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Introduction

Let V be a finite faithful irreducible r[G]-module for a finite solvable
group G.
A number of interesting results regarding orbit sizes have connections with

the structure and character theory of solvable groups, in part because the
chief factors of a solvable group G are finite irreducible G-modules.. Huppert
(see [HB, Theorem XII.7.3]) proved that if G acts transitively on V- {0} (i.e.
the orbit sizes are 1 and VI 1), then G is isomorphic to a subgroup of the
semi-linear group F(V) F(q"), where q 1] and n dim(V), or IVI
3, 5, 7, 11, 23, or 34. By saying G < F(V), we mean that the elements of
V may be identified or labeled by the elements of the field GF(q") in such a
way that G is a subgroup of

r" {x ax]O , a GF(qn), cr Gal(GF(qn)/GF(q))} < GL(V).

Observe that F is metacyclic of order n(qn 1). A consequence of Huppert’s
result is classification of solvable two-transitive permutation groups. Saeger
[Sa] generalized this by showing that if V is a primitive G-module with
relatively few orbits, then G < F(V) or qn is one of a handful of values.
Passman [Pa 1, 2] classified those G that act half-transitively on V- {0}, i.e.,
the G-orbits of V- {0} are of equal size.
Our concern here is the existence of large orbits, specifically an orbit

divisible by many prime divisors of al. Our main result is:

THEOREM A. Suppose G is a solvable group and V is a finite faithful
irreducible G-module. Choose H < G and W a primitive H-module such that
V =- We. IfH/CH(W) r F(W), then there exists v Vsuch that IG: Ce(V)I
is divisible by every prime divisor p > 5 of lGI.
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Of course regular orbits would be nice, particularly for applications. This is
not always possible, particularly with imprimitive modules. And, in the
primitive case, there is always the semi-linear group I’(qn) which has order
n(q"-1) and orbit sizes 1 and q-1. Espuelas [Es] showed if V is a
primitive G-module and al VI is odd, then G has a regular orbit or
G < F(V). If, in Theorem A, we assume that al IVI is odd, then Espuelas’
result can be used there exists v V such that G: C(v)l is divisible by all
prime divisors of [G[ (unless, of course H/Cn(W)< F(W)). In proving
Theorem A, one may assume that each v V is centralized by a Sylow-p-
subgroup of G for some p > 5 (dependent upon v). The case where p is not
dependent upon v (p > 5) can only occur when G < F(V). This result [Wol]
provides an important step for our results. We mention other papers [Be, Ca,
Ha] that deal with existence of regular orbits.
Our main theorem will be proved in Section 2. But first we apply the

theorem to a conjecture of Huppert, which roughly states that a group G
must have an irreducible character whose degree is divisible by many primes.
We give the best results known for solvable G.

1. Huppert’s p tr conjecture

We let 7r(n) denote the set of prime divisors of an integer n and
7r(G H) 7r(IG HI). For a group G, we let

p(G) {p prime Iplx(1) for some X Irr(G)}

and

tr(G) max{ 7r(x(1))IX Irr(G)}.

Of course, p(G) is a set, while tr(G) N. Huppert has conjectured the
following:

(a) There is a function f: N N such that Ip(a)l < f(tr(G)) for all
group G.

(b) For solvable G, Ip(a)l _< 2. tr(G).
Given primes Pi and qi, one may construct a group Hi, a semi-direct

product of an extra-special pi-group and cyclic group of order qi, such that
P(Hi) {Pi, qi} and tr(Hi) 1. If pl,. P,, ql, qn are chosen to be
distinct, then the group Gn

:= H Hn satisfies I(a)l 2n and
tr(Gn) n. Consequently the bound in (b)would be best possible.

Isaacs [Is2] was first to give a bound (exponential) for solvable groups.
Gluck [G12] gave a quadratic bound and Gluck and Manz [GM] give the
linear bound Ip(G)I < 3tr(G) + 32. We show the additive constant can be
lowered so that Ip(G)I _< 3tr(G)+ 2. The additive constant refers specifi-
cally to the set {2, 3}. Part of the difficulties with this set arise in the next
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lemma, which we use in both theorem A and (directly) in Lemma 1.2 below.
This next lemma is a consequence of a theorem of Gluck [Gll]. We let
r0(G :H) 7r(G H) \ {2, 3}.

