ARITHMETICALLY LONG ORBITS OF SOLVABLE LINEAR GROUPS

Dedicated to Marty Isaacs for his $\mathbf{5 0}^{\text {th }}$ Birthday

Olaf Manz and Thomas R. Wolf

Introduction

Let V be a finite faithful irreducible $\mathscr{F}[G]$-module for a finite solvable group G.

A number of interesting results regarding orbit sizes have connections with the structure and character theory of solvable groups, in part because the chief factors of a solvable group G are finite irreducible G-modules. Huppert (see [HB, Theorem XII.7.3]) proved that if G acts transitively on $V-\{0\}$ (i.e. the orbit sizes are 1 and $|V|-1$), then G is isomorphic to a subgroup of the semi-linear group $\Gamma(V)=\Gamma\left(q^{n}\right)$, where $q=|\mathscr{F}|$ and $n=\operatorname{dim}(V)$, or $|V|=$ $3^{2}, 5^{2}, 7^{2}, 11^{2}, 23^{2}$, or 3^{4}. By saying $G \leq \Gamma(V)$, we mean that the elements of V may be identified or labeled by the elements of the field $G F\left(q^{n}\right)$ in such a way that G is a subgroup of

$$
\Gamma=\left\{x \rightarrow a x^{\sigma} \mid 0 \neq a \in G F\left(q^{n}\right), \sigma \in \operatorname{Gal}\left(G F\left(q^{n}\right) / G F(q)\right)\right\} \leq G L(V)
$$

Observe that Γ is metacyclic of order $n\left(q^{n}-1\right)$. A consequence of Huppert's result is classification of solvable two-transitive permutation groups. Saeger [Sa] generalized this by showing that if V is a primitive G-module with relatively few orbits, then $G \leq \Gamma(V)$ or q^{n} is one of a handful of values. Passman [Pa 1, 2] classified those G that act half-transitively on $V-\{0\}$, i.e., the G-orbits of $V-\{0\}$ are of equal size.

Our concern here is the existence of large orbits, specifically an orbit divisible by many prime divisors of $|G|$. Our main result is:

Theorem A. Suppose G is a solvable group and V is a finite faithful irreducible G-module. Choose $H \leq G$ and W a primitive H-module such that $V \cong W^{G}$. If $H / \mathbf{C}_{H}(W) \npreceq \Gamma(W)$, then there exists $v \in V$ such that $\left|G: \mathbf{C}_{G}(V)\right|$ is divisible by every prime divisor $p \geq 5$ of $|G|$.

[^0]Of course regular orbits would be nice, particularly for applications. This is not always possible, particularly with imprimitive modules. And, in the primitive case, there is always the semi-linear group $\Gamma\left(q^{n}\right)$ which has order $n\left(q^{n}-1\right)$ and orbit sizes 1 and $q^{n}-1$. Espuelas [Es] showed if V is a primitive G-module and $|G||V|$ is odd, then G has a regular orbit or $G \leq \Gamma(V)$. If, in Theorem A, we assume that $|G||V|$ is odd, then Espuelas' result can be used there exists $v \in V$ such that $\left|G: \mathbf{C}_{G}(v)\right|$ is divisible by all prime divisors of $|G|$ (unless, of course $H / \mathbf{C}_{H}(W) \leq \Gamma(W)$). In proving Theorem A, one may assume that each $v \in V$ is centralized by a Sylow- p subgroup of G for some $p \geq 5$ (dependent upon v). The case where p is not dependent upon $v(p \geq 5)$ can only occur when $G \leq \Gamma(V)$. This result [Wo1] provides an important step for our results. We mention other papers $[\mathrm{Be}, \mathrm{Ca}$, Ha] that deal with existence of regular orbits.

Our main theorem will be proved in Section 2. But first we apply the theorem to a conjecture of Huppert, which roughly states that a group G must have an irreducible character whose degree is divisible by many primes. We give the best results known for solvable G.

1. Huppert's $\rho-\sigma$ conjecture

We let $\pi(n)$ denote the set of prime divisors of an integer n and $\pi(G: H)=\pi(|G: H|)$. For a group G, we let

$$
\rho(G)=\{p \text { prime }|p| \chi(1) \text { for some } \chi \in \operatorname{Irr}(G)\}
$$

and

$$
\sigma(G)=\max \{\pi(\chi(1)) \mid \chi \in \operatorname{Irr}(G)\}
$$

Of course, $\rho(G)$ is a set, while $\sigma(G) \in \mathbf{N}$. Huppert has conjectured the following:
(a) There is a function $f: \mathbf{N} \rightarrow \mathbf{N}$ such that $|\rho(G)| \leq f(\sigma(G))$ for all group G.
(b) For solvable $G,|\rho(G)| \leq 2 \cdot \sigma(G)$.

Given primes p_{i} and q_{i}, one may construct a group H_{i}, a semi-direct product of an extra-special p_{i}-group and cyclic group of order q_{i}, such that $\rho\left(H_{i}\right)=\left\{p_{i}, q_{i}\right\}$ and $\sigma\left(H_{i}\right)=1$. If $p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}$ are chosen to be distinct, then the group $G_{n}:=H_{1} \times \cdots \times H_{n}$ satisfies $\left|\rho\left(G_{n}\right)\right|=2 n$ and $\sigma\left(G_{n}\right)=n$. Consequently the bound in (b) would be best possible.

Isaacs [Is2] was first to give a bound (exponential) for solvable groups. Gluck [G12] gave a quadratic bound and Gluck and Manz [GM] give the linear bound $|\rho(G)| \leq 3 \sigma(G)+32$. We show the additive constant can be lowered so that $|\rho(G)| \leq 3 \sigma(G)+2$. The additive constant refers specifically to the set $\{2,3\}$. Part of the difficulties with this set arise in the next
lemma, which we use in both theorem A and (directly) in Lemma 1.2 below. This next lemma is a consequence of a theorem of Gluck [Gl1]. We let $\pi_{0}(G: H)=\pi(G: H) \backslash\{2,3\}$.
1.1 Lemma. Suppose G is a solvable permutation group on Ω (not necessarily transitive). Then we may choose $\Delta \leq \Omega$ such that
(a) $\operatorname{stab}_{G}(\Delta)$ is a $\{2,3\}$-group, and
(b) $\operatorname{stab}_{G}(\Delta)=1$ provided $|G|$ is odd.

