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ARRAY NONRECURSIVE DEGREES AND LATTICE
EMBEDDINGS OF THE DIAMOND

ROD DOWNEY

1. Introduction

In [16], Slaman solved Barry Cooper’s diamond problem by constructing an
r.e. degree a 4:0 that was not the top of a diamond in the A 2 degrees. That
is, for all A 2 degrees b, c, if b U c a and bit then b n c 4: 0. The proof of
this result was a very complex argument involving "three jumps" of nonuni-
formity. Earlier work of Cooper [3], Posner [15] and Epstein [9] showed that
such a could not be high, indeed if b is high then the degrees < b are
complemented.

Naturally the question arises: exactly what r.e. degrees are tops of dia-
monds? Fejer [10] has proved that if a is an r.e. degree that is not the top of a
diamond then a is low2. (In fact, Fejer showed that ifa is a degree that is
non-GL2 then a is the top of a diamond.) Subsequently, Slaman pointed out
a possible definition of "low2 r.e.": perhaps all low2 r.e. degrees are bounded
by degrees that are not tops of diamonds in the A

2 degrees.
The first goal of the present paper is to answer Slaman’s question nega-

tively. In fact a consequence of our results is that there are low r.e. degrees
not bounded by any r.e. degree that is not the top of a diamond.

In [6], Downey, Jockusch and Stob initiated the study of a new class of r.e.
degrees called the array nonrecursive r.e. degrees. We review the definition of
this class in 2, but for our purposes here it suffices to remark that it is a
natural class of degrees which arise from arguments which need ’multiple
permissions’. In [6] it is shown that this class contains members of low degree,
is closed upwards, and contains all non-low2 r.e. degrees.
Our result is:

(1.1) THEOREM. Suppose a is array nonrecursive. Then a is the top of a
diamond in the A 2 degrees.
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Since all non-low2 degrees are array nonrecursive, (1.1) subsumes Fejer’s
[10] result for r.e. degrees.
The proof of Theorem (1.1) is slightly reminiscent of Downey [4] where it is

shown that ll’ is the top of a diamond in the d.r.e, degrees. Here the reader
should recall that A is called d.r.e, if, for some r.e. B, C, A B C.
Theorem (1.1) also allows us to solve a question from [4]:

(1.2) COROLLARY. There exist r.e. degrees a that are tops of diamonds in
the A 2 degrees but not in the d.r.e, degrees.

The proof of (1.2) depends on a slight modification of a result of Lachlan
[11] and the well known fact that all nonzero d.r.e, degrees bound nonzero
r.e. degrees. At this stage we should point out thatmas all array nonrecursive
r.e. degrees bound nonzero array recursive degrees--it follows by (e.g.)
Lachlan [11] that there are degrees that are tops of diamonds in the r.e.
degrees that are array recursive. In fact by Ambos-Spies [1] or Downey-Welch
[8], there are initial segments of the r.e. degrees consisting entirely of r.e.
degrees that are tops of diamonds (in the r.e. degrees). As a companion
result to theorem (1.1) we shall construct various r.e. degrees b such that for
all a >_ b or a _< b, a is the top of a diamond in the A 2 degrees.
The technique we use in solving Slaman’s question--or rather, the tech-

nique with which we apply the array nonrecursiveness of a in (1.1)--has
other uses. In particular we can use it to solve a question from [6]. All array
recursive degrees constructed in [6] were low and it was an open question
whether all array recursive degrees were low. We shall prove:

(1.3) THEOREM. There exist IOW2-10W array recursive degrees.

The proof of (1.3) involves a couple of intermediate steps. First we define
an r.e. set A to be W-mitotic if there exist r.e. sets B and C splitting A (i.e.
A =BuCand BNC=Cl) suchthat A =wB=w C where <w denotes
weak truth table reducibility. Using the technique of (1.1) we can show:

(1.4) THEOREM. Suppose a is array nonrecursive. Then a contains an r.e.
set A which is non-W-mitotic.

Once we have (1.4) we can then get (1.3) using a result of Ladner [13]
where it is established (see Ambos-Spies & Fejer [2] and Downey-Slaman [7])
that there exists a low2-1ow degree a that contains a single r.e. W-degree (i.e.,
a contiguous degree) and such that all of the r.e. elements of a are mitotic
(i.e., if A is r.e. with A a than A B t3 C for some disjoint r.e. sets B
and C with B =T C----T A). Actually we can also get (1.3) from another
result we establish using the technique of (1.4) and (1.1):
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(1.5) THEOREM. /f a is array nonrecursive, then a is not contiguous.

Note that (1.4) also implies (1.3) via Ladner’s result. We shall prove (1.4)
and then (1.5) first as they require much easier applications of array nonre-
cursiveness than does (1.1). We hope they will thus illuminate the proof of
(1.1).

Notation is standard and follows Soare [17]. We let A[x] {z: z < x &
z A}. We remain the reader of the convention that all computations, etc.,
at stage s are bounded by s. We also regard all use functions to be
nondecreasing in stage number and argument. For an r.e. set this convention
is clear. For a A 2 set C with enumeration C lim Cs, it may be that
C C for some stages s < yet there is a stage q with < q < s with

C Ca. The use at stage s must return to the use of stage t. Thus for a A
2

set we demand that new uses are nondecreasing in stage number and
argument. That is, if ft(ft; x) then (t(ft; z) for all z < x, and if
s > t, (Cs; z) $ and

(fq < s)[u((Cq; z) :: u(fs(Cs" z)]
then

tl(ft(ft" Z)) u(fs(fs" z)).

Also z < u(ft(Ct" z)) and if z < z2 x then

u(ft(ft’ z1) ) < u(ft(ft" Z2) ).

These conventions are quite useful. Finally although the paper is self con-
tained, the reader might find it helpful to read [4] either before, or in
conjunction with, the proof of (1.1) in 3.

2. W-mitotic and array nonrecursive sets

Following [6] we shall call a strong array Q {Dg(x): x to} (i.e., where g
is recursive, (Vx, y)[Dg(x n Dg(x t] and, of course, Dz is the z-th canoni-
cal finite set) a very strong array if UDg(x to and for all x < y, lDg(x[ <
IOg(yl. If Q is a very strong array we shall say a set E is Q-nonrecursive if

(2.1) n
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Evidently (2.1) is equivalent to

(2.1)’ (Ve)(=lx)(We r3 Dg(x E r3 Dg(x)).

We call an r.e. degree a array nonrecursive if there is an r.e. set E of
degree a and a very strong array Q such that E is Q-nonrecursive. It might
appear that the role of Q is crucial but what is important is the "multiple
permitting" character as the following basic result from [6] shows.

(2.2) TIazORZM [6]. Let Q be any very strong array and a array nonrecur-
sire. Then there exists an r.e. set E a with E Q-nonrecursive.

Other results from [6] we will need are summarised in (2.3).

(2.3) TIaornM [6]
(i) If a is array nonrecursive and b > a, then b is array nonrecursive.
(ii) There exist array nonrecursive low r.e. degrees.
(iii) For all r.e. a w= 0 there exists nonzero r.e. b < a with b array recursive.
(iv) If a is array recursive then a is low2.