1.1 LEMMA. Suppose G is a solvable permutation group on 12 (not necessar-
ily transitive). Then we may choose A < f such that

(a) stabs(A) is a {2,3}-group, and
(b) stabs(A) 1 provided IGI is odd.

Proof See [GM, Lemma 7] for (a) and [Gll, Corollary 1] for (b). H

1.2 LEMMA, Suppose that M is a normal elementary abelian subgroup of the
solvable group G. Assume that M CG(M) is a completely reducible G-mod-
ule (possibly of mixed characteristic). Set V= Irr(M) and write V= V

Vm for irreducible G-modules Vi. For each i, write V YiG for
primitive modules Yi. Assume that NG(Yi)/CG(Yi) is nilpotent,by-nilpotent for
each i. If M < N <_. G, there exists 0 Irr(N) whose degree is divisible by at
least half the primes of 7to(N/M).

Proof We may write each V/ as a direct sum of the G-conjugates of Y/,
1,..., m. Consequently, V X Xn for subspaces X of V per-

muted by G (not necessarily transitively) with {Y1,..., Ym} -{X1,"’, Xn}.
Furthermore, if N/= NG(Xi), C CG(Xi) and Fi/C F(Ni/Ci), then X
is a primitive, faithful Ni/Ci-module and N//F/ is nilpotent.

Let K f’l iN/ <:l G be the kernel of the permutation representation of G
on {X1,..., Xn}. Since f’l ifi M, we have f’l iFi/M F(K/M) <1 G/M.
Let H f’l iF/, so that H/M F(K/M). Observe that K/H is nilpotent.
Set C K 3 N and F H ( N H ( C. Observe that F/M F(C/M)
and that C/F is nilpotent because K/H is. Because C/M/F(C/M) is
nilpotent, a fairly standard argument yields the existence of/z Irr(C/M)
such that 7r(/x(1)) 7r(C/F)(e.g., see Lemma 1.1 of [HM]).
By Lemma 1.1 (a), we may choose A

_
{X,..., Xn} such that stabu(A)/

(N CI K) stabN(A)/C is a {2, 3}-group. Furthermore, we can assume that
A intersects each N-orbit non-trivially. Without loss of generality, A

{X1,..., Xl} for some {1,..., n}. Set A A1... AI V for non-principal
A Xi. Finally suppose that Q Sylq(N) for a prime q > 5, and Q central-
izes A. Thus Q < stabu(A). But stabu(A)/C is a {2,3}-group. Thus Q < C.
For each i, F c C/Ci C is isomorphic to a normal nilpotent subgroup of
Ni/Ci, and Ni/C acts irreducibly on Xi. Thus, for i= 1,..., l, A is not
centralized by a non-trivial Sylow-subgroup of F C/C C. Since
Q t3 F Sylq(F f’) C), we have that q -t" IF/f3 C/C 0 CI for 1,..., 1.
By our choice of A, each F./Cj (j 1,..., n) is conjugate to some Fi/C
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with {1,..., l}. Hence

q / IF . n c/Q n cl

for all j 1,...,n. Since n iCi M and 0 i(Fi n C)--F, we have that
q IF/MI. We have seen above that Q < C and so q IN/CI, Thus
IN: CN(A)I is divisible by every prime in Zro(N/C) 7to(F/M).
Now let

/3 e Irr(Nl) and X e Irr(Nl,).

By the last two paragraphs,/3(1) is divisible by every prime divisor of IC/FI
and X(1) is divisible by every prime in 7ro(N/C) u 7to(F/M). The conclusion
of the lemma is met with 0 =/3 or 0 X.

1.3 LEMMA. Suppose that M C(M) is a normal elementary abelian
subgroup of a solvable group G and a completely reducible G-module (possibly
of mixed characteristic). Assume that G splits over M. Then there exists

X Irr(G) such that X(1) is divisible by at least half of the primes in
7to(G/M).