Proof. See [GM, Lemma 7] for (a) and [Gl1, Corollary 1] for (b).
1.2 Lemma. Suppose that M is a normal elementary abelian subgroup of the solvable group G. Assume that $M=\mathbf{C}_{G}(M)$ is a completely reducible G-module (possibly of mixed characteristic). Set $V=\operatorname{Irr}(M)$ and write $V=V_{1}$ $\oplus \cdots \oplus V_{m}$ for irreducible G-modules V_{i}. For each i, write $V_{i}=Y_{i}^{G}$ for primitive modules Y_{i}. Assume that $\mathbf{N}_{G}\left(Y_{i}\right) / \mathbf{C}_{G}\left(Y_{i}\right)$ is nilpotent-by-nilpotent for each i. If $M \leq N \unlhd G$, there exists $\theta \in \operatorname{Irr}(N)$ whose degree is divisible by at least half the primes of $\pi_{0}(N / M)$.

Proof. We may write each V_{i} as a direct sum of the G-conjugates of Y_{i}, $i=1, \ldots, m$. Consequently, $V=X_{1} \oplus \cdots \oplus X_{n}$ for subspaces X_{i} of V permuted by G (not necessarily transitively) with $\left\{Y_{1}, \ldots, Y_{m}\right\} \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$. Furthermore, if $N_{i}=\mathbf{N}_{G}\left(X_{i}\right), C_{i}=\mathbf{C}_{G}\left(X_{i}\right)$ and $F_{i} / C_{i}=\mathbf{F}\left(N_{i} / C_{i}\right)$, then X_{i} is a primitive, faithful N_{i} / C_{i}-module and N_{i} / F_{i} is nilpotent.

Let $K=\bigcap_{i} N_{i} \unlhd G$ be the kernel of the permutation representation of G on $\left\{X_{1}, \ldots, X_{n}\right\}$. Since $\cap_{i} C_{i}=M$, we have $\cap_{i} F_{i} / M=\mathbf{F}(K / M) \unlhd G / M$. Let $H=\bigcap_{i} F_{i}$, so that $H / M=\mathbf{F}(K / M)$. Observe that K / H is nilpotent. Set $C=K \cap N$ and $F=H \cap N=H \cap C$. Observe that $F / M=\mathbf{F}(C / M)$ and that C / F is nilpotent because K / H is. Because $C / M / F(C / M)$ is nilpotent, a fairly standard argument yields the existence of $\mu \in \operatorname{Irr}(C / M)$ such that $\pi(\mu(1))=\pi(C / F)$ (e.g., see Lemma 1.1 of [HM]).

By Lemma 1.1 (a), we may choose $\Delta \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ such that $\operatorname{stab}_{N}(\Delta) /$ $(N \cap K)=\operatorname{stab}_{N}(\Delta) / C$ is a $\{2,3\}$-group. Furthermore, we can assume that Δ intersects each N-orbit non-trivially. Without loss of generality, $\Delta=$ $\left\{X_{1}, \ldots, X_{l}\right\}$ for some $l \in\{1, \ldots, n\}$. Set $\lambda=\lambda_{1} \ldots \lambda_{l} \in V$ for non-principal $\lambda_{i} \in X_{i}$. Finally suppose that $Q \in \operatorname{Syl}_{q}(N)$ for a prime $q \geq 5$, and Q centralizes λ. Thus $Q \leq \operatorname{stab}_{N}(\Delta)$. But $\operatorname{stab}_{N}(\Delta) / C$ is a $\{2,3\}$-group. Thus $Q \leq C$. For each $i, F_{i} \cap C / C_{i} \cap C$ is isomorphic to a normal nilpotent subgroup of N_{i} / C_{i}, and N_{i} / C_{i} acts irreducibly on X_{i}. Thus, for $i=1, \ldots, l, \lambda_{i}$ is not centralized by a non-trivial Sylow-subgroup of $F_{i} \cap C / C_{i} \cap C$. Since $Q \cap F_{i} \in \operatorname{Syl}_{q}\left(F_{i} \cap C\right)$, we have that $q+\left|F_{i} \cap C / C_{i} \cap C\right|$ for $i=1, \ldots, l$. By our choice of Δ, each $F_{j} / C_{j}(j=1, \ldots, n)$ is conjugate to some F_{i} / C_{i}
with $i \in\{1, \ldots, l\}$. Hence

$$
q+\left|F_{j} \cap C / C_{j} \cap C\right|
$$

for all $j=1, \ldots, n$. Since $\cap_{i} C_{i}=M$ and $\bigcap_{i}\left(F_{i} \cap C\right)=F$, we have that $q+|F / M|$. We have seen above that $Q \leq C$ and so $q+|N / C|$. Thus $\left|N: \mathbf{C}_{N}(\lambda)\right|$ is divisible by every prime in $\pi_{0}(N / C) \cup \pi_{0}(F / M)$.

Now let

$$
\beta \in \operatorname{Irr}(N \mid \mu) \quad \text { and } \quad \chi \in \operatorname{Irr}(N \mid \lambda)
$$

By the last two paragraphs, $\beta(1)$ is divisible by every prime divisor of $|C / F|$ and $\chi(1)$ is divisible by every prime in $\pi_{0}(N / C) \cup \pi_{0}(F / M)$. The conclusion of the lemma is met with $\theta=\beta$ or $\theta=\chi$.
1.3 Lemma. Suppose that $M=\mathbf{C}_{G}(M)$ is a normal elementary abelian subgroup of a solvable group G and a completely reducible G-module (possibly of mixed characteristic). Assume that G splits over M. Then there exists $\chi \in \operatorname{Irr}(G)$ such that $\chi(1)$ is divisible by at least half of the primes in $\pi_{0}(G / M)$.