We shall now prove (1.4), that is, show array nonrecursive degrees contain
non-W-mitotic r.e. sets. Following the notation of Ladner-Sasso [13] we will
let "hatted" upper case Greek letters (e.g., () denote W-reductions, with the
corresponding use function being q, a partial recursive unary monotone
function. Define a set A to be W-autoreducible if there is a W-reduction (
such that, for all x, ((A {x}; x)=A(x). The intuition is that A can
decide x’s membership asking only questions involving y 4: x. The details of
Ladner’s corresponding T-degree argument (in [12]) show:

(2.4) TIqZOREM. An r.e. set A is W-mitotic iffA is W-auto-reducible.

Proof For completeness, we briefly sketch Ladner’s argument. More
details can be found in [12]. First suppose A B tA C is a mitotic splitting of
A with A ((B) ’(C). To compute A(x) without using the A-oracle on
x perform the computations +(B; x) and ’(C; x) as usualmwhere A sup-
plies the correct answerswunless an oracle is questioned about x. If the
oracle is questioned about x, automatically answer x B or x C (as
appropriate). At least one computation is correct. If they output the same
value then this is the correct one. If they output different values then x A.
Note that uses here are < max{q(x), 7(x)}.
On the other hand, if ((A u {x}; x) A(x) for all x, define

l(s) max{y" (/y _< x)((A U {y}; y) =As(y)}.
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Without loss of generality, as A JT 0 we may suppose that we are given
enumerations of A and sufficiently fast that

(Vs)[l(s + 1) >/(s)] and (Vs)(Bx)(x < l(s) &x As+ -As).

The construction of a W-mitotic splitting C t3 B of A would then run as
follows at stage s: enumerate the least z As/ -A into Cs+ -Cs.
Enumerate all remaining numbers in As+ As into Bs+ Bs. Note that if
s s(x) (tzs > x)[Bs[q(x)] B[q(x)] then Cs[x] C[x] since the fact
that is an autoreduction ensures that whenever some y enters As+ As,
if y < l(s) then some 3 4: y with 3 < q(y) enters As+ -A too. Hence
C <w B. The construction evidently gives B <w C by simple permitting.

Thus, to get (1.4) it suffices to show:
(1.4)’ If f is an array nonrecursive degree then there exists non-W autore-

ducible A with deg(A)= f.
To achieve (1.4)’ we build A to meet the requirements

Re "(::]x)(Pe(A (3 {x};x) q:A(x)).

Let Q {Dg(x)’. x o9} be a very strong array of the following form:
IDg(x>l > 2x + and

(Vy < x)(Vp, q)[p Dg(y) & q Dg(x p < q].

Let F be an r.e. Q-nonrecursive set of degree f and suppose F f(to) with f
1-1 recursive.
At each stage s we let {a i, s" to} list A- to() in order. Here o9o)=

{(j, x): x to}. For the sake of this construction it is convenient to regard
( ) as monotone in the second variable, monotone in both variables for
(x, y) with x >_ 1, and enumerated so that the following properties hold
(this needs two different pairings and is definitely not obtained by repeated
use of the pairing function):

(Ve)(Vz > e)[l{ y" (O, y) < (e + 1, <z, z>>} lz],

and

(2.6) (Ve)(Vz > e)(Vm < z)[{y" (0, y) < (e + 1, (m,

{y’(O,y) < (e + 1,(z,z))}]

Henceforth we will write (x, y, z) for (x, (y, z)). To achieve A --=T F we
employ coding markers A (i, s) which rest on (some) members of s o90).
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Initially place A (j, 0): j o} on elements of o) subject to the rules

(i) / (j, O) < / (j + 1, 0),
(ii) A (j, O) Dg(.) and A (k, O) Dg(.) implies j k,
(iii) / (j, O) D,x> implies x < j.

We ensure that

(i) (Vi < j)[ A (i, s) < A (j, s)] and (Vs)[ A (i, s + 1) > A (i, s)]:
(ii) A (i, s + 1) 4= A (i, s) implies Fs+ l[m(i)] = Fs[m(i)] where m(i)

max{x: x Dg(i)};
(iii) Fs+ [j] : F[j] implies that As+ [ A (j, s)] 4: As[ A (j, s)];
(iv) A (j, s + 1) : A (j, s) implies y - As+ A for some y < A (j, s);
(v) A + As Y} for some y;
(vi) As+l[i] = As[i] implies that Fs+l[m((i, i, i))] Fs[m((i, i, i))];
(vii) (consequence of (ii)) lims A (i, s) A (i) exists;
(viii) (Vs, j)(lk)(k > j and A (j, s + 1) A (k, s)).

It is routine to verify that if our construction obeys (i)-(vii) then A ---r F
as follows. First F <:r A. Given z, to compute F(z), find the least stage s
where As[( A(z, s)] A[ A(z, s)]. Then Fs(z) F(z) since if Fs[z} 0: F[z] at
the first stage t > s where Ft+ 1[ z] = Fs[ z], (iii)would cause

At[ / (Z, S)] :#At+I[/(Z,S)].

Also A -<r F since to compute A[ z] find the least stage s where

Fs[m((z, z, z))] F[m((z, z, z))].

Then As[z] A[z].
To satisfy the Re above, our idea is to try to build an auxiliary r.e. set

He U He, where He c_ o(e/) which we use to force F to give many
permissions. We will argue that if F fails to give enough permissions to meet
Re, then in fact He will be a witness to the Q-recursiveness of F, a
contradiction.

Since our argument is finite injury allowing us to initialise He--when R.
for j < e requires attention--it will suffice to describe the strategy for a
single Re. Let

l(e, s) max(x" (Vy < x)(Pe, s(As t3 {y}" y) As(y))).
The construction runs as follows. Unless otherwise directed (by an Rj)

always enumerate A(f(s), s) into As+l -A, and set /(j, s + 1)
aj+^<f<s),s)+s,s+ for all j o with j > f(s) (we call this kicking A(j,s + 1)).
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Note that this keeps /x (j, s + 1) o() inductively. We now need do nothing
for the sake of Re until we see a stage s occur and a number z(0) (e +
1, y, y) for some y > e.

(2.7)
(=lt < s)[l(e, t) > z(0)],
z (0) > A ( z, s) for some z with z f(s).

It is not difficult to see that if a stage where (2.7) occurs does not eventuate
and Re fails to be met then by a permitting argument F would be recursive.
To compute F(z) find the least stage s such that for some y > e we have
Re,s) > (e + 1, y, y) > (e + 1,0, y) > A(z, s). Then as (2.7) fails it must
be that F[ z F[ z 1.

