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THE SYMMETRIC GENUS OF FINITE ABELIAN GROUPS1

COY L. MAY AND JAY ZIMMERMAN

1. Introduction

A finite group G can be represented as a group of automorphisms of a
compact Riemann surface [3]. In other words, there is a compact Riemann
surface on which G acts and each non-identity element of G acts non-triv-
ially on the surface. The symmetric genus r(G) is the minimum genus of any
Riemann surface on which G acts faithfully. The strong symmetric genus
r (G) is the minimum genus of any surface on which G acts faithfully and
preserves the orientation. This terminology was introduced by Tucker [11].
Here we consider abelian groups acting on Riemann surfaces. Let A be a

finite abelian group. The strong symmetric genus r (A) has been completely
determined by Maclachlan [5]. Also the abelian groups of symmetric genus
zero and one are well-known. We will calculate the symmetric genus r(A) in
the case where r(A)> 2 by using non-euclidean crystallographic groups
(NEC groups). Our basic approach is to represent A as a quotient of an NEC
group F by a surface group K, so that A acts on the surface U/K, where U
is the open upper half-plane. We show that there is an action of A on a
surface of least genus induced by an NEC group with a signature of one of
three types. Groups of type I are Fuchsian groups and the corresponding
action is orientation preserving. Groups of types II and III contain reflec-
tions. We denote by -(A) the minimum genus of any action of A induced by
an NEC group of type II. The number -(A) depends on the relative sizes of
the ranks of certain parts of A. The size of the largest elementary abelian
2-group direct summand of A determines whether r(A) is given by an action
induced by a group of type I, II, or III. Our main result is the following.

THEOREM 5.7. LetA be an abelian group of even order with canonical form
(Z2)a Zml Zmd where m > 2. If the symmetric genus or(A) >_ 2,
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then
(i) r(A) 1 + IAI" (a + 3d 4)/8
(ii) r(A) z(A)
(iii) r(A) min{r (A), z(A)}

ira>d+2
if l <_a <d + l
ifa =0.

We emphasize here that the numbers r (A) and ,(A) are easily calcu-
lated for a particular group A, and we will indicate how to calculate -(A) in
the appropriate section.
There are, of course, other genus parameters for a finite group G. The

most important is the graph theoretic genus y(G)[13]. The graph theoretic
genus y(A) of an abelian group A was first studied by White [12] and he
developed genus formulas in special cases. Jungerman and White [2] later
found y(A) for "most" of the remaining abelian groups. There is an
interesting similarity between the formula in Theorem 5.7(i) and the corre-
sponding formula for the graph theoretic genus [12, p. 208, 209]. If a > 0,
then the graph theoretic genus is

7(A) 1 + IAl(a + 2d- 4)/8.

The symmetric genus is also naturally related to the real genus [7]. The real
genus p(G) is the minimum algebraic genus of any bordered surface on
which G acts. The real genus of an abelian group A was investigated in [8]
with techniques similar to those employed here.

2. Preliminaries

We will use
[a,b] The
Z The
[a] The
Ixl The
IGI The
/x(F) The

the following notation:
commutator, aba- b-
cyclic group of order n
greatest integer in a
order of the element x
order of the group G
non-euclidean area of NEC group F

The set of all NEC groups F which map onto the group A where
the kernel is a Fuchsian surface group
The subgroup of A generated by the elements of order p

We shall also assume that all surfaces are compact. Let G be a group of
automorphisms of the Riemann surface X, and let G / be the subgroup of G
consisting of the orientation-preserving automorphisms. Clearly, G / has
index at most two in G. Consequently, if the group G has no subgroup of
index two, then G G+ and G acts on X preserving orientation. In
particular, if A is a finite abelian group of odd order, then r(A) r (A).
Thus we shall concentrate on abelian groups of even order.
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There are infinite families of groups with genus tr < 1, and some of these
are abelian. The groups of symmetric genus zero are well known. Indeed the
classification of these groups is a classical result that is sometimes credited to
Maschke. The abelian group A has symmetric genus zero if and only if A is
Zn, Z2 X Z2n or (Z2)3; see [1, 6.3.2].
The groups of symmetric genus one have also been classified, in a sense. If

tr(G) 1, then G is a quotient of a plane Euclidean space group and thus G
has one of 17 partial presentations [1, pp. 291, 292]. The abelian group A has
symmetric genus one if and only if A is Zm X Zmn with m > 3, Z2 X Z2 X

Z2n with n > 2, or (Z2)4. The book [1] has a good discussion of the work on
groups of small symmetric genus and graph-theoretic genus.
Non-euclidean crystallographic groups (NEC groups) have been quite

useful in investigating group actions on surfaces. Let .o denote the group of
automorphisms of the open upper half-plane U, and let .+ denote the
subgroup of index 2 consisting of the orientation-preserving automorphisms.
An NEC group is a discrete subgroup F of .W (with the quotient space U/F
compact). If F

__
.o+, then F is called a Fuchsian group. Otherwise F is

called a proper NEC group; in this case F has a canonical Fuchsian subgroup
F+= F _’+ of index 2.