Proof. We proceed by induction on $|M|$. Write $M=M_{1} \oplus \cdots \oplus M_{n}$ for $n \geq 1$ irreducible G-modules M_{i}. Set $V_{i}=\operatorname{Irr}\left(M_{i}\right)$ so that each V_{i} is an irreducible G-module and $V=V_{1} \oplus \cdots \oplus V_{n}$ is a faithful G / M-module. For each i, choose $H_{i} \leq G$ and X_{i} an irreducible primitive H_{i}-module with $X_{i}^{G}=V_{i}$. If $H_{i} / \mathbf{C}_{H_{i}}\left(X_{i}\right) \leq \Gamma\left(X_{i}\right)$ for each i, this lemma follows from Lemma 1.2. We assume without loss of generality that $H_{1} / \mathrm{C}_{H_{1}}\left(X_{1}\right) \npreceq \Gamma\left(X_{1}\right)$.

Let $K=\mathbf{C}_{G}\left(M_{1}\right) \unlhd G$. Let H be a complement for M in G and let $J=N H$ where $N=M_{2} \oplus \cdots \oplus M_{n}$. Now $J \cap K=N(H \cap K)$ acts on N and $\mathbf{C}_{J \cap K}(N)=N$. By induction, there exists $\tau \in \operatorname{Irr}(J \cap K)$ such that $\tau(1)$ is divisible by at least half the primes in $\pi_{0}((J \cap K) / N)=\pi_{0}(K / M)$, as $(J \cap K) / N \cong K / M$. Now $J \cap K \unlhd J$ and centralizes $M / N \cong M_{1}$. Thus $J \cap$ $K \unlhd K J=G$ and $K / N=M / N \times(J \cap K) / N$.

By the choice of M_{1}, Theorem A implies that there exists $\lambda \in V_{1}$ such that

$$
\pi_{0}(G / K)=\pi_{0}\left(G: I_{G}(\lambda)\right)
$$

Set $\beta=\lambda \cdot \tau \in \operatorname{Irr}(K)$. Now $I_{G}(\beta) \subseteq I_{G}(\lambda)$. Thus $\pi_{0}\left(G: I_{G}(\beta)\right) \supseteq \pi_{0}(G / K)$. If $\chi \in \operatorname{Irr}(G \mid \beta)$, then as $K \unlhd G, \pi_{0}(\chi(1)) \supseteq \pi_{0}(G / K) \cup \pi_{0}(\tau(1))$. Since $\tau(1)$ is divisible by at least half the primes in $\pi_{0}(K / M)$, certainly $\chi(1)$ is divisible by at least half the primes in $\pi_{0}(G / M)$.
1.4 Theorem. Let G be solvable. Then
(a) $|\rho(G)| \leq 3 \cdot \sigma(G)+2$.
(b) $|\rho(G)| \leq 2 \cdot \sigma(G)+2$ if $r\left|\left|G / \mathbf{O}_{r}(G)\right|\right.$ whenever $\mathbf{O}_{r}(G)$ is nonabelian.

Proof. Let $\mathscr{R}=\left\{r\right.$ prime $\mid O_{r}(G) \in \operatorname{Syl}_{r}(G)$ and $O_{r}(G)$ is non-abelian $\}$ and $F=\mathbf{F}(G)$. Certainly $\rho(G) \subseteq \pi(G / F) \cup \mathscr{R}$ and by Ito's Theorem [Is, 12.33], equality holds.

By a theorem of Gaschütz (see [Hu, III.4.2, III.4.4, and III.4.5]), F(G)/Ф(G) is a faithful completely reducible G / F-module and $G / \Phi(G)$ splits over $\mathbf{F}(G) / \Phi(G)$. Applying Lemma 1.3, there exists $\chi \in \operatorname{Irr}(G)$ with $\pi_{0}(\chi(1)) \geq$ $\pi_{0}(G / F) / 2$. Hence

$$
\sigma(G) \geq \pi_{0}(G / F) / 2
$$

Under hypothesis (b), $\mathscr{R} \subseteq \pi(G / F)$ and thus

$$
\rho(G)=\pi(G / F) \subseteq \pi_{0}(G / F) \cup\{2,3\}
$$

In this case, $2 \sigma(G) \geq|\rho(G)|-2$, as desired.
Now $\prod_{r \in \mathscr{R}} \mathbf{O}_{r}(G) \unlhd G$ and each $\mathbf{O}_{r}(G)$ is non-abelian. Thus there exists $\eta \in \operatorname{Irr}(G)$ such that $\mathscr{R} \subseteq \pi(\eta(1))$. Since

$$
\sigma(G) \geq \max \left\{|\mathscr{R}|, \pi_{0}(G / F) / 2\right\}
$$

and since

$$
\rho(G)=\pi(G / F) \cup \mathscr{R} \subseteq \pi_{0}(G / F) \cup \mathscr{R} \cup\{2,3\}
$$

part (a) follows.
Suppose $|G|$ is odd. If we employ Lemma 1.1 (b) and Theorem 2.7 instead of Lemma 1.1(a) and Theorem A, then the conclusions of Lemmas 1.2 and 1.3 remain valid with π replacing π_{0}. Consequently, we get:
1.5 Theorem. If $|G|$ is odd, then:
(a) $|\rho(G)| \leq 3 \cdot \sigma(G)$.
(b) (Espuelas [Es]) $\rho(G) \leq 2 \sigma(G)$ if $r\left||G / \mathbf{F}(G)|\right.$ whenever $\mathbf{O}_{r}(G)$ is non-abelian.

Gluck [Gl3] has verified Huppert's conjecture $|\rho(G)| \leq 2 \sigma(G)$ for solvable G in a number of special cases. This bound is not correct for arbitrary G, but
appears to be of the correct order of magnitude. If L is A_{5} or $\operatorname{PSL}(2,8)$, then $|\rho(L)|=3$ and $\sigma(L)=1$. It has been verified that $|\rho(S)| \leq 3 \sigma(S)$ for simple S by Alvis and Barry [AB] and Manz, Staszewski, and Willems [MSW]. Altering the construction at the beginning of this section by letting $H_{1}=A_{5}$ instead, then $\left|\rho\left(G_{n}\right)\right|=2 n+1$ and $\sigma\left(G_{n}\right)=n$. Possibly $\sigma(G) \leq$ $2|\rho(G)|+1$ is valid for all G.