Before-we begin the discussion of the cycle for z(0), it is worthwhile to
analyse the key elements of the construction to follow and, in particular, the
use of array nonrecursiveness. First, if it were unnecessary to keep A -<r F
but simply code F into A, one way to meet Re (and so simply build a
non-W-mitotic r.e. set >r F)would be to await a stage s where

l(e,s) > (e + 1, y,y) > A(z,s)

and proceed in two steps. First we would enumerate A (z, s) into As+ -A
and then kick the markers A (z’, s) for z’ > z. Again we remark that as the
argument is finite injury, we could initialize the R, for n > e and ask them to
only thereafter use /x (k, t) for k > max{z, n}.
To then temporarily win Re, we would await a stage > s such that

l(e, t) > z(O). If such a stage does not occur then l(e, s) oo. Consider the
situation at such a stage t. Certainly we could create a temporary disagree-
ment by enumerating (e + 1, O, y) )3 into A +1 -At which would make

e,t+l(At+l {33}, 33) =dPe, t(A (33}, 33) =At(;) .At+l(;)

The other thing to note is that since we are using W-reductions the use
functions are unchanged: qe(At k) {(0)}; (0)) qe(As k) {(0)}; (0)) q,
say. In particular, as we kicked A (k, s) above s for all k > z, it follows that
A (k, s) > q for all k > z.
The relevance of this is the following. For our disagreement at z(0) to be

injured, injury can only occur due to higher priority activity, or due to the
coding of A (q, s) A (q, t) for some q < z, since inductively 0dr > s)(lk >
z)(A(k, t) >_ A(k, s + 1) > s > q).

In the usual finite injury way, we pretend Re is the highest priority
unsatisfied requirement around, and then the only injuries can be caused by
coding.
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Thus suppose at some stage g > we see / (r, s) / (r, t) < q enter A
upsetting the disagreement at (e + 1, 0, y)= p. We can then begin the
"cycle" for z(0) anew and await a stage q where l(e, q)> z(0) again. We
then win temporarily by enumerating (e + 1, 1, y) into A creating a dis-
agreement at (e + 1, 1, y). Note that by kicking, for all > r,/x (, q)>
/x (, g) > g > q. In subsequent cycles we would use (e + 1, 2, y) etc. The
reader should note that as /x (j, s) to, (2.5) and (2.6) together with our
kicking strategy will ensure that we would meet Re after at most z cycles and
so only "use up" (e + 1, 0, y),..., (e + 1, z, y), all of whom are below
(e + 1, y, y) by (2.6). Thus after at most j" < z attacks we would succeed in
meeting Re.
The readers should keep the above in the back of their minds when we do

the full construction as a sort of "inner strategy". Our big problem with this
strategy is-that we must also obey permitting rules. We are only allowed to
enumerate into A when F says we can. Thus the first problem we would
need to overcome is to force F to permit us to enumerate many numbers like
(e + 1, 0, y),..., (e + 1, j, y) in the above. Indeed the problem is com-
pounded in that if F permits then by (iii) of our marker rules we are forced
to code some y < / (i, s) into A. This causes a severe problem since such
coding might interfere with any potential disagreement we are attempting to
cause at (e + 1, i, y).
By initalization, we know that initially He, . The array nonrecursive-

ness of F ensures that for some x, De,x n F He n Dgx. It is within our
power to enumerate numbers into He. We must arrange things so that if Re

fails then (aax)(De,x n F 4: He N Dx). It is very important that the reader
note that if ever we see a stage where n De,x n F for some n He, we
can ensure De,x n F 4: He n F by simply being "conservative" on He and
asking

He n De,x He, n De,x.
Thus the only De,(x for which we really need to enumerate numbers into He,

for the sake of Re, are those with He, n De,#
_
F n De,(x for all s.

The basic idea is that when we wish to enumerate (e + 1, i, y) into A for
the sake of Re, we shall cause F n De,(z 4: He, n De,(z as conservatively as
possible (i.e., no enumeration, or enumerating one number into He, s+
He, s). Now either F can respond by correcting F n De,(z He, n De,(z at
some t > s giving us our desired permission or we have made sure that
F n Dg(z 4: He n Dg(z). Note that if F n Dg(z H n Dg(z then we can
win Re on one (e + 1, i, y) since there are at most z < y coding injuries (as
we noted earlier), yet it is within our power to cause ID<z)l > z permissions
in F.

Unfortunately, we do not know if Dgz n F H n Dgz) for this z. The
idea is that while it appears that Dgz n F H n Dgz we begin an
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inductive strategy on subsequent z’ > z. Matters are arranged so that if Re

fails then eventually almost all of the Dg(x)’S are devoted to solving Re and so
giving the failure of the array nonrecursiveness of F.
We now give the details of the above.

The cycle for z(O).
1. When 2.7 occurs, enumerate A (z, s) into As+ kicking A (j, s + 1) for

all j > z. Also restrain A[s] with priority e from access to any Rk for k > e
by initialization.

2. We wait for the least stage u > s + 1 such that l(e, u) > max{/(e, t): <
u} > z(0). Note if u fails to occur then l(e, s) - . We remind the reader
that if A (j, t) At + Z for some s < < u then A (j, t) is kicked (if it is
< (e + 1, y, y)). Note that once stage u occurs, a typical situation will be as
given in Diagram 1 below.

5(0, u+l) A(1, u+l) A(z--l,u+l) qe((e+l,O,y)) qge(Z(O)) A(Z,U+I) A(Z+I,u+I)

DIAGRAM

3. When we see l(e, u) > z(0) then for each q < z(0)with q > e make

Og(q) n He, u/ ::/:: Dg(q) n Fu

as conservatively as possible. That is if Dg(q) He, u z/k: Dg(q) ["1 Fu already do
nothing, and if Dg(q) n He, u Dg(q) n F enumerate the least z He, with
z Dgq) into He, u+ 1" (As above, such a z will exist.)

4. Wait till we see a least stage q > u + 1 such that one of the following
holds.

4(a). Fq/ l[m(z(0))] Fq[m(z(O))], but for all with A (i, u) < z(0),
Fq+ I[i] Fq[i].

Action. Set Aq/ =Aq U {(e + 1,0, y)}. As we discussed in the inner
strategy, this will create a temporary disagreement at (e + 1, 0, y) and will
complete the cycle for z(0) unless some Rk of higher priority acts, or coding
affects matters via step 5 below.

4(b). Fq+ i[i] Fq[i] for some A (i, q) A (i, s) < z(0).
Action. Enumerate A(f(q),q) into Aq+ -Aq and kick as usual. If

f(q) < e we initialise and so we pretend to be in stages where Fs[e] F[e].
We go back to step 2 in the cycle for z(0). While we wait for 2 to occur if 4(b)
pertains to some f(r) < continue to kick /x (f(r), r).

Analysis of this outcome. It is very important to note the effect of outcome
4(b). First the reader should note that for all p with e < p < j where
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Dg(j) we have (still)

Furthermore the reader should note that if Dg(j) and Izz(z Dg(j)),
then by our action in step 3of picking the least available member of D(j)
we also know that

Dg(j) n He, q :i Dg(j) n Fq.

Indeed, by our conservative strategy since Dg(j) r’l Fq and. He, q we
actually know we can force Dgo n He Dg(s) n Fq Dgu n F.
The point of all of the above is this. Consider the next time 3 pertains to

z(0) say at stage n. Let r be the least number to have occurred in Fn Fq
and suppose r Dg(p). Then we know that for all k with e < k < p we still
have

Vg( n He, n : Vg(k n Fn.