Proof. We proceed by induction on IMI. Write M M Mn for
n > 1 irreducible G-modules Mi. Set V/= Irr(Mi) so that each V/ is an
irreducible G-module and V V Vn is a faithful G/M-module.
For each i, choose H < G and X an irreducible primitive Hi-module with

XiG V/. If Hi/CHi(Xi) < F(Xi) for each i, this lemma follows from Lemma
1.2. We assume without loss of generality that H1/CH(X1) F(X1).
Let K CG(M1) <1 G. Let H be a complement for M in G and let

J=NH where N=M2 Mn. Now JnK=N(HnK) acts on N
and CK(N) N. By induction, there exists r Irr(J K) such that -(1)
is divisible by at least half the primes in r0((J n K)/N)= 7to(K/M), as
(J n K)/N K/M. Now J n K J and centralizes M/N =- M1. Thus J n
K

_
KJ G and K/N M/N (J n K)/N.

By the choice of M1, Theorem A implies that there exists A V such that

 o(6:

Set/3 A ’r e Irr(K). Now I(/3) I6(A). Thus rro(G:IG([3)) 7to(G/K).
If X Irr(GI/3), then as K G, 7to(X(1))

_
7ro(G/K) 7ro(’(1)). Since -(1)

is divisible by at least half the primes in ro(K/M), certainly 2’(1) is divisible
by at least half the primes in Zro(G/M). []
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1.4 THEOREM. Let G be solvable. Then
(a) Ip(a)l < 3. tr(G) + 2.
(b) Ip(G)I _< 2 "or(G) / 2 ifrl IG/O(G)I

abelian
whenever O(G) is non-

Proof Let {r prime [Or(G) Sylr(G) and Or(G) is non-abelian}
and F-- F(G). Certainly p(G)

_
7r(G/F) u and by Ito’s Theorem [Is,

12.33], equality holds.
By a theorem of Gaschiitz (see [Hu, III.4.2, III.4.4, and III.4.5]), F(G)/d(G)

is a faithful completely reducible G/F-module and G/d(G) splits over
F(G)/d(G). Applying Lemma 1.3, there exists X Irr(G)with r0(x(1)) >_

rro(G/F)/2. Hence

tr(G) > rro(G/F)/2.

Under hypothesis (b),
_
rr(G/F) and thus

p( G) "tr( G/F)
_

rro( G/F) t2 {2, 3}.

In this case, 2tr(G) > p(G)[ 2, as desired.
Now 1-’IraOr(G) <1 G and each Or(G) is non-abelian. Thus there exists

r/ Irr(G) such that

_
rr(r/(1)). Since

tr(G) > max{[, fro(G/F)/2}

and since

p(G) "n’(G/F) t2

_
rro(G/F) t2 , t2 2, 3},

part (a) follows.

Suppose GI is odd. If we employ Lemma 1.1 (b) and Theorem 2.7 instead
of Lemma 1.1(a) and Theorem A, then the conclusions of Lemmas 1.2 and
1.3 remain valid with rr replacing r0. Consequently, we get"

1.5 THEOREM. /f al is odd, then:
(a) Ip(G)I < 3. tr(G).
(b) (Espuelas [Es]) p(G) < 2tr(G) if rlIG/F(G)I whenever O(G) is

non-abelian

Gluck [GI3] has verified Huppert’s conjecture [p(G)I < 2tr(G) for solvable
G in a number of special cases. This bound is not correct for arbitrary G, but
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appears to be of the correct order of magnitude. If L is A5 or PSL(2, 8),
then [p(L)[ 3 and tr(L) 1. It has been verified that Ip(S)l <_ 3or(S) or
simple S by Alvis and Barry [AB] and Manz, Staszewski, and Willems
[MSW]. Altering the construction at the beginning of this section by letting
H A5 instead, then [p(Gn)[ 2n + 1 and tr(Gn) n. Possibly or(G) _<
2Ip(G)I + 1 is valid for all G.

2. Orbits

Here we prove Theorem A. Recall that a G-module V is quasi-primitive if
Vv is homogeneous for all N

_
G.

2.1 THEOREM. Suppose that V is a faithful quasi-primitive G-module, G
solvable. Then there exist normal subgroups Z, U, T, A, C, and F F(G) of G
satisfying"

(a)
(b)
(c)

(d)
(e)
(f)
(g)

U is cyclic and Z socle(U);
U < T, U Cr(U) and T:UI _< 2;
F/T F1/T ... FI/T where each Fi/T is an irreducible G/F-
module oforder e2i for a primepower ei. We let e 1-iti= lei IF" TI1/2;
A C(Z) and A/F acts faithfully on F/T;
C C(F/T), C ( A F, and C/F < Z(G/F);
Each prime divisor of e divides z I;
If W is an irreducible U-submodule of V, then dim(V) te dim(W) for
an integer t.