Associated with’ the NEC group F in its signature, which has the form

(2.1)

The quotient space X U/F is a surface with topological genus p and k
boundary components. The surface is orientable if the plus sign is used and
non-orientable if the minus sign is used. The integers A1,..., Ar, called the
ordinary periods, are the ramification indices of the natural quotient mapping
from U to X in fibers above interior points of X. The integers via,..., uis,,
called the link periods, are the ramification indices in fibers above points on
the ith boundary component of X.

Associated with the signature (2.1) is a presentation for the NEC group F,
although the form of the presentation depends upon whether the plus or
minus sign is used. If the plus sign is used, then F has generators

(i) Xl,... X

(ii) clo, cs,..., C,o, c
(iii) el,... e,
(iv) a 1, bl,..., at,, b,

and relations
(a) (xi)hi 1 for i--- 1,..., r
(b) (ci, j_l)2= (ci, j)2= (ci,_lCi,)’J 1 for/= 1,..., k and j 1,..., s
(C) eiCio(ei)-1 Cis for i= 1, k
(d) x Xre ek[al, bl]’" [a,, b,] 1.
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If there is a minus sign in the signature, then the generators (iv) are replaced
by generators

(iv’) al,... ap

and the relation (d) is replaced by the relation

) (ap)2= 1(d’) x Xre ee(a

For more information about signatures, see [4] and [9].
Let F be an NEC group with signature (2.1). The non-euclidean area/z(F)

of a fundamental region F can be calculated directly from its signature [9,
p. 235]:

(2.2) tx(F)/2rr ap + k- 2 + 1 ,
i=1

+EEgl-
i=1 j=l /J

where a 2 if the plus sign is used and a 1 otherwise.
A Fuchsian group K is called a surface group if the quotient map from U

to U/K is unramified. These groups are especially important in studying
Riemann surfaces. Let X be a Riemann surface of genus g > 2. Then X can
be represented as U/K where K is a Fuchsian surface group with/z(K)
47r(g 1). Let G be a group of dianalytic automorphisms of the Riemann
surface X. Then there is an NEC group F and a homomorphism b: F G
onto G such that kernel (b) K.
Now let G be a finite group. If we can find an NEC group F and a

homomorphism b: F - G onto G such that kernel (b) is a Fuchsian surface
group, then G acts on the Riemann surface U/K. A subgroup A of an NEC
group is a (Fuchsian) surface group if and only if A

___
.’+ and it has no

elements of finite order. Macbeath [4, p. 1198] has shown that an element of
finite order in an NEC group F is conjugate to one of the following:

(i) a power of x for i= 1,..., r
(ii) a power of some c,i,j_lCi, for 1,..., k and j 1,..., s
(iii) some ci, for 1,..., k and j 1,..., si.

It is usually easy to see that none of these elements are in the kernel of
b. If F is a proper NEC group, then it is also necessary to check that
kernel(qb)

_
_’+ or equivalently, b(F+) has index two in G [10, Theorem 1,

p. 52]. Thus it is straightforward to verify that kernel(b) is a Fuchsian surface
group, and we will omit this part of the proof from all subsequent arguments.

If A is a subgroup of finite index in F, then

[r:A] (A)/(r).
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It follows that the genus of the surface U/K on which G F/K acts is given
by

(2.3) g 1 / Ial" (F)/47r.

Minimizing g is therefore equivalent to minimizing /z(F). Among the NEC
groups F for which G is a quotient of F by a surface group, we want to
identify the one for which /z(F) is as small as possible; then equation (2.3)
will give the symmetric genus of the group G.

Every finite abelian group of rank r has a unique canonical form

A Zml X Zm2 X Zmr
such that m divides mi+ for 1,..., r- 1 and rn > 1 [6, p. 387]. We
will relabel the invariants so that we may exhibit the Z2 factors explicitly.
Thus the canonical form can be written

(2.4) A ( Z2)
a
X Zrn X Zm2 X X Zmn

where r n + a. Notice that if a > 0, then all of the invariants m are even.
This canonical form is very useful for studying genus parameters; see [1], [2],
[5], [8], and [13]. We shall need another canonical form that we shall call the
alternate canonical form. Let ml,..., me be the invariants from the canonical
form (2.4) that are not divisible by 4. Then let

=Zm Z
+1 mn

where C is trivial in case k n. Now let E be the Sylow 2-subgroup of
(Z2)a Zml Zmk; E is an elementary abelian 2-group. The Primary
Decomposition Theorem implies that there is an odd order group B satisfy-
ing E B (z2)a Zml Zmk. We define the alternate canonical
form for the abelian group A as

A=ExBxC.

The abelian group A is completely described by the rank of E and the
invariants of B and C.
Now suppose the abelian group A acts on the Riemann surface X of

genus g > 2. Represent X as U/K where K is a surface group. We then
obtain an NEC group F with signature (2.1) and a homomorphism b: F A
onto A such that kernel (b) K. The following is basic.
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PROPOSITION. Suppose A has even order. Then each link period in the
signature of F is two. Further, each non-empty period cycle has at least two
link periods.