2. Orbits

Here we prove Theorem A. Recall that a G-module V is quasi-primitive if V_{N} is homogeneous for all $N \unlhd G$.
2.1 Theorem. Suppose that V is a faithful quasi-primitive G-module, G solvable. Then there exist normal subgroups Z, U, T, A, C, and $F=\mathbf{F}(G)$ of G satisfying:
(a) U is cyclic and $Z=\operatorname{socle}(U)$;
(b) $U \leq T, U=\mathbf{C}_{T}(U)$ and $|T: U| \leq 2$;
(c) $F / T=F_{1} / T \times \cdots \times F_{l} / T$ where each F_{i} / T is an irreducible G / F module of order e_{i}^{2} for a prime power e_{i}. We let $e=\prod_{i=1}^{l} e_{i}=|F: T|^{1 / 2} ;$
(d) $A=\mathbf{C}_{G}(Z)$ and A / F acts faithfully on F / T;
(e) $C=\mathbf{C}_{G}(F / T), C \cap A=F$, and $C / F \leq \mathbf{Z}(G / F)$;
(f) Each prime divisor of e divides $|Z|$;
(g) If W is an irreducible U-submodule of V, then $\operatorname{dim}(V)=t e \operatorname{dim}(W)$ for an integer t.

Proof. Parts (a)-(d), (f) follow from Lemma 2.3 and Corollary 2.4 of [Wo2], because every normal abelian subgroup of G is cyclic. Define $C=$ $\mathrm{C}_{G}(F / T) \geq F$. Part (d) implies that $C \cap A=F$. Now $\operatorname{Aut}(Z)$ is abelian and G / A is G-isomorphic to a subgroup of $\operatorname{Aut}(Z)$. Since $C \cap A=F$, it follows that $C / F \leq \mathbf{Z}(G / F)$. This proves (e). Part (g) follows from [Wo2, Lemma 2.5].
2.2 Lemma. Suppose V is a finite faithful irreducible G-module. Assume that one of the following occurs:
(i) $A \unlhd G, A$ is abelian, and V_{A} is irreducible;
(ii) $A=\mathbf{C}_{G}(A) \unlhd G$ and V_{A} is homogeneous; or
(iii) G is solvable, V is quasi-primitive, and $e=1$ (as in Theorem 2.1). Then $G \leq \Gamma(V)$.

Proof. Part (i) is [Hu; II, 3.11]. Under hypothesis (ii) and finiteness of V, V_{A} is irreducible by Theorem 4.2 of [Pk]. So (i) applies.

Assume that V is quasi-primitive and adopt the notation of Theorem 2.1. If $e=1$, Theorem 2.1 (c, d) imply that $F=T=\mathbf{C}_{G}(Z)$. Since $Z \leq U=$ $\mathrm{C}_{T}(U) \unlhd G$, indeed $U=\mathbf{C}_{G}(U) \unlhd G$ and hypothesis, (ii) is met.

Observe that condition (ii) is met when G is solvable, when $F=F(G)$ is abelian, and V_{F} is homogeneous.
2.3 Corollary. Suppose G is a solvable irreducible subgroup of $G L(n, p)$.
(i) If $p=2$ and n is prime then $G \lesssim \Gamma\left(2^{n}\right)$.
(ii) If G is quasi-primitive and $n=p^{m}$ for some m, then $G \lesssim \Gamma\left(p^{p^{m}}\right)$.

Proof. Let V be the corresponding G-module, let $F=\mathbf{F}(G)$, let $1 \neq$ $Q \in \operatorname{Syl}_{q}(F)$ for a prime q, and let $Z=\mathbf{Z}(Q)$. Note that $q \neq p$.

If Q is non-abelian, then $q \mid \operatorname{dim}(V)$ because $Q \unlhd G$ and every faithful absolutely irreducible representation of Q has degree divisible by q. Under hypotheses (ii), it thus follows that Q and F are abelian. By Lemma 2.2, $G \leq \Gamma(V)$.

Now assume that $p^{n}=2^{n}$ with n prime. If U is an irreducible Z-submodule of V, then $\operatorname{dim}(U)>1$ because $Z \neq 1$. Thus V_{Z} is irreducible. By Lemma 2.2, $G \leq \Gamma(V)$.
2.4 Lemma. Suppose that G is a solvable irreducible subgroup of $G L(n, p), p$ prime.
(a) If $p^{n}=p^{2}$, then $\pi_{0}(G) \subseteq \pi_{0}\left(p^{2}-1\right)$ and G has a normal Sylow- q subgroup for each $q \in \pi_{0}(G)$.
(b) If $p^{n} \in\left\{2^{4}, 2^{6}, 2^{8}, 3^{6}\right\}$, then $\left|\pi_{0}(G)\right| \leq 2$ and G has a normal Sylow-q-subgroup for each $q \in \pi_{0}(G)$.
(c) If $p^{n}=3^{4}$, then $\pi_{0}(G) \subseteq\{5\}$.
(d) If $p^{n}=2^{10}$ and $\left|\pi_{0}(G)\right|>1$, then $G \leq \Gamma\left(2^{5}\right)$ wr Z_{2} or $G \leq \Gamma\left(2^{10}\right)$.

Proof. Let V be the corresponding G-module. If V is not quasi-primitive, then $G \preceq H$ wr S, where $S \leq S_{m}$ is a solvable primitive permutation group on m letters and $1 \neq H$ is a solvable irreducible subgroup of $G L(n / m, p)$. Should $p=2, n>m$ and so $m \leq 5$ in all cases. If $m=5$, then $p^{n}=2^{10}$, $|S| \mid 20$ and $G \leq S_{3}$ wr H, whence conclusion (d) holds. Then we may assume that $2 \leq m \leq 4$ and $\pi_{0}(H)=\emptyset$. With help of Corollary 2.3, it is easy to see all conclusions of the lemma hold. Thus we assume that V is quasi-primitive.