Proof Parts (a)-(d), (f) follow from Lemma 2.3 and Corollary 2.4 of
[Wo2], because every normal abelian subgroup of G is cyclic. Define C
Ca(F/T) > F. Part (d) implies that C f A F. Now Aut(Z) is abelian and
G/A is G-isomorphic to a subgroup of Aut(Z). Since C N A F, it follows
that C/F < Z(G/F). This proves (e). Part (g) follows from [Wo2, Lemma
.5].

2.2 LEMMA. Suppose V is a finite faithful irreducible G-module. Assume
that one of the following occurs"

(i) A q_. G, A is abelian, and VA is irreducible;
(ii) A Ca(A) <_. G and Va is homogeneous; or
(iii) G is solvable, V is quasi-primitive, and e 1 (as in Theorem 2.1).

Then G < F(V).

Proof. Part (i) is [Hu; II, 3.11]. Under hypothesis (ii) and finiteness of
V, Vn is irreducible by Theorem 4.2 of [Pk]. So (i) applies.
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Assume that V is quasi-primitive and adopt the notation of Theorem 2.1.
If e 1, Theorem 2.1 (c,d) imply that F T CG(Z). Since Z _< U
CT(U)

_
G, indeed U CG(U) __. G and hypothesis, (ii) is met. t3

Observe that condition (ii) is met when G is solvable, when F F(G) is
abelian, and VF is homogeneous.

2.3 COROLLARY. Suppose G is a solvable irreducible subgroup of GL(n, p).
(i) Ifp 2 and n is prime then G F(2n).
(ii) If G is quasi-primitive and n =pm for some m, then G <_ F(ppm).

Proof. Let V be the corresponding G-module, let F F(G), let 1 4:

Q Sylq(F) for a prime q, and let Z Z(Q). Note that q 4: p.
If Q is non-abelian, then qldim(V) because Q

_
G and every faithful

absolutely irreducible representation of Q has degree divisible by q. Under
hypotheses (ii), it thus follows that Q and F are abelian. By Lemma 2.2,
G < r(v).
Now assume that pn 2n with n prime. If U is an irreducible Z-submod-

ule of V, then dim(U)> 1 because Z 4: 1. Thus Vz is irreducible. By
Lemma 2.2, G < F(V). D

2.4 LEMMA.
prime.

(a)

(b)

(c)
(d)

Suppose that G is a solvable irreducible subgroup ofGL(n, p), p

if pn= p2, then 7ro(G) c_ ,rro(p2- 1) and G has a normal Sylow-q-
subgroup for each q 7ro(G).
If pn {24, 26, 28, 36}, then Iro(G)l _< 2 and G has a normal Sylow-
q-subgroup for each q 7to(G).
Ifp 34, then 7to(G) c_ {5}.
Ifpn 21 and Iro(G)l > 1, then G <_ F(25) wr Z2 or G <_ F(21).

Proof Let V be the corresponding G-module. If V is not quasi-primitive,
then G -<_ H wr S, where S <_ Sm is a solvable primitive permutation group
on m letters and 1 4: H is a solvable irreducible subgroup of GL(n/m, p).
Should p 2, n > m and so m _< 5 in all cases. If m 5, then p" 21,
IS[ [20 and G _< S3 wr H, whence conclusion (d) holds. Then we may assume
that 2 _< m _< 4 and zr0(H) . With help of Corollary 2.3, it is easy to see
all conclusions of the lemma hold. Thus we assume that V is quasi-primitive.
Should G _< F(V), the conclusions of the lemma are satisfied. Theorem 2.1

applies and we adopt the notation in Theorem 2.1. In particular, IF’T[ e 2

for an integer e, dim(V) te dim(W)where W is an irreducible U-submod-
ule of V, t N. By Lemma 2.2, we may assume e > 1. Each prime divisor of
e divides [UI. Furthermore UI [W[ 1 as U is cyclic. Also p q- e, because
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Op(G) 1. Thus the only possibilities are:

e pn IWl IUI
4 34 3 2
3 26 4 3
2 36 3 or 33 divides 26
2 34 3 or 32 divides 8
2 pn p divides p 1