Furthermore, for all m with g(p) < g(m) < z(O) it is possible for Dg(m n
Hen, Dg(m N F only if exactly the least member of Og(m n He, q+ 1)-
(Dg(m) n He, q) entered F N Dg(m). In particular for an rn for which Dg(m n
He, Dg(m n F we know that, by kicking, A (i, n) > q for all Og(m). In
other words, if F now permits re(m) via some Og(m N Fn then this
permission is helpful in the sense that 4(a) pertains to z(O). Thus, when 3 again
pertains, we will cause

Vg(m n He, n+ : Vg(m n Fn for all g(e) < g(m) < z(O).

This will cause no enumeration for all Dg(k with g(e) < g(k) < g(p) and at
most one enumeration for all Dg(k with g(p) <_ g(k) <_ z(O). Moreover, by
(2.5) and (2.6), 4(b) can only now pertain < g(p) 1 more times (as all the
other markers are kicked). It therefore follows that for all m with g(e) <_
g(m) <_ z(O), it is always possible to cause Dg(m n He, n+ Dg(m n F as
Dg(m has 2m+x members.

A(0, s) A(1, s) A(r- 1, s)
A(0, n+ 1) A(1, n + 1) A(r-- 1, n+ 1) qe(Z(O)) A(r,n+ 1) A(z,n+ 1)

An+l

DIAGRAM 2

(The only unhelpful permission can occur due to A (j, s) A (j, n + 1) for
j < r 1 after stage n.)
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5. If case 4(a) pertains then we obviously have a disagreement that wins
unless this is injured by F-coding. Again this means that some enters
F -Fq with A(i, t)= A(i, s) < z(0). In this case we must begin our cycle
anew.
The only problem is that we have used up (e + 1, 0, y). The only differ-

ence now for z(0) is that if 4(a) again pertains we now enumerate (e + 1, 1, y)
(and in subsequent cycles (e + 1, i, y)) in order), exactly as in the inner
strategy. For the same reasons as in 4(b) there can be at most < y injuries.

6. If Re is to fail, then, the only possibility is that we never get to a
permanent disagreement in 4(a). This will mean that for all > e and
3 < z(0) in the limit we will have F n Dg(;) He n Dg(). The obvious
strategy is the inductive one. Whilst we are in a cycle for z(0) after we create
F n Dg(;> He, n Dg(;) disagreements for all such p, we wait to try to find
a new z(1) > u to begin a cycle for, assuming z(0) is no longer active.

Specifically we proceed as follows. Once stage 3 occurs and we are waiting
for 4 to occur we believe that z(0) is permanently stuck we therefore search
for the least z(1) > z(0) with z(1)= (e + 1, m, m) for some m such that
(2.7) applies to z(1) (in place of z(0)).
The idea is to then begin a cycle for z(1), and continue as we did for z(0)

until we get to perform 4 on z(1), or we get stuck waiting for 4 on z(1), or
find that the belief that we were stuck on z(0) was wrong. The reader should
note that z(0) is of higher priority than z(1) and so even though we appear to
have met Re via z(l) (i.e. via 4(a)) should we get a chance to make Re

temporarily satisfied via z(0) we will do so (as this attack is more likely to
succeed).
A typical situation is given in Diagram 3 below.

A (0, v) A (1, v) A (z’, v) pe(Z(O)) A (z’ + 1, V) A (Z", V) qe(Z(1)) A (Z" + 1, V)

DIAGRAM 3

Here z’<y where z(0)= (e+ 1, y,y), and z"<)3 where z(1)= (e+
1, , ).
Note that in the situation of Diagram 3, the only injuries to z(O)’s set up

can come from F coding r for r < z’ and the only injuries to z(1)’s set up,
that do not injure z(O)’s set up can come from r with z’ _< r < z". Induc-
tively we will know that for all x with e _< x < z(O),

The important point is that for any m, we will need to enumerate a new
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element into D to make

only if F causes a coding that is not helpful to requirement Re, and
furthermore a coding for r with /x(r,v) Dg(x). By the movement of the
markers, any future unhelpful coding must involve Dg(y) for y < x (indeed
y < r). (If the reader does not see this he or she is advised to go back to the
paragraph following (2.6).)
The same conditions hold for z(1) and so the same counting holds. It is

clear that this idea extends to n > 1 z(i)’s. Furthermore we will appoint
infinitely many z(i)’s only if lim sup l(e, s) and since we are dealing with
W-reductions, this occurs only if

By the counting argument described above, should Re fail to be met then

(Vm > e)Og(m n I4 :/: Og(m n e,

a contradiction. It follows that Re can receive attention at most finitely often
and hence a standard application of the finite injury method gives the result.

As we mentioned in the introduction, the ideas above can also be used to
show:

(2.8) THEOREM. Suppose f is array nonrecursive. Then f is not contiguous.

Proof (Sketch). We only sketch the proof due to its similarities with the
previous result. Suppose f is array nonrecursive and F is Q-nonrecursive,
etc., as in the previous result. We construct A U sAs with A =T F and an
r.e. set B <w F such that we meet for all e,

Re" Pe(A )

Again we use marker coding via A (i, s) and auxiliary r.e. sets He U sHe,
to force permissions. The reduction B <w F is given via x B iff x Bs
where s tzt(Ft[m(x)] Elm(x)]). We let {ai, s: to} list A in order.

The construction ofA.
Stage O. Set A0 and /x (i, O) ai, o
Stages + 1. Set

As+ =A U /(f(S),S)}.
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Kick the markers
aj+ / (j, s)+s+ 1, s+ 1).
SetA t0sAs

A(j,s + 1) for j >f(s) (e.g., set A(j,s + 1)=

End of construction
We refer to A so constructed as the kick set of F, and write A K(F). It

will also be used in 3.
We show that Re is automatically met by such A for suitable B. As in

(1.4)’ we devote oe/ 1) to Re and shall assume the pairing of (2.5) and (2.6).
The attack on R runs as follows. Let

l(e, s) max(x" (y < x)[ )e,s(As; x) ns(y)]).

The cycle for x > e
1. Wait till F permits x at s and l(e, t) > (e + 1, (x, x)) for some < s.

(Now x becomes "activated" as in (1.4)’.)
2. At the least where l(e, t) > (e + 1, (x, s)) and > s, as in (1.4)’ for

each y > e and y < x make Dgy F 4: He, t+ N Dgy.
3. Whilst l(e,u)> (e+ 1,(x,x)), if we see a stage u>t where F

permits re(x) and Fu[ x Ft[ x ], enumerate (e + 1, (0, x)) into Bu + Bu.
As we see below, this temporarily satisfies Re, and uses up (e + 1, (0, x))
(but leaves (e + 1, (i, x)) for 0 < < x for subsequent attacks). This corre-
sponds to outcomes 4(a) of (1.4)’. The reason it satisfies Re is that since F
permitted x in step 1 we know that for all y > x, A (y, t) > s > qe(A; (e +
1, (x, x)))msince we are dealing with W-reductions. Thus at stage u we
know Au+ I[S] Au[s] but

Bu+l((e + 1,(0, x))) 4: Bu((e + 1, (0, x))

causing a disagreement at (e + 1, (0, x)).