Should $G \leq \Gamma(V)$, the conclusions of the lemma are satisfied. Theorem 2.1 applies and we adopt the notation in Theorem 2.1. In particular, $|F: T|=e^{2}$ for an integer $e, \operatorname{dim}(V)=t e \operatorname{dim}(W)$ where W is an irreducible U-submodule of $V, t \in \mathbf{N}$. By Lemma 2.2, we may assume $e>1$. Each prime divisor of e divides $|U|$. Furthermore $U||W|-1$ as U is cyclic. Also $p+e$, because
$\mathbf{O}_{p}(G)=1$. Thus the only possibilities are:

e	p^{n}	$\|W\|$	$\|U\|$
4	3^{4}	3	2
3	2^{6}	4	3
2	3^{6}	3 or 3^{3}	divides 26
2	3^{4}	3 or 3^{2}	divides 8
2	p^{n}	p	divides $p-1$

In the last case, $V_{U}=V_{1} \oplus V_{2}$ for isomorphic 1-dimensional U-modules V_{i}, whence $U \leq \mathbf{Z}(G L(V))$. By Theorem 2.1 (d, e), it follows that $|C / F| \mid 12$ in all cases. Thus $\pi_{0}(C / U)=\emptyset$. The conclusion of the theorem is met unless $\pi_{0}(G: C) \neq \emptyset$. But F / T is a faithful G / C-module of order $e^{2}=2^{2}, 3^{2}$, or 4^{2}, and F / T is an irreducible G / C-module or the direct sum of two G / C-modules of order 4 . Since we may assume that $\pi_{0}(G / C) \neq \emptyset$, indeed F / T is a faithful irreducible G / C-module of order 2^{4}. Conclusion (c) now holds (see Corollary 2.3).
2.5 Proposition. Let G be solvable. Then the number $|\operatorname{Syl}(G)|$ of distinct Sylow-subgroups of G (for all primes) is at most $|G|$.

Proof. By induction on $|G|$. We note that equality holds when $|G| \leq 2$. We may choose a maximal normal subgroup M of G and set $q=|G / M|$, a prime. By the inductive hypothesis, $|\operatorname{Syl}(M)| \leq M$. If $P \in \operatorname{Syl}_{p}(G)$ for $p \neq q$, then $P \in \operatorname{Syl}_{p}(M)$, and so the number of Sylow subgroups of G for all primes other than q is at most $|M|$. But $\left|\operatorname{Syl}_{q}(G)\right| \leq|G| / q=|M|$. Hence $|\operatorname{Syl}(G)| \leq 2|M| \leq|G|$.

Next is Theorem A.
2.6 Theorem. Suppose V is a finite faithful irreducible G-module for a solvable group G. Write $V=W^{G}$ where W is a primitive H-module, $H \leq G$. If $H / \mathbf{C}_{H}(W) \npreceq \Gamma(W)$, then there exists $v \in V$ such that $\pi_{0}\left(G: \mathbf{C}_{G}(v)\right)=\pi_{0}(G)$.

Proof. By induction on $|G|$. For each $v \in V$, we may assume that $\mathbf{C}_{G}(v)$ contains a Sylow- p-subgroup of G for some $p \geq 5$, since otherwise the conclusion of the theorem is satisfied.

Step 1. $\quad H=G$ and V is a primitive G-module.
Proof. For $H \leq J \leq G, W^{J}$ is irreducible and thus $H=\mathbf{N}_{G}(W)$. Since $V=W^{G}$, we may write $V=W_{1} \oplus \cdots \oplus W_{m}$ for subspaces W_{i} of V that are transitively permuted by G with $W=W_{1}$. Set $H_{i}=\mathbf{N}_{G}\left(W_{i}\right)$, so that H_{i} is
conjugate to H and

$$
H_{i} / \mathbf{C}_{H_{i}}\left(W_{i}\right) \cong H / \mathbf{C}_{H}(W)
$$

If $H<G$, we may apply the inductive hypothesis to conclude there exists $y \in W$ such that $\pi_{0}\left(H: \mathbf{C}_{H}(y)\right)=\pi_{0}\left(H: \mathbf{C}_{H}(W)\right)$.

Let $N=\bigcap_{i=1}^{m} H_{i}$, so that G / N faithfully and transitively permutes $\left\{W_{1}, \ldots, W_{m}\right\}$. By Lemma 1.3, we may assume that $\operatorname{stab}_{G / N}\left\{W_{1}, \ldots, W_{l}\right\}$ is a $\{2,3\}$-group for some $l \leq m$. Assuming H is proper in G, set

$$
x=y+x_{2}+\cdots+x_{l}
$$

where $0 \neq x_{i} \in W_{i}(2 \leq i \leq l)$. Then

$$
\mathbf{C}_{G}(x) / \mathbf{C}_{N}(x) \cong N \mathbf{C}_{G}(x) / N \leq \operatorname{stab}_{G / N}\left(W_{1}, \ldots, W_{l}\right)
$$

is a $\{2,3\}$-group. If $q \geq 5$ is prime and $Q \in \operatorname{Syl}_{q}(G)$ centralizes x, then

$$
Q \leq \mathbf{C}_{N}(x) \leq \mathbf{C}_{N}(y) \leq \mathbf{C}_{H}(y)
$$

By choice of $y, Q \leq \mathbf{C}_{H}(W) \cap N=\mathbf{C}_{N}(W)$. Thus $N / \mathbf{C}_{N}(W) \cong N / \mathbf{C}_{N}\left(W_{i}\right)$ is a q^{\prime}-group for all i. Since $\cap_{i} \mathbf{C}_{N}\left(W_{i}\right)=1$, indeed $Q=1$. Thus $\pi_{0}\left(G: \mathbf{C}_{G}(x)\right)=\pi_{0}(G)$, as desired. So we may assume that $H=G$.

Step 2. Let π be the set of those prime divisors $p \geq 5$ of G for which $\mathrm{C}_{V}(P) \neq 0, P \in \operatorname{Syl}_{p}(G)$. Then
(a) $\sum_{p \in \pi} \sum_{p \in \operatorname{Syl}_{p}(G)}\left|\mathbf{C}_{V}(P)\right| \geq|V|$;
(b) $\mathbf{O}_{\pi}(G)=1$; and
(c) $|\pi| \geq 2$.

Proof. By the first paragraph of the proof, each $v \in V$ is centralized by some Sylow- p-subgroup for some $p \in \pi$. Part (a) is a consequence thereof. To prove (b), we may, by the solvability of G, assume that $\mathrm{O}_{q}(G) \neq 1$ for some $q \in \pi$. By definition of $\pi, \mathbf{C}_{V}\left(\mathbf{O}_{q}(G)\right) \neq 0$. This is a contradiction because V is a faithful and homogeneous $\mathbf{O}_{q}(G)$-module.