Proof Let F have canonical presentation associated with (2.1). The
surface group K contains no elements of finite order. Suppose n nij is a
link period, and write c ci, j_ 1, and d ci so that c 2 d2 (cd)" 1 in
F.

If n is odd, then since A is abelian, cd K kernel(b). If n is even and
n > 4, then (cd)n/2 K. In either case, K would contain an analytic ele-
ment of finite order. Hence n 2.
Suppose there were a period cycle with exactly one link period (equal to 2).

This period cycle has corresponding generators c, d, and e satisfying
2 d2 (cd)2 1 and ece -1 d. It follows that th(c) 4(d) since A is
abelian, and again cd K. Thus a non-empty period cycle must have at least
two periods.

3. Reduction of signatures

Let A be a finite abelian group of even order with tr(A) > 2. Define A
to be the set of all NEC groups F with homomorphism 4: F A onto A
such that K kernel(4) is a Fuchsian surface group. All link periods in the
signature of F equal 2. The group A acts on X U/K, a Riemann surface
whose genus is given by (2.3). We will find the symmetric genus of G by
minimizing (F).

In this section, we show that we need only consider elements of 9A with
certain types of signatures. Given any F A, we will construct F’ 9A
having signature of a certain type and satisfying/(F’) </(F). The groups F
and F’ will have similar structures, and we shall specify F’ by giving the
generators of F which are not in F’ and a list of new generators (indicated by
primes). We will construct the homomorphism b’: F’ --> A onto A by specify-
ing the images of the new generators in F’ and indicating any difference
between the action of 4’ and that of 4. The homomorphism 4’ will act in the
same way as b on all generators that both groups have in common. If F’ is a
proper NEC group, then we shall construct b’ such that if y (F’) +, then
4’(Y) 4(F+). It is then clear that 4’((F’) +) has index two in G, and
kernel(4’)_ _’+. We omit the proof that kernel(4) is a surface group, as
explained in 2. Subsequently, we will use the notation that a bar over an
element of F A will indicate its image under 4 in A.
We begin by showing that the ordinary periods may be arranged so that

each period is divisible by all preceding periods.
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LEMMA 3.1. Suppose F and Zl, z2 1-’ are either elliptic or connect-
ing generators (x or ei). Let p be any prime and suppose [5i[ min where m
is a power ofp and p ni. Suppose m2 < m1. There exists F’ ,9A where the
corresponding generators Z’l and z’2 have images with order m2n and mln2
respectively. Furthermore/z(F’) _</z(F) whenever

(a) zx=xiandz2=e1,or
(b) Z X and z2 xj and 1511 1521 or
(c) zl=eiandz2=ej.

Proof There exist integers al, bl, a2, and b2 such that aim + bin 1
and azm + b2n2 1. We replace generators z and z2 in F by generators

z and z in F’ of the same type. If either z or z2 is an elliptic generator,
then let the ordinary period of its replacement be given by [z[ mzn or
[z[ mln2. The homomorphism " F’ - A is given by

Z -") 5’nla152b2
’:

We use equation (2.2) to compute the areas. In case (a),

+ 27r(m m.)/mlmn <

In case (b), n < n2 and

/z(F’) =/x(F) + 27r(1/m 1/m2)(1/n 1/n2) </.t(F).

Finally, in case (c),/x(F’) =/(r).

LEMMA 3.2. Suppose F A. Then there exists F’ A with the follow-
ing properties.

(a) /x(F’) </(F).
(b) The generators of F’ have images in A such that Ixil-’ divides ixi+_.-=7---11 for
1,.. r 1, I1 divides [1, and [1 divides --r--"ej+ll forj 1,...,k- 1.

Proof Let r be the set of all primes which divide [A[. Arrange the
generators Xl,..., Xr in increasing order. Let p e zr and use Lemma 3.1 to
construct a new group F’ in which the divisibility condition holds for the
p-part of the order of the image in A of the elliptic and connecting
generators. We may do this for every prime in zr and the result will be the
divisibility condition of the lemma.

Notice that since the homomorphism is one to one on (xi), Lemma 3.2
asserts that the ordinary periods of the signature may be arranged so that
each one divides its successor.
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We are now in a position to show that we need only consider groups with a
plus sign in their signature.

LEMMA 3.3. Let F a with signature

Then there is a group F’ A with a plus sign in its signature which satisfies

Proof We begin by assuming the divisibility condition from Lemma 3.2.
The genus of the new group F’ will be h [g/2]. It is obvious that we will

a’ ’.have to replace the generators al, ag by new generators al, b 1, h, bh
When we define b" F’ A the images of these new generators will be

a a2i_

b ---) d2
for 1,...,h and k 0,

a’i "2i- 11
4)’.

b - 2i1
for 1,...,h and k e: 0.

Suppose that g is even. If there are no period cycles (k 0), then redefine
the ordinary period

These are the only new generators and the other change in the homomor-
phism is given by

ek -- .k ag-2 when k 0

X " 2r’ ag-2 when k 0.