In the last case, Vv V V2 for isomorphic 1-dimensional U-modules V/,
whence U < Z(GL(V)). By Theorem 2.1 (d, e), it follows that [C/F[I12 in all
cases. Thus 7to(C/U)= . The conclusion of the theorem is met unless
0(G C) : . But F/T is a faithful G/C-module of order e2 22, 32, or
42, and F/T is an irreducible G/C-module or the direct sum of two
G/C-modules of order 4. Since we may assume that 7to(G/C) 4: , indeed
F/T is a faithful irreducible G/C-module of order 24. Conclusion (c) now
holds (see Corollary 2.3). rq

2.5 PROPOSITION. Let G be solvable. Then the number Syl(G)I of distinct
Sylow-subgroups of G (for all primes) is at most GI.

Proof. By induction on GI. We note that equality holds when [GI < 2.
We may choose a maximal normal subgroup M of G and set q IG/MI, a
prime. By the inductive hypothesis, ISyl(M)I < M. If P Sylp(G) for p q,
then P Sylp(M), and so the number of Sylow subgroups of G for all
primes other than q is at most IMI. But ISylq(G)I < IGl/q--- IMI. Hence
ISyl(G)[ < 2IMI < [GI.

Next is Theorem A.

2.6 THEOREM. Suppose V is a finite faithful irreducible G-module for a
solvable group G. Write V Wa where W is a primitive H-module, H <_ G. If
H/eli(W) F(W), then there exists v Vsuch that 7ro(G Ca(v)) fro(G).

Proof By induction on GI. For each v V, we may assume that Ca(v)
contains a Sylow-p-subgroup of G for some p > 5, since otherwise the
conclusion of the theorem is satisfied.

Step 1. H G and V is a primitive G-module.

Proof For H <_ J < G, WJ is irreducible and thus H Na(W). Since
V W, we may write V W1 Wm for subspaces W/of V that are
transitively permuted by G with W Wx. Set H N(W,.), so that H is
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conjugate to H and

Hi/CI i( Wi) H/CI ( W).

If H < G, we may apply the inductive hypothesis to conclude there exists
y W such that zro(H CH(y)) 7r0(H C/(W)).

Let N= f’l__xHi, so that G/N faithfully and transitively permutes
{Wx,..., Win}. By Lemma 1.3, we may assume that staba/N{Wx,..., W/} is a
{2, 3}-group for some < m. Assuming H is proper in G, set

X y 2t- X2 -" +X

where 0 : x --. W (2 < < 1). Then

Ca(x)/Clv(X ) NCa(x)/N < staba/N(W1,..., IV/)

is a {2, 3}-group. If q > 5 is prime and Q Sylq(G)centralizes x, then

Q < Cv(X) < Cv(y) < c/_/(y).

By choice of y, Q < Cn(W) N Cs(W). Thus N/C(W) N/Cv(W/)
is a q’-group for all i. Since f’liCv(Wi) 1, indeed Q 1. Thus
Zro(G C(x)) zr0(G), as desired. So we may assume that H G.

Step 2. Let 7r be the set of those prime divisors p > 5 of G for which
Cv(P) : 0, P Sylp(G). Then

(a) EparEpaSylp(o)lCv(P)} >_ IVI;
(b) O(G)= 1; and
(c) Irl _> 2.

Proof. By the first paragraph of the proof, each v V is centralized by
some Sylow-p-subgroup for some p zr. Part (a) is a consequence thereof.
To prove (b), we may, by the solvability of G, assume that Oq(G)4 1 for
some q -. By definition of -, C(O(G)) 0. This is a contradiction
because V is a faithful and homogeneous O(G)-module.

If zr {p}, every v V is centralized by a Sylow-p-subgroup. By [MWl,
Theorem 1.8], L OP’P(G) is a cyclic if-group and V is an irreducible
OP’(G)-module. Let Y be an irreducible L-submodule of V, let 0 y Y
and choose P Sy|p(G) such that P _< Ca(y). Then Y is invariant under
LP OP’(G). So Y V is an irreducible L-module. By Lemma 2.2, G _<
F(V). Part (c) follows.
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Step 3. Theorem 2.1 applies and we adopt that notation. In particular
(a) F/T F1/T Fl/T for irreducible G/F-modules Fi/T of or-

der e2i,eiZ;
(b) e e ...e > 1;
(c) If W is an irreducible U-submodule of V, then r’l wI te for an

integer t;
(d) ullIwl 1 and each prime divisor of e divides uI.