4. If we see a stage w > where F permits x then we return to step 2 as in
(1.4)’. This is true whether or not step 3 occurs. There can only be x such
injuries by kicking so that for some < x we get a disagreement on (e +
1, (i, x)). Also only z members of Dgz can be used.

It is (hopefully) clear that the above strategy meets R for the same
reasons as (1.4)’ and the argument will be finite (bounded) injury.
The crucial point of the kicking procedure is that whenever there is an

injurious coding of some A (i, s) in the sense of 4(b) of (1.4)’ or step 4 of the
above, this kicks all the markers A (j, s) for j > into noninjurious positions,
and furthermore ensures that thereafter we have at most possible further
injurious codings. The other point is that it leaves the disagreements of
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He, ("10g(m 4= F ("10g(m for those m < k--where i, Dg(k)--alone. This
means that we can’t use up all of a Dg(,,), as there can only be <
injuries.

The argument of the next section uses the ideas of the above, but is more
difficult since we are no longer dealing with W-reductions. We will neverthe-
less use a kicking strategy and use the fact that we are building two sets to
control the sorts of codings injuries we can experience, and hence ensure that
all of a Dg(m cannot be used up. Roughly speaking the point with W-reduc-
tions is that after kicking we can clear the relevant use (as it can’t change). In
the next section, we will be allowed to clear one use by enumerating in the
other set since we will be constructing two sets but only need to code into
one.

3. The diamond theorem

Let F, Q, etc. be as in 2. Let A K(F) as in (2.8). We shall also
construct d.r.e, sets B and C with B C =-r A by A

2 permitting. The
requirements we must satisfy are

P2e" B 4: We, P2e+ C =/= W

Ne dPe(B) Pe(C) f total = f recursive.

We remark that A K(F) is really not necessary to this construction, but
we hope that it will help the reader visualize the reductions.
To ensure that B C >r F we will ensure that if /x (i, s + 1) 4= /x (i, s)

then either

B[A(i,s)] 4= Bs[ A (i, s)) or C[A(i,s] 4= C,[ A (i, s)]

We then get B C >r F since if is a stage where Bt[/k (i, t)] B[ A (i, t)]
and Ct[/x (i, t)] C[/x (i, t)] then F[i] Ft[i]. To ensure B C <r F we
only allow B,[/x (i, s)] 4= B[/X (i, s)] if F,[m(i)] 4= F[m(i)] and similarly for C
(re(i) max{x: x Dg(i)} as in {}2). Although we are Using A 2 permitting,
the reader should note that the construction will additionally obey the
following rule"

If F[i] 4= Ft[i] then for some j < i, /x (j, t) C C or /x (j, t) B Bt.

That is we will cause some change by enumeration. This formulation makes
the h 2 coding much easier to visualize. We call this property (3.1).
The principal difference between our construction here and that of {}2 is

that although this one is a finite injury argument, it has a hidden rr2
outcome. That is, the key to using the finitary techniques of {}2 will be that
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requirements receive attention and thus do something active only finitely
often, the "rr2-outcome" will be for Re to be monitored infinitely often.
Monitoring causes no enumeration or extraction. This distinction is crucial to
the success of the construction.
The Pe are met by a usual Friedberg strategy where we ensure that

eventually if We looks like B (or C) then some A (i, s) will be forced into
We, C Bs and protected from extraction with priority e. As the restraints of
N for j < e are finite this meets the Pe as usual. We shall meet the Ne by a
strategy somewhat along the lines of [4], but with some modifications. Other
’diamond’ strategies (e.g., Cooper [3]) seem inappropriate.
We need some auxiliary functions

x)),
x,

When the meaning is clear from context we will write u(x, s) or even u(s) to
save on notation.

m(e, x, s) max(u(e, x, s), t(e, x, s)),
rh(e, x, s) min( u(e, x, s), a(e, x, s)}.

The basic module
One of the distinctions between this paper and [4] is that if Ne’S outcome is

infinitary it may still be possible for it to have finite effect (restraint) on the
construction due to failure ofpermission (more on this later).
When some y occurs in F/ F we shall add A (y, s) into one, or both,

of B or C as determined by the other requirements (e.g. the other N. or the
Friedberg requirements P). Should no requirement make any specific re-
quest we add the A (y, s) to both B and C. Let

l(e,s) max{x" (/y <x)(dPe, s(Bs; y) =dPe, s(Cs; y))}

and

ml(e,s) max{l(e,t)" < s}.

We say s is e-expansionary if l(e, s) > ml(e, s). Set

Is(e, s) max{0, t" < s &t is e-expansionary}.

We shall be monitoring l(e,s). Of course if (:lso)(ts > So)[l(e,s)<
ml(e, So)] then N only has finite effect and is met by divergence. We call this
outcome d. Assuming this fails to pertain, we search for a disagreement.
Thus let s(1) and s(2) be e-expansionary stages with s(1)= ls(e, s(2)). At
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stage s(2) we see how our previously seen computations are going. If for all
z < ml(e, s(1)) we have

fe,s(1)(Bs(1)’ z) e,s(2)(Bs(2); z) CI)e,s(z)(Cs(2); z) e,s(1)(fs(1); z)

then Ne need do nothing. If this outcome is the only outcome almost always,
then Ne’S effect is finite (again), and to compute dOe(B; z) find the least
e-expansionary s with l(e,s)> z for some s > so for some parameter so
(assuming e(B) e(C)).
The dangerous case occurs if we see some z(1) z < l(e, s(1)) with

(3.2) (I)e, s(1)(Bs(1); z ) 4: e, s(2)(Bs(2); z), and so

fe,s(1)(fs(1); z) 4 fe,s(2)(fs(2)’ z)

What we would like to do is use (3.2) to create, and preserve, a disagreement
at z(1). One obvious way to do this is to reset Cs()+ l[S(1)] Co)[s(1)] which
would cause a disagreement. However, we must do this--or something like it
rain such a way as to still code F in: perhaps we were using C()[s(2)] to
code the fact that some j has occurred in Fs() Fso). Furthermore we will
need F to permit any C-change or B-change. What we shall do is first get an
"even smaller" number coded into "both sides" of B and C.

Let b be the least number that has entered or been extracted from B or C
between stages s(2) and s(1). Let )3(1) be largest with A(3(1),s(1))< b.
Note that /x (3(1), s(2)) /x (3(1), s(1)) by property (3.1).

The cycle for z(1).
1. For all x >_ e and x _< (1, s(2)), make Dg(x N Hs(2) + 4= Fs(2) O Dg(x).

Do this as in {}2, conservatively. N restrains B and C through s(2).
2. Wait till we see an F-permission on m(9(1)). If F permits m()(1)) at

stage n(1) > s(1), for k F,(1)- Fn(1)_ enumerate /x(k, n(1)) /x(k, s(1))
into both C,(1) Cn(l)_ and Bn(1) Bn(1)_ and now wait for the e compu-
tations to recover. Whilst we are waiting N keeps its restraints at s(2) and
should some < k occur in Fp- Fn(1) we put A(/, p)= /x(, g(1)) into
both B and C.