When k : 0, we see that/x(r’) =/x(r), otherwise/x(r’) </x(r).
Now suppose g is odd. If k 0, we need to redefine the ordinary period

Xr 12r1 gl < 2At and add an elliptic element x’+l with order
11 ggl -< 21r. If k 0, we add the connecting generator e’k+ and the

reflection c,+ 1. This corresponds to adding an empty period cycle to the
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signature. The homomorphism b" F’ A is given by

Xtr -- "g
Xr+l E1 ag if k 0,

ek eka agC

gl if k : O.ek+ ---> a

If k 0, then/z(F’) =/x(F) + 27r(1/h 1/X 1/Xr+ 1) < /(F). In addi-
tion, if k 0, then we send the reflection c/ to some element of order two
in A, and clearly,

We now prove several lemmas which cumulatively show that we need only
consider NEC-groups with certain types of signature.

LEMMA 3.4. Suppose F A has signature

(/19,-[-.,[ll,...,lr],{Cl,...,Ck} )

with p > 0 and k > O. Then there exists F’ 9A with signature

(0, + [ll, lr+2p] Cl, Ck} )
satisfying/z(r’) </x(r).

Proof. We will find F’ with signature

(19 1, +, [ll,...,lr+2], {Cl,..., Ck} )

satisfying /x(F’) </z(F). A simple induction will complete the proof of the
lemma. We construct F’ by deleting generators ap and bp and replacing
them with_ elliptic generators X’r/ and X’r/ 2 with orders /r+l "-I1 and
/r+2 [bpl. The homomorphism b’" F’ A is given by

Xr+ > ap

Xr+ 2 bp

e ’(ff,b,) -1.

It is easy to see that/x(F’) =/x(F) 2r(1/hr+ + 1/Ar+2) </z(F).

Notice that this reduction fails if there are no period cycles (i.e., if k 0).
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LEMMA 3.5. Suppose F A has signature

(0,-I-,[l,...,ar],{Cl,...,Cl,(2n),(2m)})

with n > 2 and m > 2. Then there exists F’ A with signature

(0, "’, [/1,’’’, /r+l], {Cl,...,Cl, (2n+m)})

satisfying/.,(I"’) </.,(F).

Proof. Let the period cycles (2n) and (2m) correspond to reflections
Co,..., c and do,..., d respectively. We will replace these reflections by

The connecting generator et+2 will be replacedthe reflections Uo,.. Un/m"
by the elliptic generator X’r/ with order At+ [’1+21. The homomorphism
b’: F’ A will be given by

Xr+ el+2

bl C

ln+ d

uo do dm

for 1,...,n

for 1,...,m

It is easily checked that/x(F’) =/z(F) 27r’/ar+ < (F).

Now a simple induction allows us to assume that there is at most one
non-empty period cycle. We have shown that among the NEC groups in
with minimal area, there is either one with no period cycles or one with
genus zero and at most one non-empty period cycle.

LEMMA 3.6. Suppose F A has signature

(0, "-}- [1, r].,{( )l, (2t)})
with i 4 and > 3. Then there exists F’ A with signature

(0, +, [A1,..., Ar_l] {( )1+1, (2t_l)})
and/x(F’) </x(F).

Proof Let the period cycle (2t) correspond to reflections Co,..., c and
connecting generator f. We replace c and x by a reflection d’l+ and a
connecting generator e’ associated with a new empty period cycle. The/+1
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homomorphism ’" F’ A is given by

ep
l+ -+ Xr

p" d+l- .
Co Ct- 1"

We see that/z(F’) =/z(F) 2zr(1/4 1/Ar) < g(1-’).

LEMMA 3.7. Suppose F A has signature

(0, -[-, [,.1,..., /r], {( )1, (2t)})
with ’r odd and t > 3. Then there exists F’ with signature

(0, +, [A1,..., Ar_l,2Ar] {( )1, (2’-1)})
and/x(r’) </x(F).

Proof Let the period cycle (2t) be associated with reflections Co,..., ct.

We will replace X and c with a new elliptic generator X’r of order 2A r. The
homomorphism b’: F’ --, A is given by

X > Ct_ 1Ct Xr

el+ --> ct- 1ctel+

Co > ct- 1"

Clearly,/z(F’) =/z(r) 2r(1/4

LEMMA 3.8. Suppose F has signature

(0, +,[A1,...,hr],{()/,(2,2)})
with r > 1. Then there exists F’ A with signature

(0, +, [h,..., Ar_ll {()1+2})
and g(F’) </z(F).

Proof. The period cycle (2, 2) corresponds to reflections d0, d1, and d2
and connecting generator f. Replace the generators Xr, do, d1, d2 and f

and e’ and new reflections c’ andwith new connecting generators el+ + 2 +
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c’ The homomorphism th’ is defined by/+2"

el+ -- Xr

l+2"- f
Cl+l dl

c+2
---, d2.

We see that/x(F’) =/x(F) 2r(1/2 1/Ar) </(F).

LEMMA 3.9. Suppose F A has signature

(0, +, [2r], {( )1, (2t)})
with r > 1 and t > 2. Then there exists F’ 9A with signature

(0, +,[2r-1],{()l,(2t+l)})
and/.(r’) </.(F).