If $\pi=\{p\}$, every $v \in V$ is centralized by a Sylow- p-subgroup. By [MW1, Theorem 1.8], $L:=\mathbf{O}^{p^{\prime} p}(G)$ is a cyclic p^{\prime}-group and V is an irreducible $\mathbf{O}^{p^{\prime}}(G)$-module. Let Y be an irreducible L-submodule of V, let $0 \neq y \in Y$ and choose $P \in \operatorname{Syl}_{p}(G)$ such that $P \leq \mathbf{C}_{G}(y)$. Then Y is invariant under $L P=\mathbf{O}^{p^{\prime}}(G)$. So $Y=V$ is an irreducible L-module. By Lemma 2.2, $G \leq$ $\Gamma(V)$. Part (c) follows.

Step 3. Theorem 2.1 applies and we adopt that notation. In particular
(a) $F / T=F_{1} / T \times \cdots F_{l} / T$ for irreducible G / F-modules F_{i} / T of or$\operatorname{der} e_{i}^{2}, e_{i} \in \mathbf{Z}$;
(b) $e=e_{1} \cdots e_{l}>1$;
(c) If W is an irreducible U-submodule of V, then $|V|=|W|^{t e}$ for an integer t
(d) $|U|||W|-1$ and each prime divisor of e divides $| U \mid$.

Proof. Parts (a) and (c) follows form Theorem 2.1, as does the fact that each prime divisor of $e=e_{1} \cdots e_{l}$ divides $|U|$. Since V_{U} is homogeneous and U is cyclic, then $|U|||W|-1$. That $e>1$ follows from Lemma 2.2.

Step 4. Some $p \in \pi$ does not divide $|D / U|$.
Proof. Assume each $p \in \pi$ does divide $|D / U|$. If $P \in \operatorname{Syl}_{p}(G)$, then $P \cap D \in \operatorname{Syl}_{p}(D)$. Thus each $v \in V$ is centralized by a non-trivial Sylow- $q-$ subgroup of D for some $q \in \pi$. Choose $\pi_{1} \subseteq \pi$ minimal such that each $v \in V$ is centralized by a Sylow- q-subgroup of D for some $q \in \pi_{1}$. Next let $D_{1} / U \in \operatorname{Hall}_{\pi_{1}}(D / U)$ so that $D_{1} \unlhd G$ and each $v \in V$ is centralized by a non-trivial Sylow- q-subgroup of D_{1} for some $q \in \pi_{1}$.

Since $U=F \cap D_{1}$, certainly $U=\mathbf{F}\left(D_{1}\right)=\mathbf{C}_{D_{1}}(U)$. To show that $G \leq$ $\Gamma(V)$, it suffices to show that V is an irreducible D_{1}-module (see Lemma 2.2 and Step 1). So write $V=X_{1} \oplus X_{2}$ for non-zero D_{1}-submodules X_{i} of V and let $0 \neq x \in X_{1}$. For $y \in X_{2}, C_{D_{1}}(x+y)$ contains a Sylow- q-subgroup of D_{1} for some $q \in \pi$. Since $\mathrm{C}_{D_{1}}(x+y) \leq \mathrm{C}_{D_{1}}(x)$ for all y and since $V_{D_{1}}$ is homogeneous, it follows from the minimality of π_{1} that $\mathbf{C}_{D_{1}}(x)$ contains a Sylow- q-subgroup of D_{1} for each $q \in \pi_{1}$. Since U acts fixed-point freely on $V, \mathbf{C}_{U}(x)=1$. But D_{1} / U is a π_{1}-group and so $\mathbf{C}_{D_{1}}(x) \in \operatorname{Hall}_{\pi_{1}}\left(D_{1}\right)$. Choose $y \in X_{2}$ not centralized by $\mathbf{C}_{D_{1}}(x)$. Thus $\mathrm{C}_{D_{1}}(x+y) \notin \operatorname{Hall}_{\pi_{1}}\left(D_{1}\right)$. But since $V_{D_{1}}$ is completely reducible, $V_{D_{1}}=Y_{1} \oplus Y_{2}$ for D_{1}-invariant $Y_{i} \neq 0$ with Y_{1} irreducible and $x+y \in Y_{1}$. The argument above for x shows that $\mathrm{C}_{G}(x+y) \in \operatorname{Hall}_{\pi_{1}}\left(D_{1}\right)$, a contradiction. Hence V is an irreducible D_{1}-module and $G \leq \Gamma(V)$, as desired. Step 4 follows.

Step 5. Let $p \in \pi$ and $P \in \operatorname{Syl}_{p}(G)$. Then
(a) $\left|\mathrm{C}_{V}(P)\right| \leq|V|^{1 / 2}$;
(b) If $1 \neq P_{1} \leq P \cap D$, then $\left|C_{V}\left(P_{1}\right)\right| \leq|V|^{1 / 5}$ and $p \mid t \cdot \operatorname{dim}(W)$;
(c) $|G| \geq \sum_{p \in \pi}\left|\operatorname{Syl}_{p}(G)\right| \geq|V|^{1 / 2}$.

Proof. Let $1 \neq P_{0} \leq P$ with $\left|P_{0}\right|=p$. Recall that $p+|F|$. First suppose that $p \| D \mid$ and assume without loss of generality that $P_{0} \leq D$. Since $U=$ $\mathrm{C}_{D}(U)$ by Step 1 and $p+|U|$, we may choose $1 \neq Y \leq Z$ with $Y P_{0}$ a Frobenius group. Note $\mathbf{C}_{V}(Y)=0$ because $Y \unlhd G$. Then $\operatorname{dim}(V)=p$.
$\operatorname{dim}\left(\mathbf{C}_{V}\left(P_{0}\right)\right)$ by [Is, Theorem 15.16]. Since $\operatorname{dim}(V)=t e \operatorname{dim}(W)$ and $p+|F|$, in fact $p \mid t \cdot \operatorname{dim}(W)$. Parts (a) and (b) follow when $p||D|$. When $p+|D|$, part (a) follows from [Wo1, Lemma 1.7].

