbf{y})$ is again a cycle. Thus it is enough to show that $e_i \otimes 1 - 1 \otimes u_i$ is a cycle, and this is immediate if one uses the definition of the differentiation on a tensor product of complexes. That $\alpha(z) = \overline{e}_{i_1} \wedge \ldots \wedge \overline{e}_{i_s}$ and $\beta(z) = (-1)^s(\overline{u}_{i_1} \wedge \ldots \wedge \overline{u}_{i_s})$ follows from the fact that α and β are algebra homomorphisms.

Let us return to the special situation above in which S is a regular local ring, and y a regular system of parameters. Let x denote the sequence of residue classes of $y = y_1, \ldots, y_n$ in R = S/I. One has $H_{\cdot}(R) \cong H_{\cdot}(y, R)$, and it is well known that the residue classes of the cycles u_i introduced above are a k-basis of $H_1(R)$, provided a is a minimal system of generators of I (cf. for example Scheja [6]). Therefore the maps λ . and Λ . differ only by an

280

automorphism of $\wedge k^m$: both λ_1 and Λ_1 are isomorphisms $k^m \to H_1(R)$. Theorem 2 claims that $\lambda_i = 0$ for i > emb dim R - dim R. Since y is a regular sequence, K.(y) is a free resolution of $k \cong S/n$, and so σ . is an isomorphism. Summarizing our arguments, we have reduced the theorem to the fact that $\rho_i = 0$ for i > emb dim R - dim R. This follows from the next lemma since S/I has finite projective dimension over S. Moreover, one has

$$\operatorname{emb} \operatorname{dim} R - \operatorname{dim} R = \operatorname{dim} S - \operatorname{dim} R = \operatorname{height} I.$$

LEMMA 2. Let (S, n, k) be a Noetherian local ring containing a field, and $I \subset n$ an ideal generated by a sequence **a**. If proj dim $S/I < \infty$, then the natural homomorphism

$$H_i(\mathbf{a}, k) = K.(\mathbf{a}) \otimes k \to \operatorname{Tor}_i^S(S/I, k)$$

is zero for i > height I.

Proof. The natural homomorphism $H_i(\mathbf{a}, k) \to \operatorname{Tor}_i^S(S/I, k)$ is induced by a chain map γ . from K.(a) to a free resolution F. of S/I. It only depends on I and a, so that we may assume that

$$F: 0 \to F_s \xrightarrow{\varphi_s} F_{s-1} \to \cdots \to F_1 \xrightarrow{\varphi_1} F_0 \to 0$$

is a minimal free resolution. That $H_i(\mathbf{a}, k) = K.(\mathbf{a}) \otimes k$ and $\operatorname{Tor}_i^S(S/I, k) \cong F. \otimes k$, follows from the minimality of the complexes $K.(\mathbf{a})$ and F.. Thus the map

$$H.(\mathbf{a},k) \to \operatorname{Tor}^{S}(S/I,k)$$

is just $\gamma . \otimes k$.

For an S-module M and $x \in M$ let $\mathcal{O}_M(x) = \{f(x): f \in \text{Hom}_S(M, S)\}$ denote its *order ideal*. We choose $M = \text{Im } \varphi_i$. The theorem of Evans-Griffith says that

height $\mathscr{O}_{M}(\varphi_{i}(e)) \geq i$ for every element $e \in F_{i}, e \notin \mathfrak{n}F_{i}$;

cf. [3], Proposition 1.6. We need the stronger assertion that height $\mathcal{O}_F(\varphi_i(e)) \ge i$ where $F = F_{i-1}$. (Of course, if g_1, \ldots, g_w is a basis of F and $\varphi_i(e) = s_1g_1 + \cdots + s_wg_w$ with $s_i \in S$, then $\mathcal{O}_F(\varphi_i(e))$ is the ideal generated by s_1, \ldots, s_w .)

In order to prove height $\mathscr{O}_F(\varphi_i(e)) \ge i$, we show that $\mathscr{O}_F(\varphi_i(e))_{\mathfrak{p}} = S_{\mathfrak{p}}$ for every prime ideal \mathfrak{p} with height $\mathfrak{p} \le i - 1$. Since proj dim $(S/I)_{\mathfrak{p}} \le i - 1$, the embedding $M_{\mathfrak{p}} \to F_{\mathfrak{p}}$ splits for such a prime ideal; furthermore the formation of order ideals commutes with localization. Therefore one has $\mathscr{O}_F(\varphi_i(e))_{\mathfrak{p}} = \mathscr{O}_M(\varphi_i(e))_{\mathfrak{p}}$, and that $\mathscr{O}_M(\varphi_i(e))_{\mathfrak{p}} = S_{\mathfrak{p}}$ is the result of Evans-Griffith.

The assertion of the lemma amounts to $\gamma_i(K_i(\mathbf{a})) \subset \mathfrak{n}F_i$ for i > height I. Let $z \in K_i(\mathbf{a})$. If $\gamma_i(z) \notin \mathfrak{n}F_i$, then height $\mathscr{O}_F(\gamma_{i-1}(d_{\mathbf{a}}(z))) =$ height $\mathscr{O}_F(\varphi_i(\gamma_i(z))) \geq i$ as just explained. On the other hand, $\mathscr{O}_F(\gamma_{i-1}(d_{\mathbf{a}}(z))) \subset I$ since Im $d_{\mathbf{a}} \subset IK.(\mathbf{a})$.