Proof We must delete the elliptic element x and replace the reflections
Co,...,c corresponding to the period cycle (2t) by new reflections
Co;.. ct/1.’ The homomorphism b’ is defined by

Ct + > Xr
el+ Xrel+

CO -"> r"

Clearly,/x(F’) =/(F) 7r/2 </x(F).

We use Lemmas 3.6 and 3.7 to reduce the number of link periods in the
non-empty period cycle, as long as there are ordinary periods larger than 2.
(Either lemma may be used when a is odd and at least five.) Therefore, we
obtain a signature of one of the following two types.

(A) (0, +, [2r], {( )s, (2t)})
(B) (0, -’]-, al, /r ], {( )s, (2, 2)})

If we have a signature of type (B), then we apply Lemma 3.8 to eliminate the
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final link periods and obtain one of the form

(B’) (0, q-, [AI,..., r], {()s}).

If we have a signature of type (A)with r > 1, then we use Lemma 3.9 (r
times) to obtain a signature of type (A)with r 0. Therefore, in order to
minimize It(F), we only need to consider three types of signatures. These
signatures are summarized in the main result of this section, Theorem 3.10.

THEOREM 3.10. Among the NEC groups in 6 with minimal non-euclidean
area, there is a group F whose signature has one of the following forms.

(I) (g,-[-,[/1,...,/r],{ })
(II) (0, +,[hx,..., ’r], {()k})

(III) (0,+,[ ],{(),(2t)}) (t>2)
Furthermore, in cases (I) and (II), h divides Ai+ for 1 <_ <_ r 1.

Henceforth, we will refer to groups with these signatures as groups of Type
I, II, III.

4. Groups of Type II

Let A be an abelian group with even order and (r(A) > 2. In this section,
we find a group with minimal area from among the Type II groups in A so
that we can determine the number of its empty period cycles (which is equal
to k). The value of k will depend on the ranks of the groups in the alternate
canonical form, introduced in Section 2. We begin with the following upper
bound on the value of k.

LEMMA 4.1. Let E B C be the alternate canonical form for the abelian
group A. Let F be a group with minimal non-euclidean area from among the
groups in with Type H signature. Let Co,..., c, be the reflections associ-
ated with the empty period cycles in the signature. Then the projections on E of
the images in A of Cl,..., ck are linearly independent, and hence k < rank(E).

Proof. Clearly 80 8k. Let be an involution in C. Since C has no Z2

factors, there exists C such that 2 . There exists an element z in F
whose image is . It follows that is the image of an element (namely z 2) of
F which does not involve any reflections.
Suppose that the projections into E of 81,..., 8 are linearly dependent.

Then some linear combination (written multiplicatively) of 81,..., 8 is in C.
Let o) 8 8[,, where r 0 or 1 for all i, be the linear combination in
C. We may suppose that r, 1 by reordering the reflections if necessary.
Now we define a new NEC group F’ with one less empty period cycle and
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one more ordinary period (hr+

" F --,A by
[’k[) than F. Define the homomorphism

Xr+ --’> k

CO "--> Ck- 1"

Since k is the image of a linear combination of reflections c1,.. Ck_
and to (which involves no reflections), b’ is onto A. It is elementary that
F’ . The fact that /z(F’) + 2’rr/Ar+ =/z(F) contradicts the minimality
of/x(F) and the conclusion follows.

Next we show that when the number of Z2 factors in A is small, there is
an NEC group with a particular value of k among the Type II groups in
with minimal area.

LEMMA 4.2. Let A E B .C be an abelian group in alternate canoni-
cal form and suppose rank(E) < rank(C) + 1. Among the NEC groups in A
with Type H signature, there is a group F with minimal non-euclidean area
which satisfies k rank(E).

Proof. Let F A be a group with minimal non-euclidean area from
among the groups of Type II signature. We may suppose that A divides Ai+

for 1,..., r- 1 by Lemma 3.2. Since k _< rank(E) by Lemma 4.1, it
follows that k- 1 _< rank(C). Therefore, Lemma 3.2 and a rank argument
shows that 4 divides IC’i] for all and hence 4 divides at least (rank(C) k + 1)
of the A i. We may assume that rank(E)> 1, since the lemma is easy if
rank(E) 0. Therefore, there exists some index t < r such that A 2U
where u is odd. The projections of 1,.-., C’k onto E are linearly indepen-
dent by Lemma 4.1.

Case 1. C. We construct F’ by replacing the ordinary period h by u
and/x(F’) </x(F).

Case 2. pre() : 1. If the projection is not linearly independent of the
projections pre(?,i) for 1,..., k then we replace h by u as in case 1.
Hence we may assume that the projections are linearly independent. Define
F’ as the NEC group with signature

(0, + l it_ U lt + ir_ {()k+l}).
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We define the homomorphism b’: F’ --. A by

Ck+ -- -uq
ek+ --> XrXt

where q is the unique solution of q(u + 2)= 1 (mod 2u). It follows that
/x(F’) =/z(F) + 2rr(1/A 1/At) </x(F). Now we continue this process un-
til k rank(E).