Proof Parts (a) and (c) follows form Theorem 2.1, as does the fact that
each prime divisor of e el el divides UI. Since Vt: is homogeneous
and U is cyclic, then uIII wl 1. That e > 1 follows from Lemma 2.2.

Step 4. Some p - does not divide ID/UI.

Proof Assume each p 7r does divide ID/UI. If P Sylp(G), then
P N D Sylp(D). Thus each v V is centralized by a non-trivial. Sylow-q-
subgroup of D for some q 7r. Choose 7rl c_ 7r minimal such that each
v V is centralized by a Sylow-q-subgroup of D for some q r1. Next let
DI/U Hall(D/U) so that D G and each v V is centralized by a
non-trivial Sylow-q-subgroup of D for some q rl.

Since U F D, certainly U F(D) CD(U). To show that G <
F(V), it suffices to show that V is an irreducible D1-module (see Lemma 2.2
and Step 1). So write V X X2 for non-zero Dl-submodules X of V and
let 0 x X. For y X2, CD(x + y) contains a Sylow-q-subgroup of D
for some q rr. Since CD(X + y)<_ CD(X) for all y and since VD is
homogeneous, it follows from the minimality of r that CD(x) contains a
Sylow-q-subgroup of D for each q r. Since U acts fixed-point freely on
V, Cv(x) 1. But D1/U is a rr-group and so CD(X) Hall,(D1). Choose
y X2 not centralized by CD(X). Thus CD(X + y) Hall,(D1). But
since VD is completely reducible, VD, Y Y2 for Dl-invariant Y/ 0
with Y irreducible and x + y Y1. The argument above for x shows that
Ca(x + y) Hall,(D1), a contradiction. Hence V is an irreducible D-mod-
ule and G < F(V), as desired. Step 4 follows.

Step 5. Let p zr and P Sylp(G). Then
(a) ICv(P)l-< IVl/2;
(b) If 1 #: P1 < P t D, then [Cv(P1)I < VI x/5 and pit dim(W);
(c) IGI >_ Y’.pISylp(G)I >_.lvl 1/2.

Proof. Let 1 P0 < P with Ie0l p. Recall that p # IFI. First suppose
that p[ ID[ and assume without loss of generality that P0 < D. Since U
Co(U) by Step 1 and p # uI, we may choose 1 Y < Z with YP0 a
Frobenius group. Note Cv(Y)= 0 because Y __< G. Then dim(V)--p.
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dim(Cv(P0)) by [Is, Theorem 15.16]. Since dim(V) te dim(W) and p q- IFI,
in fact pit. dim(W). Parts (a) and (b) follow when p[ [D[. When p q- [D[,
part (a) follows from [Wol, Lemma 1.7].

Part (c) follows from Proposition 2.5, Step 2 (a) and part (a) of this step.

Step 6. (a) Set C C(F//T). Assume that G/C has a normal Sylow-
q-subgroup for all q 7r and all i, 1 < < I. Then Ir0(G" C)l >_ 4.

(b) We may assume that el > 8.
(c) Ife>32, thenel=9,e=e1=52 ore=e1=25

Proof Now Fi/T is a faithful irreducible G/C
each i. Also

module of order e for

[ C C C(F/T).

If e {2, 3, 5, 7}, then "n’o(G/Ci) . By Step 4, some prime q0 7r

___
7to(G/F) does not divide ID/UI and thus does not divide IC/FI. Thus
s I-o(G/C) rl is at least one. We may assume q011G/Cll and thus
e 4 or e > 8.

(a) Since G/C has a normal Sylow-q-subgroup for all q 7r and since
["l ifi/F C/F <_ Z(G/F), indeed G/F has a normal Sylow-q-subgroup for
all q 7r. If q does not divide Ia/CI, then each Sylow-q-subgroup Q
of G lies in D and ICv(Q)l -< IVI /5 by Step 5 (b). If q does divide IG/CI,
then ICv(Q)l-< IVI 1/2 by Step 5 (a)and ISylq(G)I < IF’CF(Q)I < e21UI.
Since Eq=ISylq(G)I IC(a)l >_ IVI by Step 2 (a), we have that