3. Wait till we see a stage s(3)> s(2) such that l(e,s(3))> ml(e,s(3)).
When this occurs raise Ne’S restraints to s(3). Of course should s(3) not occur
we meet Ne by divergence. Let y(1) y(1, s(2)) be the least number to occur
in (Bs(3) td Cs(3)) (Bs(x) W Cs(1)). Note that /x (y(1), s(2)) /x (y(1), s(1)).
Now as s(3) is e-expansionary, we shall know that one of (3.3) or (3.4) below
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pertains.

Now we can use whichever of (3.3) or (3.4) pertains to create a disagreement
(provided we get the relevant permission). If (3.3) pertains then what we
would like to do is set

Cs(3)+ S(2)] Cs(2) s(2)]

but keep

Bs(3)+l[S(3)] B(3)[s(3)].

This would create a disagreement at z by (3.2) and (3.4). The relevant
permission needed is that we need F to permit m(y(1)) but not permit y(1).
For then if F permits h > y(1)with h < re(y(1))we can put A (h, s(3)) into
C for coding F into B U C but reset C back to Cs(2)[s(2)]. The point is that
by kicking A (h, s(3)) > s(2) as A (y(1), s(2))was enumerated before s(3).

Similarly if (3.4) pertains, we’d like to reset Cs(3) + 1[s(1)] back to Cs(1)[s(1)].
As these situations are dual, for simplicity we’ll suppse (3.4) pertains, and
continue the cycle below.

4. For all x >_ e, x _< y(1, s(2)), make Dg(x CI Hs(2) + 4: Fs(2) CI Dg(x as
in 1.

5. Wait until we see an F-permission.
Case 1. F permits m(y(1)) at stage t(1)>_ s(1) but Ft(1)[y(1)]

Fs(3)[Y(1)].
Action. For h F Ft_ 1, enumerate A (h, t) A (h, s(3)) into C

Ct_ and otherwise set Ct[s(1)] Cs(1)[s(1)]. Note A(h, s(2)) > s(1), and so
this is possible and gives a disagreement at z(1).

Case 2. F permits y(1) at some t(1) > s(3).
Action. If g Ft(1) Ft(1)_ 1, enumerate A (g, t(1)) A (g, s(1)) into

both Bt(1) and Ct(). Note that if is the least such g to enter F then we can
again go to 3 in the cycle for z(1) and we can use y(1, t(2)) in place of
y(1, s(1)). Again, as in 2 this should be regarded as injury but this sort of
injury can only occur x times to D(x) (for any x) for the same reasons as 2.
Note that if this case pertains and we again return to stage 4, our strategy of
setting C[s(1)] C(1)[s(1)] or C[s(2)] C(2)[s(2)] will be the same. This is
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also true after 6. However, in this construction another form of injury can
occur, as we see below.

Case 3. Whilst we are awaiting Case 1 or Case 2 above, F can injure us
by permitting g > y(1) but with A (g, s(3)) < re(e, y(1), s(3)) and g >
m(y(1)). The problem is that perhaps we might force the restraint associated
with Ne to infinity by constantly enumerating below re(e, y(1), t). As Ne
controls the enumeration of such numbers, our action is as follows. If F so
permits g and /x (g, t) < u(e, y(1), s(3)) then enumerate A (g, t) into C. Do
so for such g until a stage ’ occurs where u(e, y(1), ’) rh(e, y(1), ’). Now if
such A (g, t) occurs enumerate /x (g, t) into C only if A (g, t) < rh(e, y(1), ’).
Otherwise, enumerate it into B. It can be seen that this device ensures that if
Cases 1 and 2 above don’t occur then Ne’S restraint for the sake of y(1) is
finite.
The reader should note that Case 3 is compatible with Case 1 (and of

course Case 2) since in Case 1, /x (h, s(3)) must be smaller than any /x (g, t)
of Case 3. That is, if while we are waiting for an e-expansionary stage (after
we enumerate A (g, t)), we see case 1 pertain then h < g and we can apply
Case 1 (and, for example, extract /x (g, t) from C).

6 (Injury after Case 1). Suppose Case 1 occurs and so we create a
disagreement at z(1). As we have Ct[s(1)] Cs(1)[s(1)] we can protect this
disagreement from all h > y(1) (i.e., A (h, u)) by enumerating such A (h, u)
into C and not Bas /x (h, u) > A (h, s(1)) > s(1). That isfor u > tif
h Fu Fu_ 1, h > y(1) and A (h, u) < m(e, y(1), s(2)) > re(e, y(1), u), then
enumerate A (h, u) into Cu/ and not B.
For such injuries, /x (h, u) > /x (h, s(3)), in fact, by kicking. The effect of

this strategy is, like step 5, finite.
The only problem that occurs is if some y(1, u) 3 3(1) < y(1) occurs in

Fu/ 1-Fu for some least u > t, after we have created a disagreement at
z(1). In this case our action is to enumerate /x(33, s(1)) A(33, u) into both
sides B and C and wait for the computations to recover. This is injury after
Case 1, and we treat it like Case 2. That is, we return to step 3 in the cycle for
z(1) with y(1, u) in place of y(1, s(2)).

7 (The outcomes). Because of the above our outcomes can only be outcome
d (a win with finite effect by lack of recover), an outcome where we get to
preserve a disagreement, or we get stuck awaiting a permission. Counting the
number of failed permissions, we can see that in this last (inductive) outcome
we must have some y(1) lim y(1, s) > e such that for all x with e < x <
y(1) we have Dg(x ("1 F H tq Dg(x). Call this outcome 1.

The cycle for subsequent z(j).
Whilst it appears that outcome 1 (i.e., pending permission) seems correct

for {z(j, s): j _< i}, we shall search for a z(i + 1, s) at which we can make a
disagreement.
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For this we will begin a cycle for such z(i + 1, s) precisely as above, if s
was the stage where it appeared that the cycle for z(i,s) got stuck, the
simplest way to mesh the strategies for z(i + 1, s) and z(i, s) is to agree to
cancel the cycle for z(i + 1, s) (and perhaps later pick a z(i + 1, t) z(i +
1, s)) should F permit some h which the cycle for z(i,s) forces us to
enumerate A (h, s) in some special way (i.e., /x (h, s) < re(e, z(i, s), s) and so
A(h, s) falls within the "scope" of 1-6 of the cycle for z(i, s)). Again this
injury affects the "Dg(x n F Dg(x H" strategy but as in the cycle for
z(1) and 2 these injuries can occur at most < IDgl times for each x. To
see this, it really suffices to argue for z(1) and z(2, s), since the general result
uses the same technique, plus induction.
Thus suppose we are within a cycle for z(1) for the sake of y(1, s) as

above. We can begin a cycle for z(2, t) at > s predicted on the belief that
this cycle is now permanently "hung", that is in particular for all h if
A(h,s) <m(e,z(1),s) then F[h] Fs[h] (and moreover Fs[m(y(1))]
F[m( y(1))]. As a consequence we believe that for all x with e < x < y(1),

D n F D> n F =I= Dg(x n n H.

Whilst this belief is valid, we begin an inductive strategy on some z(2, t).
To get this we’ll need stages t(1) and t(2)which were e-expansionary,
t(1) ls(e, t(2)) > s where the conditions above pertain and we can use t(1)
and t(2) to get a disagreement. Thus, for some z(2, s)we have

(i)
(ii)

fe,t(2)(Ct(2)’ ;) =: fe,t(1)(Ct(1); .), and
de, t(2)( Bt(2)’ - ) =/= f)e, t(1)( Bt(1); ).