Notice that in this case we may assume that if/i is even, then it is divisible
by 4.

Finally, we show that when the number of Z2 factors in A is large, there is
an NEC group with a particular value of k among the Type II groups in A
with minimal area.

LEMMA 4.3. Let A E B C be an abelian group in alternate canoni-
cal form with rank(E) > rank(C) + 1. Among the NEC groups which have
minimal non-euclidean area in the subset of A consisting of groups with Type
II signature, there is a group with

k [(rank(E) + rank(C) + 1)/2].

Proof Let F be a group with minimal non-euclidean area in the subset of
consisting of groups with Type II signature. We may assume that [’i1

divides 1’i+ 1] for all and that [.j[ divides It,i[ for all and j, by Lemma 3.2.
Suppose that It, x[ were odd. Therefore, [.j[ would be odd and since rank(E)
>_ 2, we would have k >_ 2. We define a new Type II NEC group F’ by

and where 21 (hence, F’ hasreplacing el, Cl, and e2 by Xr+ e2 /r+l
k 1 empty period cycles with connecting generators e,..., e). Define a
homomorphism th’: F’ - A by

Xr+ elClC2

e2 e2clc2.

The minimality of/z(F) and the fact that (F’) </z(F) would give a contra-
diction. Therefore, I1 is even, and so is I’i] for all i, by the divisibility
condition. Now let T2 be the 2-primary part of
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The group T2 contains a maximal elementary abelian direct summand T
which is a subgroup of E. We can show that T is linearly independent of the
reflections and that its rank is at least (k- 1 rank(C)). Hence we have
k + (k 1 rank(C)) < rank(E) and

2k < rank(E) + rank(C) + 1.

Now suppose that 2k < rank(E)+ rank(C). Since the reflections and
connecting generators account for at most (2k- 1) of the rank of the
2-primary part of A (which has rank equal to rank(E)+ rank(C)), we see
that there must be at least two elliptic generators whose images in A have
even order. Since k < rank(E)- 1 and Igl divides I1 for all and j, we
may assume that at least one of these elliptic generators has image in A
whose order is not divisible by 4. We may suppose that these elliptic
generators are x and xr. Now construct an NEC group F’ by replacing x
and x by Xti, e’ and c] where /t U 1i1/2 and renumbering the connect-
ing generators and reflections so that the new ones are listed first. Define the
homomorphism tb’: F’ A by

where y and z are positive integers satisfying the congruence

Finally, it follows that

2y+uz= 1 (mod2u).

27r(1/,i- liar) <_

and equality holds if and only if /i /r" Therefore, we see that if k has the
value stated, then F has minimal area in this subset, although there may be
other groups in aA of Type II signature with the same area.

Note that the strong symmetric genus cr (A) is the genus of the group
F A which has minimal non-euclidean area from among the Type I
groups in A. Similarly, we define a Type II genus r(A) as the genus of
the group F A which has minimal non-euclidean area from among the
groups in A of Type II. The Type II genus may be computed in the
following way.

Let A E B C be an abelian group in alternate canonical form with
e rank(E), b rank(B), and c rank(C). Suppose that the invariants of
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B are 1,..., b and the invariants of C are ’)/1,..., ’)/c. Let F be a group of
minimal area from among the Type II groups in and set M =/(F)/27r.
There are two cases.

Case 1. Suppose e _< c / 1. Then k e in the Type II signature and a
simple computation yields the following formula.

b 1 c+l-e

(4.4) M=b+c- 1- _, 1

i= fli i=1 ’)/i

Case 2. Suppose e>c+ 1. Then k= [(e+c+ 1)/2] in the Type II
signature. Now let n rank(A), r n k + 1,

K max{k + b -e,k}

and 1 if e + c is even and 0 if it is odd. We derive the following formula
for M.

(4.5) M=n-1-
1

i=1 i 2fl

Taken together these two formulas allow us to compute the Type II genus as
shown in the following theorem.

THEOREM 4.6. LetA be an abelian group of even order with tr(A) > 2 and
let z(A) be the Type II genus. Then -(A) 1 + [AIM/2 where M is given by
either Formula (4.4) or (4.5).

5. The main theorem

In this section we state and prove the main theorem. Let A be an abelian
group with even order and tr(A) > 2. We begin by showing that if A has
enough Z2 factors, then the minimum area will occur for a group of Type III
and we obtain an explicit formula for tr(A).
We begin by establishing the following upper bound on the symmetric

genus of A.

LEMMA 5.1. Let the abelian group A have the canonical form

(Z2)a x Zml X X Zmd
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where m > 2. If a > d + 2, then

tr(A) _< 1 + IAl(a + 3d- 4)/8.

Proof Let F be the NEC group with signature

(o, +, ], {(
We calculate the area by (2.2) as

(F)/2r d + (a d)/4 (3d + a 4)/4.