Remarks. (a) Suppose that (S, n, k) is a regular local ring not containing a field. Let $p = \operatorname{char} k$, and $\overline{S} = S/(p)$. Then S is a Cohen-Macaulay local ring containing a field. Let I be an ideal of S, and F. a minimal free resolution of S/I. As in the proof of Lemma 2 we have a comparison map $K.(a) \to F$. Let F' be the truncation

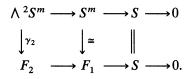
$$0 \to F_n \to F_{n-1} \to \cdots \to F_1 \to 0$$

of F.. Then $F' \otimes \overline{S}$ is a minimal free resolution of $I \otimes \overline{S}$ over \overline{S} , and we can apply the theorem of Evans-Griffith to $F' \otimes \overline{S}$ over \overline{S} . With the notation of the proof of Lemma 2 it yields height $(\mathscr{O}_F(\varphi_i(e)) + (p))/(p) \ge i - 1$, and it follows easily that

height
$$\mathscr{O}_F(\varphi_i(e)) \geq i - 1$$
.

This argument shows that Lemma 2 holds for regular rings not containing a field if we replace height I by height I - 1. Thus Theorem 2, (a) is valid without the hypothesis that R contains a field if emb dim $R - \dim R$ is replaced by emb dim $R - \dim R + 1$.

(b) The method we used to prove Theorem 2 also yields a quick proof of Theorem 1. Again one may assume that R is complete. If I is generated by an S-sequence **a**, then K.(**a**) resolves R, and therefore ρ . is an isomorphism; it follows that λ . is an isomorphism, proving (a) \Rightarrow (b). While (b) \Rightarrow (c) \Rightarrow (d) is trivial, the implication (d) \Rightarrow (a) results from the fact that ρ_2 must be surjective if λ_2 is surjective. In order to conclude that (d) \Rightarrow (a) choose F. as a minimal free resolution of S/I. Then we have a commutative diagram



The map ρ_2 is just $\gamma_2 \otimes k$, and $\gamma_2 \otimes k$ being surjective, γ is surjective itself. It follows immediately that $H_1(K.(\mathbf{a})) = 0$, and this implies that \mathbf{a} is an S-sequence ([5], Theorem 16.5). (c) Lemma 2 is false without the hypothesis that proj dim $S/I < \infty$. In fact, Serre [7] showed that the map $H_i(\mathbf{a}, k) \to \operatorname{Tor}_i(S/I, k)$ is injective if **a** generates $I = \mathfrak{n}$. If S is not regular, this yields a counterexample.

(d) The reader may have noticed that Theorem 2 is trivial if R is a Cohen-Macaulay ring. Then dim R = depth R, and one always has $H_i(R) = 0$ for $i > \text{emb} \dim R$ - depth R by the grade-sensitivity of the Koszul complex ([5], Theorem 16.8). On the other hand, if $H_1(R)^p \neq 0$ for $p = \text{emb} \dim R$ -depth R, then it follows easily from a theorem of Wiebe [9] that R is a complete intersection. Cf. Gulliksen-Levin [4], 3.5.3. (There the number n must be replaced by emb dim R - depth R; one first reduces to the case depth R = 0, and then applies Wiebe's theorem.)

(e) It is easy to find rings R which are not complete intersections, but for which λ_1 : $H_1(R)^p \to H_p(R)$ is injective for p = emb dim R - dim R. This shows that Theorem 2 is optimal.

The author is very grateful to Jürgen Herzog for stimulating discussions of the subject of this note.

REFERENCES

- 1. E.F. ASSMUS, On the homology of local rings. Illinois J. Math., vol. 3 (1959), pp. 187-199.
- 2. N. BOURBAKI, Algèbre, Chap. I-X. Hermann, Masson, 1970-1980.
- 3. E.G. EVANS and P. GRIFFITH, The syzygy problem, Ann. of Math., vol. 114 (1981), pp. 323-333.
- 4. T.H. GULLIKSEN and G. LEVIN, *Homology of local rings*, Queen's Papers in Pure and Appl. Math., vol. 20, Queen's University, Kingston, Ont., 1969.
- 5. H. MATSUMURA, *Commutative ring theory*, Cambridge University Press, Cambridge, England, 1986.
- 6. G. SCHEJA, Über die Betti-Zahlen lokaler Ringe, Math. Ann., vol. 155 (1964), pp. 155-172.
- J.-P. SERRE, "Sur la dimension homologique des anneaux et des modules noethériens" in Proc. Int. Symp. Tokyo-Nikko 1955, Science Council of Japan, 1956, pp. 175–189.
- 8. J. TATE, Homology of Noetherian rings and local rings. Illinois J. Math., vol. 1 (1957), pp. 246-261.
- 9. H. WIEBE, Über homologische Invarianten lokaler Ringe, Math. Ann., vol. 179 (1969), pp. 257-274.

Universität Osnabrück Vechta, Germany