Yet the cycle for z(1) has not acted. This means that some least p(1, s) has
entered (or left)

(Ct(2) U Dr(2)) (Ct(1)U Dr(l))

as in (3.2), (3.3)or (3.4). This )3(1, t(1))must have

A(h,t(1)) > m(e,z(1),t(1)) m(e,z(1),s),

and we can simply make

for all x with x < )3(1, t(1))by simply making them different on those x with
y(1, t(1)) y(1, s) < x _< 33(1, t(1)).
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Obviously there is no problem if our belief about z(l) (i.e. being "hung") is
correct. Note that we might need a new z(2, t) and can injure Dg(x only if F
permits some h with h < x (i.e., assuming that we fail to meet Ne, the "F
permitting re(y(1, s)) helpfully" will eventually be undone by F permitting
some y(1, t) < y(1, s)). This can only occur < x < IOg(x)l times.

Thus, in general if N fails we will get lim z(i, s) z(i) existing and

(x > e)(Dg(.) ’1 F Dg(x n

which would contradict the array nonrecursiveness of f.
The general construction is to implement the above via a standard finite

injury argement (as the zr2 outcome is inactive). Such details are routine and
we leave them to the reader I

The last result we will prove is:

(3.5) THEORZM. There exists an r.e. degree a such that for all b with
b > a or b < a, b is the top of a diamond in the A 2 degrees.

Proof To prove (3.5) it will suffice to construct an r.e. array nonrecursive
set A such that A is strongly atomic (as in [8], A strongly atomic means that
whenever A A1 U A2 is an r.e. splitting of A, i.e., A1 A2 , A1 u
A2 A, then deg(A 1) n deg(A2) 0) and such that for all r.e. B <T A, B
<w A. Theorem (3.5)will then follow since for all r.e. C, if CT > A then C is
array nonrecursive (by [6]). Let B <T A. Then B <w A. Hence Sacks
splitting A as A u A2 with B T Zi, we see B B U B2 with B <w Ai.
(This follows since the W-degrees are a distributive upper semilattice--see
e.g. [8], [14].) Then

deg(B1) n deg(B2) 0 and deg(B1) deg(B2) deg(B).

To construct such an A we need to meet the requirements (for Q {Dg(x):
x o} as before)

ee" (Sx)(D,<x) n We A n Dg(x)),
Ne’IfVeUUe=A

and

doe(Ve) e(Ue) f total = f recursive,

Re "Fe(A) ae = Qe <w A.

Here (Ve, Ue, e) is a standard enumeration of all triples consisting of 2
disjoint r.e. sets and a reduction, and (Fe, Oe) is an enumeration of pairs
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consisting of a reduction and an r.e. set. As the satisfication of the above
requirements combines several known strategies, we really need to only
sketch the details. To meet the Pe we attemptmfor some follower "block"
Dg(x)--to ensure that W ("1 Dg(x A N Dg(x) by enumeration of Dg() N We

into A. (Thus if Dg() is a "stable" block then Pe can receive attention at
most lOgical times via x before it is met. Here by "stable" we mean a block
that the strategy eventually settles on.)
To meet the N as in a minimal pair argument we need to ensure that at

most one side of a e,s(Ve, s; X) dPe, s(Ue,; x)-computation changes between
e-expansionary stages. Thus at an e-expansionary stage, we shall enumerate
at most one element (i.e., below U(e,s(Ve,; x)) into A and then raise
r(e, s) s until the next e-expansionary stage. As Ue and Ve are disjoint, this
element can enter at most one side and the other side holds the computation.
This strategy coheres with the P. for j > e in the usual way. If we are
currently working on Dg(x for the sake of P., and at stage s, r(e, s) > rh(x)
we will begin a new strategy for P.-guessing "/(e, s) -o "; i.e., the e-compu-
tations don’t recover--on (e.g.) Dg(s). Here rh(p) min{y: y Dg(p)}. If the
e-computations recover, we abandon this strategy, but go back to Dg(<,x>).
This is all a standard ,/7- 2 procedure.

Finally to meet the Re we use a confirmation procedure as in (e.g.) [5]. Let

L(e,s) max{x" (’y <x)(di)e,s(As; y) Qe, s(Y)}.

For a block Dz guessing that L(e, s)-o at any stage we see L(e, s)>
max{L(e, t): < s), we cancel Dz. For a block Dg() following P. for j > e
guessing that l(e, s) at the first stage we see L(e, s) > m(g(x)) declare
Dg(x) (as a block) to be e-confirmed, and cancel all (assignments of) follower
blocks Dgy) for y > x (these have lower priority). We then only assign blocks

Dz to requirements Pk after stage s if z > s so that rh(z) > s. Also we assign
in order of priority and ensure that if Dzl is assigned to Pk and Dz2 to Pt and
k > then z2 < z (i.e., assuming, of course, this version of Pt on the tree
has a guess compatible with Pk). The effect of this is that after stage s for all
z < L(e, s), if Qe, s[z] 4: Qe[z] then A[m(x)] 4: Aim(x)]. The other action is
to ensure that if ever P. requires attention via Dg) then we shall cancel
Dg(z for all z with x < z < s. This procedure occurs only < IO<)l times.
Note that if Dz is assigned to Pk for some stage after P. receives attention,
but before the next e-expansionary stage r (i.e., where L(e, q) > max{L(e, 4):
4 < q}) then at stage r, D will be cancelled as a follower of P).
From the above we see that if p is the least e-expansionary stage where

Ap[s] A[s] then it follows that Ap[p] Alp] and hence Oe, p[z] Qe[z]
for all z < L(e, s). Hence Oe <-w A.
We believe that most readers could now easily fill in the details of the

above argument as they are, by now, fairly routine. Nevertheless, for com-
pleteness we shall now give some formal details.
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Elements of 2 <,o are called guesses with </ representing lexicographic
ordering with 0 <t. 1. We devote tr to Ne if Irl 2e and tr is devoted to Re

if Irl 2e + 1. h denotes the empty guess.

(3.6) DEFINITION. (a) A stage s is called a tr-stage by induction on I1 as
follows

(i) Every stage s is a A-stage
(ii) If s is a r-stage and zl 2e then we say s is a z ^0-stage if

l(e,s) > max{l(e,t):t isa z-stage and <s}

where

l(e, s) max{x" (Vy < x){(Ve, t3 Ue,,) (y) A,(y) &

dPe,,(Ve,,; Y) Cbe, s(Ue,,; Y)]}.