Since tr(A) > 2,/x(F) > 0. Therefore, if we can show that F , we will
have the upper bound. Let t a d. The group F has generators Cl,..., cd,
do,..., dt, el,... ed, f and relations c/ d.2 [ei, Ci] el... edf 1,
f. do .f-l= dt’ and (d0dl)2 (dt_idt)= 1 for all and ]. Let
Vl,..., Va be generators for (Z2)a and wj be a generator for the factor Zmj of
A. Define a homomorphism b: F - A by

C --> U for 1,..., d

dj vd+j for j 1,..., (a d)

oh: e --> w for 1,..., d

do Ua

f - (w1 Wd)-1.

It is easily checked that b is a homomorphism onto A and that the kernel is
a surface group. Therefore F A.
LEMMA 5.2. Let the abelian group A have the canonical form

(Z2)a X Zml X X Zmd
where m > 2. If a > d + 2, then

tr(A) > 1 + IAl(a + 3d- 4)/8.

Proof. Suppose that A acts on the Riemann surface X of genus tr

tr(A) > 2. We may represent X as U/K where K is a surface group. Then
we obtain an NEC group F and a homomorphism b from F onto A with
kernel(b) K. By theorem 3.10 we may assume that F is a group of Type I,
II, or III. We will consider each of the three types separately.
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First suppose that F has Type II signature

(0, +, {(
with k > 1. The canonical generating set for F has r + 2k generators, one of
which is obviously redundant. Since A is a quotient group of F,

rank(A) =a +d<r+2k- 1.

Since each /i 2, we may use equation (2.2) to derive the inequality

(r)/2r >_ k 2 + r12 ((2k + r 1) 3)/2.

It follows that/z(F)/27r > ((a + d) 3)/2. Since a > d + 2 by hypothesis,
we see that a + d > (a + 3d)/2 + 1. Therefore, we obtain

(r)/2r >_ (a + 3d- 4)/4,

and by equation (2.3) we derive the inequality for the genus r(A).
Next suppose that F has Type III signature

(0, +,[ 1,{()s,(2t)})
with > 2. After removing all redundant generators from the canonical
presentation of F, the simplified presentation has (2s + t) generators.
At most s of these generators have order larger than 2. Since A is a quo-
tient of F, it follows that 2s + t > a + d and s > d. Now by equation (2.2)
/z(F)/2" s 1 + t/4. Thus, the inequality for r(A) follows by

4((F)/2zr) 4s + 4 (2s + t) + 2s 4 > (a + d) + 2d 4

=a + 3d-4.

Finally, suppose F has Type I signature

(P, +, [/1," /r], }).

The argument is more delicate in this case. Let r2 be the number of ordinary
periods equal to 2, r3 the number equal to 3, and rh the number larger than
3. Now from (2.2)

(5.1)
(5.2)

/x(F)/27r > 2p 2 + r2/2 + 2r3/3 + 3rh/4
12 (/z(F)/27r) > 24p + 6rz + 8r3 + 9rh 24

12 (/z(F)/27r) > 18p + 3r2 + 8r3 + 9rh + (6p + 3rz) 24

We will use these inequalities to obtain a lower bound for/z(F).
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After removing a redundant generator from the canonical presentation for
F, the generating set has 2p + r 1 generators. Also for p equal to 2 or 3,
let Alp] denote the subgroup of A generated by the elements of order p.
There are two cases, depending on whether rh is zero.

Case 1. Suppose rh 4: O. Then we have

2p + rh + r3 1 > d rank(A/A[2]),
2p + rh + r2 1 > a + d rank(A/A[3]).

If either p > 1 or r2 > 1, then 6p + 3r2 > 3 and from (5.2)we have

12 (/z(F)/2rr) >_ 18p + 3r2 + 8r3 + 9rh 21

=6-(2p+rh + r3- 1) +3.(2p+rh + r2- 1)
+ 2r3 12

>6d+3.(a +d)- 12=9d+3a- 12.

Now, if p r2 0, then rh 1 > a + d by (5.3). Using this, (5.1) and the
fact that a > 2, we get the inequalities

12 (/x(V)/2r) > 9.(rh 1) + 8r3 15 > 9"(a + d) 15

=9d+3a + (6a- 15) >9d+3a-3.

Case 2. Suppose rh --0. First assume that r3 > 0, so that there is a
redundant generator of order 3 in the canonical presentation of F. Here we
have

2p + r3 1 > d rank(A/A[2]),
2p + r2 > a + d rank(A/A[3]).

If p > 1, then from (5.2)

12 (/x(V)/2rr) > 18p + 6r2 + 8r3 18

=6.(2p+r3- 1) +3.(2p+r2) +2r3- 12

>6d+3.(a +d) +2- 12--9d+3a- 10.

Hence we may assume that p 0. Inequality (5.1)says that

12 (/x(F)/27r) > 6r2 + 8r3 24.
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Since r3 1 >_ d and r2 >_ a + d >_ 3,

12 ((r)/2rr) > 3r2 + 6.(r3 1) + 3r2 + 2r3 18

>3"(a +d) +6d+9+2- 18=9d+3a-7.

Finally, suppose r3 0, so that the redundant generator removed has
order two. Now we have

2p > d rank(A/A[2]),
2p+r2- 1 >a +d=rank(A) >3.