se2" IUI" IVI/2 + IDIIVI1/5 IVI

using Proposition 2.5 to bound ISyl(D)I. Since U Co(U) is cyclic, indeed
IDI < UI 2. Since W is an irreducible U-module and e > 4, it follows
that IUI < IWI < IWI 3e/1 < IvI 3/1 and IDIIVI /5 < IUIIVI 1/2. Then
(se2/ 1)IUI > VI /2. But, for now, we may assume that 1 < s < 3 and
3e2 + 1 > IWI <tel2)-1, Since IuIIIwI 1, then IwI >_ 3 and e < 16. If
7ro(G/Ci) :/: , it follows with help of Lemma 2.4 that e >_ 4 and ’rro(G/Ci)
is a singleton. Since e < 16, then 7ro(G/Cj) 0 for j > 2 and s 17r n
ro(G/C)l 1. Because Irl >_ 2, some r - divides ID/UI and rlt dim(W)
by Step 4 (b). Thus e2 + 1 > (32)<e/2)- 1, whence e < 4, a contradiction. This
proves (a).

(b) If every e <_ 7, it follows by Lemma 2.4 that "n’o(G/Ci) c_ {5} and
G/C has a normal Sylow-5-subgroup for all i, contradicting (a). So we
assume that e > 8.

(c) Suppose now e e e < 32. By part (b), it follows that
7ro(G/Ci) for all i> 2 and ro(G/C)= 7to(G/C1). By part (a), it
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follows that Izro(G/Ci)[ > 4 or that G/C does not have a normal Sylow-q-
subgroup for some q zr. Since e < 32, Lemma 2.4 yields that e --9,
e e 52 or e e 25

Step 7. Conclusion.

Proof Since F/T is a faithful, completely reducible G/C-module or
order e2, it follows from [Wo2, Theorem 3.1] that [G/C] < (e2)9/4/2. Since
C/F <_ G/C(Z)and Z is cyclic, If/F[ <_ IZl _< IUI. Also IT" U[ _< 2with
equality possible only when 211UI. Thus IC/FI ITI _< IUI 2 in all cases. Now

IGI _< IG’CI IC" Fill IF" Zl IZl _< e13/21UI2/2.
By Step 2,

e131UI 4 >_ 4IVI 41WI te.

Since UIII wI 1 by Step 3 (d), indeed

e 13 >_ 4IWI te-4 > 4" 3e-4 (2.1)

and hence e < 64. Every prime divisor of e divides UI and WI 1. If
e > 32, then e is divisible by a prime p > 5 or 61e, whence IwI >_ 7 and (2.1)
gives a contradiction. So e < 32. If e 25, then wl >_ 11 and (2.1) gives a
contradiction. By Step 6, either e 9 or e e 25.

First suppose e 32. Since e < 32, Lemma 2.4 yields that zro(G/C) c_ {5}.
Since Irl >_ 2, some prime q > 7 in zr divides ID/UI and dim(W) by Step
5 (b). If > 7, then e 13 > 4 [W[ 7e-4, an easy contradiction. Thus qldim(W).
Since (2.1) implies that IWI _< 303, indeed IWI 27, a contradiction because
311WI 1. So e el 25
By (2.1), it follows that t 1, WI 3 and thus UI 2. Hence U < Z(G),

C F and D T U. In particular, F is extra-special of order 211. By
Lemma 2.4 (d),

G/F <_ F(25)wr Z2 or G/F <<, F(21).

Thus 7r

___
{5, 11, 31}. Routine arguments show that

ISyl31(G)[ _< 210, ISy111(G)I < 210 and iSyls(G)I < 210. 312 < 220

By Step 5 (c), 316 IV[ 1/2 220 -+- 2 10 -b 210 < 2 21, a contradiction.

For completeness, we include the following, which was at least implicity
inferred by Espuelas in his proof of Theorem 1.5 (b).
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2.7 THEOREM. Suppose V is a finite faithful irreducible G-module and
GIIVI is odd. Write V Wa where W is a primitive H-module, H <_ G. If
H/CI_I(W) F(W), then there exists v V such that rr(G’Ca(v)) r(G).

Proof If V is imprimitive, repeat the argument of Step 1 of Theorem 2.6
using Lemma 1.1 (b) instead of 1.1 (a). If V is primitive and G ; F(V),
Espuelas [Es, Lemma 2.1] proved that G has even a regular orbit.
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