If s is not a z ^0-stage then s is a z ^l-stage.
(iii) If s is a z-stage and I[ 2e + 1 then if

L( e, s) > max{ L( e, t) is r-stage and < s}

we say s is a z ^0-stage. Otherwise s is a z ^ 1-stage.
(b) At stage s, the unique tr with Irl s and s a g-stage is denoted by trs.
(c) We say Pe requires attention at stage s if one of the following options

holds

(3.7) Pe has a follower block Dg(x with guess

(3.8) Pe has no follower block with guess

c tr and A N Dg(x 4

Construction, stage s + 1.
Step 1. Compute trs. Initialize all z ;L trs. I’hat is, cancel all follower

assignments guesses z.
Step 2. Confirmation. Find the follower block Dg(x with the highest

priority guess z such that, for some tr < z with tr < tr we have

(i)
(ii)

L(e, s) > rh(g(x)) (where Irl 2e + 1);
Dg(x is not tr-confirmed.

If such x exists, declare Dg(x) as y-confirmed for all y < tr with y < z and
L(f, s) > rh(g(x)) where [y[ 2f + 1. Cancel all assignments of Dg(y) with
guess p for p ;L z. This step is vacuous if no such x exists.
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Step 3. Find the least e such that Pe requires attention. Adopt the first
case below to pertain, and say tr receives attention where tr c tr and
Irl 2e + 1.

Case 1. (3.7) holds. We claim

(3.9) A n _c We.s n G(x .

Assuming (3.9) holdsmas we later verifyRfind z (/xy)[y (We, n
Dgx)) (A n Dg(x))]. Enumerate z into As+ -As. Initialize all r ;L

Case 2. (3.8) holds. Appoint Dgs) as a follower block of Pe with guess
Initialize all r L
End of construction
Let /3 denote the leftmost path. That is /3 [2 <,o] is defined inductively

via A /3. If tr c/3 then tr^0 /3 iff (:t=s)(s is atr ^0-stage)otherwise

(3.10) LEMMA. Let tr <L with Irl odd. Then:
(i) At all stages s, claim (3.9) is true of any Dg(x following Pe where

Irl 2e + 1.
(ii) tr receives attention only finitely often.
(iii) If tr c then Pe is met at
(iv) IfDg(x is any block with guess

only finitely often.

Proof. We prove the above by simultaneous induction. It is clear that (i) is
true for all tr devoted to Pe since, when assigned, Dg(x n A and
members of Dg(x are only added to A due to Step 3, Case 1. This only
happens if (3.8) pertains, at which time we add members of We, Dg(x (one
at a time), keeping Dg(x 0 A c_ We, Og(x). Thus (i) holds.
We verify (ii), (iii) and (iv) by simultaneous induction. Let tr c/3. We verify

(ii), (iii) and (iv) for tr assuming them for all - </ tr with " 4: tr, (this is all
that is necessary, since we are left of tr finitely often). Go to a stage so where
for all z </ tr with " 4: tr and all s > s0,

(i)
(ii)
(iii)

does not receive attention at stage s,
;/ tr, and

no follower with guess - is ever again y-confirmed for any y </ tr.

As we initialize, we might as well suppose Pe has no follower block with
guess tr. By construction at the next o-stage > so, Pe is given Dg(t as a
follower with guess tr. This block is uncancellable. Because of this, tr will
receive attention at most IDg<t)l times after stage t, whenever (3.8) holds.
Therefore Pe is met and (iv) follows similarly. 1
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(3.11) LEMMA. Let o’^0 c with
ae <--W A.

Itrl 2e + 1. Then if Fe(A) Qe,

Proof Let so be a stage good for tr ^0 in the sense that all higher priority
r <L tr^0 has ceased receiving attention etc. as in (3.10). We show how
to compute Oe[z] for any z. Find the least tr ^0-stage s > so such that
L(e, s) > m(g(x)) and L(e, s + 1) > m(g(x)) for all x < z with Dg(,) still
alive. After stage s, it is the case that either Dg(x has guess - <L o" (and so
Dg(x does not enter)or Dg(,) is o-^0-confirmed. Let s be the least
tr^0-stage with s > s such that Al[s] =A[s]. We claim that Qe, s[X]
Oe[x]. The principal claim we need for this is to show that if is atr ^0-stage
with > s then there are no follower blocks Dg(r) alive with

(3.12) s _< rh(g(y)) < u(I’e,t(At; X))

But this is easy to see as follows. The claim is clearly true at stage s. Now if
no number < s alive at stage s enters A, then u(Fe,(A; x)) u(Fe(A; x)).
If any number from Dg(n S enters, it cancels all Dg(r) for y > n. Any
number appointed between s ^0-stages has guess y ;L tr ^0 and hence y is
cancelled at tr-stages. It follows that if n is least with numbers from Dg(n
entering between stages s and t, then at stage all numbers between
m(g(n)) and are cnacelled. Thus (3.12) follows, m

It is easy to see that if Fe(A) ae then tr ^0 c/3 where I1 2e + 1. It
remains to verify the Ne. This is absolutely standard.

(3.13) LEMMA. N is met.

Proof Suppose that (Pe(Ue) (I)e(Ve) f total and V U Ue A. Let (r c
/3 with Icrl 2e. Then (r ^0 c/3. Let so be a stage good for (r. To compute
f(z) find the least tr ^0-stage s s(z) > so such that l(e, s) > z. We claim
that

(3.14) dPe, s(Ue,; z) dPe,t(Ue, t; z) or dPe, s(Ve, s; z) dPe, t(Ve, t; Z).

To see this, if (3.14) is to fail then two numbers below the use must enter the
relevant sides between tr ^0-stages. Now at stage s there are no numbers
alive < s that can possibly enter A except those with guesses y tr ^0.
Then by construction at a tr ^0-stage u only one number can enter A. All
numbers to enter A between u and the next tr ^0-stage u > u must exceed
u as they are appointed after stage u, and so must exceed both of the uses
U(e,u(Ue, u; z)) and U(e,u(Ve, u, Z)). Therefore, as Ue and Ve are disjoint, at
most one side can change between tr ^0-stages. This gives (3.14) and the
lemma, m
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(3.15) COROLLARY. The degree a of (3.5) can be low (and one exists below
each promptly simple degree).

Proof The argument easily blends with lowness for the usual reasons;
and similarly prompt permitting may be applied.

We mention (3.15) only because we don’t know the possible jumps of such
a. A slightly trickier argument based on the Downey-Jockusch construction
(in [5]) of an r.e. 1-topped degree a that was strongly atomic will construct a
1-topped a as in (3.5). Here a is 1-topped if there is an r.e. set A a such
that for all r.e. B <T A, B <1 A. The interest here is that it was shown in [5]
that all 1-topped degrees are low2-1ow.

This would then give:

(3.16) THEOREM. The degree of (3.5) can be low2-1ow.

We would also like to point out that the techniques of (3.5)mor rather the
observation that replacing the usual A 4: We with (Bx)(Fx c A W C A) is
compatible with most arguments where the liminf on the true path is
finitemleads us to the following observation (answering a question from [4]).

(3.17) THEOREM. (i) There exists an array nonrecursive r.e. degree a such
that for all r.e. bl, bE with 0 < bl, bE < a, b bE :/= O.

(ii) Consequently, there exist r.e. degrees that are tops of diamonds in the A 2
degrees but not the d-r.e, degrees.

Proof (i) Array nonrecursiveness easily blends (as described above) with
Lachlan’s nonbounding construction [11].

(ii) This follows from (i) since all nonzero d-r.e, degrees bound nonzero r.e.
ones.
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