Using inequality (5.1), we see that

12 ((F)/2r) >_ 24p + 6r2 24

=6.(2p) +3.(2p+r2- 1) +3.(2p+r2)-21
>6d+3"(a +d) +3"4-21=9d+3a-9.

A review of the calculations shows that in each case

(r)/2r _> (a + 3d- 4)/4.

By (2.3), tr(A) > 1 + IZl(a + 3d 4)/8.

These two lemmas are summarized by the following theorem.

THEOREM 5.3. Let the abelian group A have canonical form

(Z2)a X Zml X X Zmd
where m > 2. If a >_ d + 2, then

tr(A) 1 + IAl(a + 3d- 4)/8.

It is interesting that this formula holds for groups with tr(A)< 1. We
obtain a formula for the genus of an elementary abelian 2-group [7, 7] as a
special case of this theorem.

COROLLARY 5.4. The genus of the group (Z2)a for a >_ 2 is given by

o-((Z2) a) 1 d-- 2a-3. (a 4).

If the abelian group A has enough Z2 factors, then the minimum genus
action is attained by an NEC group with signature of Type III. Interestingly,
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it is easy to see that if A has a limited number of Za factors, then the
minimum genus is not attained by an NEC group with a Type III signature.

LEMMA 5.5. Let the abelian group A have canonical form

(z2)aXZmX’’" X Zm
where m > 2 and 0 < a < d + 1. Suppose F A has signature

(0, +,[ 1,{()s,(2,)})

with s > d and t > 2. Then there exists an NEC group F’ A with signature
(0, +,[ ], {( )s+ 1}) satisfying/z(F’) </z(F).

Proof Since r(A) > 2, then d > 2. Any generating set for A must have
at least d generators with order larger than 2. It follows from the canonical
presentation for F that s > d.

Let F’ be an NEC group with signature (0, +,[ ], {( y/l}). Then F’ is
generated by the reflections c],..., c+ and the connecting generators

is redundant. Sincewhere e’ 1 Therefore, e+el, es+l el s+l

a < s / 1 and d < s, we can find a homomorphism th’: F’ - A that makes
F’ A. Further

(r)/2# s 1 + t/4 > s 1 (r’)/2#.

This shows that if a < d + 1, then the genus r(A) is the minimum of
r (A) and z(A), the strong symmetric genus and the Type II genus respec-
tively. The next lemma shows that if 1 < a < d + 1, then r(A) ’(A).

LEMMA 5.6. Let the abelian group A have canonical form

( z2 )
a
X Zml X X Zmd

where m > 2 and 1 < a < d + 1. Then all of the groups in A with minimal
area are of Type H.

Proof Suppose that F 9A has minimal area. By Lemma 5.5, F is
either of Type I or Type II.
Suppose that F has signature (g, +, ], }). It is clear that this group is

not minimal if a + d is odd. Assume that a + d is even and g (a + d)/2.
In this case, /z(F)/2-= a + d- 2. Now define F’ to be the NEC group
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with signature

(0, +, [2a-l,2m,...,2md],{( )}).
It is easy to see that F’ A. Thus

1(u(r’)/2rr a + d 2 + 1
d 1) < (r)/2r.

Therefore, we may assume that F has signature

(g, q-, [}tl,..., /r], })

where r > 2. By Maclachlan’s main result [5, Theorem 4], we see that A 2
and i divides i+1 for 1,..., r. Now we define F’ as the NEC group
with signature

(g, + [/2,...,/r-1], {( )})"

Define the homomorphism b’: F’ A by

CO "--)21

" e’ 2r2.
Note ’1 2, since a > 1. Hence F’ aA and it is easily calculated that

/x(F’) =/x(F) 2rr(1/2 liar) <

Since this contradicts our assumption that F has minimal area, we see that F
must be a Type II group.

All of the preceding results can be combined into one big theorem.

THEOREM 5.7. LetA be an abelian group of even order with canonical form
(Z2)a x Zml X X Zmd where m > 2. If the symmetric genus tr(A) > 2,
then

(i) tr(A) 1 + IAI" (a + 3d 4)/8 /fa > d + 2
(ii) tr(A)= r(A) if 1 < a < d + 1
(iii) tr(A) min{tr (A), r(A)} /f a 0.

The preceding theorem is the best possible. If a 0 (i.e. rank(E)<
rank(B)), then the minimum area can occur with either groups of Type I or



THE SYMMETRIC GENUS OF FINITE ABELIAN GROUPS 423

groups of Type II. For example, let

A Zm x Z2n X Z4n

where m divides n and both are odd. It is an easy computation to show that
if m n, then the minimum area occurs when F has signature

(O, +,[m,n,4n],{( )})

of Type II. Whereas, if m 4: n, then the minimum area occurs when F has
signature (1, +, [m, m], }) of Type I.

Finally, we look at some special cases. Let A E B C be in alternate
canonical form. If E 0, then the symmetric genus and the strong symmetric
genus are-equal. If B 0 and E 4: 0, then the minimum area occurs with a
Type II group if e < c + 1 and with a Type III group if e > c + 2. In either
case, the symmetric genus and the strong symmetric genus are not equal.
We would like to thank the referee for several helpful suggestions.
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