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THE GROWTH OF ,,/,2 FOR CONVEX FUNCTIONS

P.C. FENTON

1. Introduction

In W.K. Hayman’s survey of the Wiman-Valiron method, the following
growth lemma is proved:

LEMMA A [2, Lemma 9]. Let p(r) be a positive, increasing and convex
function of r for r >_ ro and suppose that

(1.1) lim inf
log O(r) < p < lim sup

log (r)
log r log r

where p > 1. Let a(p)= (p- 1)/p if p < ; a(p)= 1 if p . Suppose
that a, K are constants such that K > 1 and a < a(p). Then ifE is the set of all
r such that

(1.2) either (a) (r)"(r) > Ka(p) or (b) ’(r) < dp(r)
a

’(r)2

we have dens E < K-1, where "dens" is the lower (linear) density.

Hayman applies this in a context the details of which need not detain us
here, save to say that his results suggest that, when p is the upper limit in
(1.1), it would be desirable to strengthen the part of the conclusion of the
lemma that concerns E, from lower to upper density. This is evidently not
possible, however, since may be linear for arbitrarily long stretches, and
(1.2b) itself may therefore hold on a set of upper density 1. In Hayman’s
argument it is (1.2a) that plays the vital role, (1.2b) being subsidiary in the
sense that it is used only to show that an error term is inessential. What can
be said about the set on which (1.2a) holds? It is entirely with this question
that the remainder of the present note is concerned.
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We first introduce some notation. Let E be a set on, the part r >_ 1 of the
real axis, and let ER be the intersection of E with [1, R]. We define
m(R) re(R, E) to be the Lebesgue measure of ER and

(1.3) lgmeasEn= fE dtR--= fltdm(t)t m(R) + fllm(t)e
to be the logarithmic measure of En. Further

(1.4)
densE liminfR_oom(R)/(R- 1), ensE limsupR_oom(R)/(R- 1)

are the lower and upper densities of E and

log densE lim infR _,oo(log meas ER)/log R

log densE lim suPR__,(logmeas Eg)/log R

are the lower and upper logarithmic densities. We recall [1, 446-47] that

(1.6) densE < log densE < log densE < dens E.

Now suppose that is the function of Lemma A and define

(1.7)
p lim infg -,oo(log (R))/log R, P lim SUPR ._,(1og (R))/log R.

We may assume without loss of generality that r0 < 1 and that ’(r) > 0 for
r > 1, so that 1 < p < P < . We then have the following:

THEOREM. Suppose that K > 0 and that E is the set of r at which

alP(r) "(r) > K.
’(r)2

Then
(i) If K > 1, densE < 1/K.
(ii) Ifp < oo and K > a(p) 1 l/p, we have log densE < a(p)/K.
(iii) If P < oo and K > a(P), we have logdensE < a(P)/K.

We note that, by (1.6), (i) is stronger than the corresponding statement in
(iii) for the case P . We shall show by an example at the end of the paper
that in general upper logarithmic density cannot be replaced by upper density
in (iii).
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I am most grateful for the referee’s comments on the original draft. The
theorem has been recast and its proof considerably shortened as a result of
his suggestions.

We define

2. Proof of the theorem

p(r) log{(r)/cP(1)} rdP’(r)
log r q(r) alp(r)

O(r) ( 1 )(r) =r
’(r)

=r 1- q(r)

Since P(r) is convex, the right hand derivative cP’(r) exists for all r, is
non-decreasing with r and is equal to the left hand derivative outside a
countable set. Also cP"(r) exists outside a set of measure zero and cP"(r) > 0.
Further sO(r), which is the abscissa of the point at which the tangent to the
graph of y P(r) meets the r-axis, is nondecreasing; in fact :’(r)=
dP(r)dP"(r)/dP’(r)2 > O. It follows [3, p. 96] that

Thus

(2.1) m(r)< so(r) -:(1) 1 { r } r+
K r-sO(l) q(r)

< K

and now (1.4) yields (i). To prove (ii) and (iii) we note that by (1.3),

(2.2)
m(t) dt < 1 + I(1)1 + log R-logmeasE < 1 +

t iq(t)

Also by Schwarz’s inequality,

log
0(1) tq(t)’
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so that

R dt (log R)2 log R
tq(t) >- log{(R)/(1)} p(g)"

Now (2.2) yields

1 ( 1 ) I:(1)1(2.3) log meas ER < log R 1 + 1 +p(R) K

Using (1.5) and (1.7) we obtain (ii) and (iii) of our Theorem and the proof is
complete.

3. Two examples

The first example shows that the estimates in (ii) and (iii) of the theorem
are sharp.
Given P0 > 1 and K > a(po), let J be the set consisting of all intervals

(n a(po)/K, n), for n 2,3, Write J for the part of J in [1, r] and
let be defined by

q(r) exp
Km(Jt)

dt for r > 1,

where m denotes Lebesgue measure. For r > 1,

alp(r)/’(r) r Km(Jr) > O,

so is increasing. Further,

(3.1) 2 (dO(r) dO"(r)/O’( r ( r rb(r)/dp r)) KXj(r),

where Xj is the characteristic function of J, except at the boundary of J. This
is non-negative, so " is non-negative except possibly at the boundary of J. It
follows that q’, which is continuous, is non-decreasing and therefore is
convex.
We have m(Jr) K-l(1 -p-l))r + O(1) as r , so that

log (r) (P0 + o(1))log r,

and therefore, from (1.7), p P P0. Further, from (3.1),

dP(r)"(r)/dP’(r) 2 > K
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on J, so E contains J. Now J has density, and therefore from (1.6),
logarithmic density, a(Po)/K, from which we conclude that E has lower
logarithmic density at least a(po)/K.
The purpose of the second example is to show that when K < 1 and

P < in the Theorem it is possible to have densE 1.
Given P > 1 and 1 > K > a(P), choose P’ > P so that K a(P’). The

example is made up of parts of ArP’+ B, where A and B are constants,
interspersed with linear segments.
Suppose that a certain linear segment has slope A, lies above the axis, and

lies below r P no matter how far it is prolonged in the positive direction. Fix
R arbitrarily large and consider Ar e’ + B for r > R, where A is such that

(3.2) P,ARP’- I,

and B is chosen so that the linear segment meets Are’ + B at R. This latter
condition entails ARP’+ B (A + o(1))R as R , so that, from (3.2),
B AR(1 1/P’ + o(1)). It is thus possible to choose R sufficiently large so
that B > 0, and we suppose this done.

Let N > R be the largest number such that the tangent to Are’ + B at N
lies under re for all r > N. (Such an N evidently exists, and the tangent at N
will touch the graph of re at some point Ro > N.) The next two segments
making up the example consist of ArP’+ B on [R, N], and the tangent to
Ar P’ + B at N thereafter (or at least until the next insertion of A’rP’+ B’).

The function constructed this way is positive, increasing and convex, and
limsuplog(r)/log r P. Moreover, recalling that B > 0, we have on
[R,N],

(r)dP"(r)/’2 a(P’)(1 + Br-P’/A) > a(P’) K.

Now since the tangent to at N touches the graph of re at Ro

have P’ANe’- PRo 1. This combined with (3.2) gives
> N, we

A(N/R) P’-I PReo -1 > pRP-1.

It follows that we can make N/R as large as we please by taking R, which is
arbitrary, sufficiently large. It is thus possible to arrange for the upper density
of

E {r" dP(r)dP"(r)/dP’e > K}

to be 1.
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