Part (c) follows from Proposition 2.5, Step 2 (a) and part (a) of this step.
Step 6. (a) Set $C_{i}=\mathbf{C}_{G}\left(F_{i} / T\right)$. Assume that G / C_{i} has a normal Sylow-q-subgroup for all $q \in \pi$ and all $i, 1 \leq i \leq l$. Then $\left|\pi_{0}(G: C)\right| \geq 4$.
(b) We may assume that $e_{1} \geq 8$.
(c) If $e \geq 32$, then $e_{1}=9, e=e_{1}=5^{2}$, or $e=e_{1}=2^{5}$.

Proof. Now F_{i} / T is a faithful irreducible $G / C_{i}=$ module of order e_{i}^{2} for each i. Also

$$
\bigcap_{i} C_{i}=C=\mathbf{C}_{G}(F / T)
$$

If $e_{i} \in\{2,3,5,7\}$, then $\pi_{0}\left(G / C_{i}\right)=\emptyset$. By Step 4 , some prime $q_{0} \in \pi \subseteq$ $\pi_{0}(G / F)$ does not divide $|D / U|$ and thus does not divide $|C / F|$. Thus $s:=\left|\pi_{0}(G / C) \cap \pi\right|$ is at least one. We may assume $q_{0}| | G / C_{1} \mid$ and thus $e_{1}=4$ or $e_{1} \geq 8$.
(a) Since G / C_{i} has a normal Sylow- q-subgroup for all $q \in \pi$ and since $\cap_{i} C_{i} / F=C / F \leq \mathbf{Z}(G / F)$, indeed G / F has a normal Sylow- q-subgroup for all $q \in \pi$. If $q \in \pi$ does not divide $|G / C|$, then each Sylow- q-subgroup Q of G lies in D and $\left|\mathbf{C}_{V}(Q)\right| \leq|V|^{1 / 5}$ by Step 5 (b). If q does divide $|G / C|$, then $\left|\mathbf{C}_{V}(Q)\right| \leq|V|^{1 / 2}$ by Step 5 (a) and $\left|\operatorname{Syl}_{q}(G)\right| \leq\left|F: \mathbf{C}_{F}(Q)\right| \leq e^{2}|U|$. Since $\Sigma_{q \in \pi}\left|\operatorname{Syl}_{q}(G)\right|\left|\mathbf{C}_{V}(Q)\right| \geq|V|$ by Step 2 (a), we have that

$$
s e^{2} \cdot|U| \cdot|V|^{1 / 2}+|D||V|^{1 / 5} \geq|V|
$$

using Proposition 2.5 to bound $|\operatorname{Syl}(D)|$. Since $U=\mathbf{C}_{D}(U)$ is cyclic, indeed $|D| \leq|U|^{2}$. Since W is an irreducible U-module and $e \geq 4$, it follows that $|U|<|W|<|W|^{3 e / 10} \leq|V|^{3 / 10}$ and $|D||V|^{1 / 5}<|U||V|^{1 / 2}$. Then $\left(s e^{2}+1\right)|U|>|V|^{1 / 2}$. But, for now, we may assume that $1 \leq s \leq 3$ and $3 e^{2}+1>|W|^{(t e / 2)-1}$. Since $|U|||W|-1$, then $| W \mid \geq 3$ and $e<16$. If $\pi_{0}\left(G / C_{i}\right) \neq \emptyset$, it follows with help of Lemma 2.4 that $e_{i} \geq 4$ and $\pi_{0}\left(G / C_{i}\right)$ is a singleton. Since $e<16$, then $\pi_{0}\left(G / C_{j}\right)=0$ for $j \geq 2$ and $s=\mid \pi \cap$ $\pi_{0}(G / C) \mid=1$. Because $|\pi| \geq 2$, some $r \in \pi$ divides $|D / U|$ and $r \mid t \operatorname{dim}(W)$ by Step 4 (b). Thus $e^{2}+1>(32)^{(e / 2)-1}$, whence $e<4$, a contradiction. This proves (a).
(b) If every $e_{i} \leq 7$, it follows by Lemma 2.4 that $\pi_{0}\left(G / C_{i}\right) \subseteq\{5\}$ and G / C_{i} has a normal Sylow-5-subgroup for all i, contradicting (a). So we assume that $e_{1} \geq 8$.
(c) Suppose now $e=e_{1} \cdots e_{l} \leq 32$. By part (b), it follows that $\pi_{0}\left(G / C_{i}\right)=\emptyset$ for all $i \geq 2$ and $\pi_{0}(G / C)=\pi_{0}\left(G / C_{1}\right)$. By part (a), it
follows that $\left|\pi_{0}\left(G / C_{i}\right)\right| \geq 4$ or that G / C_{1} does not have a normal Sylow- q subgroup for some $q \in \pi$. Since $e \leq 32$, Lemma 2.4 yields that $e_{1}=9$, $e=e_{1}=5^{2}$, or $e=e_{1}=2^{5}$.

Step 7. Conclusion.
Proof. Since F / T is a faithful, completely reducible G / C-module or order e^{2}, it follows from [Wo2, Theorem 3.1] that $|G / C|<\left(e^{2}\right)^{9 / 4} / 2$. Since $C / F \leq G / \mathbf{C}_{G}(Z)$ and Z is cyclic, $|C / F| \leq|Z| \leq|U|$. Also $|T: U| \leq 2$ with equality possible only when $2||U|$. Thus $| C / F| | T\left|\leq|U|^{2}\right.$ in all cases. Now

$$
|G| \leq|G: C||C: F|| ||F: T||T| \leq e^{13 / 2}|U|^{2} / 2
$$

By Step 2,

$$
e^{13}|U|^{4} \geq 4|V|=4|W|^{t e}
$$

Since $|U|||W|-1$ by Step 3 (d), indeed

$$
\begin{equation*}
e^{13} \geq 4|W|^{t e-4} \geq 4 \cdot 3^{e-4} \tag{2.1}
\end{equation*}
$$

and hence $e<64$. Every prime divisor of e divides $|U|$ and $|W|-1$. If $e>32$, then e is divisible by a prime $p \geq 5$ or $6 \mid e$, whence $|W| \geq 7$ and (2.1) gives a contradiction. So $e \leq 32$. If $e=25$, then $|W| \geq 11$ and (2.1) gives a contradiction. By Step 6, either $e_{1}=9$ or $e=e_{1}=2^{5}$.

First suppose $e_{1}=3^{2}$. Since $e \leq 32$, Lemma 2.4 yields that $\pi_{0}(G / C) \subseteq\{5\}$. Since $|\pi| \geq 2$, some prime $q \geq 7$ in π divides $|D / U|$ and $t \operatorname{dim}(W)$ by Step 5 (b). If $t \geq 7$, then $e^{13} \geq 4 \cdot|W|^{7 e-4}$, an easy contradiction. Thus $q \mid \operatorname{dim}(W)$. Since (2.1) implies that $|W| \leq 303$, indeed $|W|=2^{7}$, a contradiction because $3\left||W|-1\right.$. So $e=e_{1}=2^{5}$.

By (2.1), it follows that $t=1,|W|=3$ and thus $|U|=2$. Hence $U \leq \mathbf{Z}(G)$, $C=F$ and $D=T=U$. In particular, F is extra-special of order 2^{11}. By Lemma 2.4 (d),

$$
G / F \leqq \Gamma\left(2^{5}\right) \mathrm{wr} Z_{2} \quad \text { or } \quad G / F \leqq \Gamma\left(2^{10}\right)
$$

Thus $\pi \subseteq\{5,11,31\}$. Routine arguments show that

$$
\left|\operatorname{Syl}_{31}(G)\right| \leq 2^{10},\left|\operatorname{Syl}_{11}(G)\right| \leq 2^{10} \text { and }\left|\operatorname{Syl}_{5}(G)\right| \leq 2^{10} \cdot 31^{2} \leq 2^{20}
$$

By Step 5 (c), $3^{16}=|V|^{1 / 2} \leq 2^{20}+2^{10}+2^{10}<2^{21}$, a contradiction.
For completeness, we include the following, which was at least implicity inferred by Espuelas in his proof of Theorem 1.5 (b).
2.7 Theorem. Suppose V is a finite faithful irreducible G-module and $|G||V|$ is odd. Write $V=W^{G}$ where W is a primitive H-module, $H \leq G$. If $H / \mathbf{C}_{H}(W) \npreceq \Gamma(W)$, then there exists $v \in V$ such that $\pi\left(G: C_{G}(v)\right)=\pi(G)$.

Proof. If V is imprimitive, repeat the argument of Step 1 of Theorem 2.6 using Lemma 1.1 (b) instead of 1.1 (a). If V is primitive and $G \npreceq \Gamma(V)$, Espuelas [Es, Lemma 2.1] proved that G has even a regular orbit.

References

[AB] D. Alvis and M. Barry, Character degrees of simple groups, J. Algebra 140 (1991), 116-123.
[Be] T. Berger, Hall-Higman type theorems, I-VII, I, Canad. J. Math. 26 (1974), 513-531; II, Trans. Amer. Math. Soc. 205 (1975), 47-69; III, Trans. Amer. Math. Soc. 228 (1977), 47-83; IV, Proc. Amer. Math. Soc. 37 (1973), 317-325; V, Pacific J. Math. 73 (1977), 1-62; VI, J. Algebra 51 (1978), 416-424; VII, Proc. London Math. Soc. 31 (1975), 21-54.
[Ca] W. Carlip, Regular orbits of nilpotent subgroups of solvable groups, Illinois J. Math., to appear.
[Es] A. Espuelas, Large character degrees of groups of odd order, Illinois J. Math. 35 (1991), 499-505.
[GI1] D. Gluck, Trivial set stabilizers in finite permutation groups, Canad. J. Math. 35 (1983), 59-67.
[Gl2] _, Primes dividing character degrees and character orbit sizes, Proc. Amer. Math. Soc. 101 (1987), 219-225.
[G13] , A conjecture about character degrees of solvable groups, J. Algebra 140 (1991), 26-35.
[GM] D. Gluck and O. Manz, Prime factors of character degrees of solvable groups, Bull. London Math. Soc. 19 (1987), 431-437.
[GW] D. Gluck and T.R. Wolf, Defect groups and character heights in blocks of solvable groups, II, J. Algebra 87 (1984), 222-246.
[Ha] B. Hargraves, The existence of regular orbits for nilpotent groups, J. Algebra 72 (1981), 54-100.
[Hu] B. Huppert, Endliche Gruppen, I, Springer-Verlag, New York, 1967.
[HB] B. Huppert and N. Blackburn, Finite Groups III, Springer-Verlag, New York, 1982.
[HM] B. Huppert and O. Manz, Degree problems I: Square free character degrees, Arch. Math. 45 (1985), 125-132.
[Is1] I.M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976.
[Is2] , Solvable group character degrees and sets of primes, J. Algebra 104 (1986), 209-219.
[MSW] O. Manz, R. Staszewsii and W. Willems, On the number of components of a graph related to character degrees, Proc. Amer. Math. Soc. 103 (1988), 31-37.
[MW1] O. MANZ and T.R. Wolf, Brauer characters of q^{\prime}-degree in q-solvable groups, J. Algebra 155 (1988), 75-91.
[MW2] ___ Blocks of small defect in solvable groups, submitted.
[Mi] G. Michler, "Brauer's conjectures and the classification of finite simple groups" in Representation theory II, Springer-Verlag, New York, 1985, 129-142.
[Pk] A. Parks, Generalized permutation characters of solvable groups, J. Algebra 93 (1985), 445-474.
[Pa1] D.S. Passman, Solvable half-transitive automorphism groups, J. Algebra 6 (1967), 285-304.
[Pa2] , Exceptional 3/2-transitive permutation groups, Pacific J. Math. 29 (1969), 669-713.
[Sa] S. SAEGER, The rank of a finite primitive solvable permutation group, J. Algebra 105 (1987), 389-394.
[Wo1] T.R. Wolf, Defect groups and character heights in blocks of solvable groups, J. Algebra 72 (1981), 183-209.
[Wo2] __, Solvable and nilpotent subgroups of $G L\left(n, q^{n}\right)$, Canad. J. Math. 34 (1982), 1097-1111.

University of Heidelberg
Heidelberg, Germany
Ohio University
Athens, Ohio

[^0]: Received December 19, 1991.
 1991 Mathematics Subject Classification. Primary 20C.

