ON A THEOREM OF BURKHOLDER

Yoram Sagher and Kecheng Zhou

Let $\left\{r_{k}(t)\right\}_{k=0}^{\infty}$ be Rademacher functions defined as

$$
\begin{gathered}
r_{0}(t)= \begin{cases}1 & \text { if } 0 \leq t<\frac{1}{2} \\
-1 & \text { if } \frac{1}{2} \leq t<1\end{cases} \\
r_{0}(t+1)=r_{0}(t) \\
r_{k}(t)=r_{0}\left(2^{k} t\right)
\end{gathered}
$$

E.M. Stein, in his important paper [3], applied the following result: Let E be any measurable subset of $[0,1]$ and $|E|>0$, then there is an integer N and a constant A both depending only on E such that if c, c_{1}, c_{2}, \ldots are complex numbers and the series $\sum_{k=0}^{\infty} c_{k} r_{k}(t)$ converges almost everywhere, then

$$
\begin{equation*}
A\left(\sum_{k=N}^{\infty}\left|c_{k}\right|^{2}\right)^{1 / 2} \leq \operatorname{esssup}\left\{\left|c+\sum_{k=0}^{\infty} c_{k} r_{k}(t)\right|: t \in E\right\} \tag{1}
\end{equation*}
$$

Rademacher functions are a sequence of independent random variables. D.L. Burkholder, in [1], extended (1) to other sequences of independent random variables satisfying certain conditions. In fact, Burkholder's result when specialized to Rademacher functions, is considerably stronger than (1). It is proved that there exist positive constants α and β so that for every set $E,|E|>0$, there exists $N=N(E)$ so that

$$
\left|\left\{t \in E: \beta\left(\sum_{k=N}^{\infty}\left|c_{k}\right|^{2}\right)^{1 / 2} \leq\left|c+\sum_{k=0}^{\infty} c_{k} r_{k}(t)\right|\right\}\right| \geq \alpha|E| .
$$

Using recently obtained norm inequalities for lacunary Walsh series [2] we extend Burkholder's theorem to q-lacunary Walsh series with $q>1$. Since lacunary Walsh functions do not form an independent system of random variables, this case is not covered by Burkholder's theorem. Our proof is also

1991 Mathematics Subject Classification. Primary 42A55.
valid for Rademacher series and in this context it provides an alternative, simple, real-variable proof.

Let $\left\{w_{k}(t)\right\}_{k=0}^{\infty}$ be Walsh functions in Paley's ordering defined as

$$
w_{0}(t)=1 ; w_{k}(t)=r_{a_{1}}(t) r_{a_{2}}(t) \cdots r_{a_{m}}(t)
$$

where $k=2^{a_{1}}+2^{a_{2}}+\cdots+2^{a_{m}}$ with integers $a_{1}>a_{2}>\cdots>a_{m} \geq 0$.
\mathscr{K} will denote a strictly increasing subsequence $\left\{k_{1}, k_{2}, \ldots,\right\}$ of $\{1,2, \ldots\}$. We say \mathscr{K} is q-lacunary, if $k_{j+1} / k_{j} \geq q$, for all $j=1,2, \ldots$

Theorem 1. There exist positive constants α and β so that for any measurable set $E \subset[0,1],|E| \neq 0$, and any q-lacunary sequence $\mathscr{K}, q>1$, there is an integer N which depends only on E and q such that for any real numbers $\left\{c_{k}\right\}_{k \in \mathscr{K}}$ with $\sum_{k \in \mathscr{X}}\left|c_{k}\right|^{2}<\infty$, we have

$$
\begin{equation*}
\inf _{c \in R}\left|\left\{t \in E: \beta\left(\sum_{k \in \mathscr{K}_{N}}\left|c_{k}\right|^{2}\right)^{1 / 2} \leq\left|c+\sum_{k \in \mathscr{K}} c_{k} w_{k}(t)\right|\right\}\right| \geq \alpha|E| \tag{2}
\end{equation*}
$$

where $\mathscr{K}_{N}=\{k \in \mathscr{K}: k \geq N\}$.
Proof. We show first that (2) holds for $E=[0,1$).
Let \mathscr{K} be a lacunary sequence with $q>1$ and let

$$
f(t)=c+\sum_{k \in \mathscr{K}} c_{k} w_{k}(t)
$$

where $\sum_{k \in \mathscr{A}}\left|c_{k}\right|^{2}<\infty$. In [2] it is proved that for any $0<p<\infty$,

$$
\begin{aligned}
A(p, q)\left(c^{2}+\sum_{k \in \mathscr{K}}\left|c_{k}\right|^{2}\right)^{1 / 2} & \leq\left(\int_{0}^{1}|f(t)|^{p} d t\right)^{1 / p} \\
& \leq B(p, q)\left(c^{2}+\sum_{k \in \mathscr{K}}\left|c_{k}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

Using the equivalence of all L^{p} norms we can apply a classical theorem of Paley and Zygmund (see [4], p. 216): Suppose that $g \geq 0$ is defined on a set $E,|E|>0$, and that

$$
\frac{1}{|E|} \int_{E} g d t \geq A>0 \quad \text { and } \quad \frac{1}{|E|} \int_{E} g^{2} d t \leq B^{2}
$$

Then for any $0<\delta<1$,

$$
|\{t \in E: g(t)>\delta A\}| \geq(1-\delta)^{2}\left(\frac{A}{B}\right)^{2}|E|
$$

Let $A=A(1, q)$ and $B=B(2, q)$. Then it follows that for any $0<\delta<1$ and any $c \in R$,

$$
\begin{aligned}
\mid\{t & \left.\in[0,1): \delta A\left(\sum_{k \in \mathscr{K}}\left|c_{k}\right|^{2}\right)^{1 / 2} \leq|c+f(t)|\right\} \mid \\
& \geq\left|\left\{t \in[0,1): \delta A\left(c^{2}+\sum_{k \in \mathscr{K}}\left|c_{k}\right|^{2}\right)^{1 / 2} \leq|c+f(t)|\right\}\right| \\
& \geq(1-\delta)^{2}\left(\frac{A}{B}\right)^{2} .
\end{aligned}
$$

Therefore, (2) holds for $[0,1)$ with $\beta=A / 2, \alpha=A^{2} / 4 B^{2}$, and $N=1$.
We next show that (2) holds for $E=I$, where I is a dyadic interval. Let $|I|=2^{-n}$. Note that if $l<n$ then $r_{l}(t)$ is a constant on I. Therefore, if $k<2^{n}$ then $k=2^{n_{0}}+2^{n_{1}}+\cdots+2^{n_{s}}$ with $0 \leq n_{0}<n_{1}<\cdots<n_{s}<n$ so that $w_{k}(t)=r_{n_{0}}(t) \cdots r_{n_{s}}(t)$ is identically 1 or -1 on I. If $k \geq 2^{n}$ then $k=2^{n_{0}}+2^{n_{1}}+\cdots+2^{n_{s}}$ with $0 \leq n_{0}<n_{1}<\cdots<n_{s}$ and $n_{s} \geq n$. Assume $n_{j-1}<n, n_{j} \geq n$, and let $k^{\prime}=2^{n_{j}}+\cdots+2^{n_{s}}$. Then $c_{k} r_{n_{0}}(t) \cdots r_{n_{j-i}}(t)$ is identically equal to c_{k} or $-c_{k}$ on I. Denote it by c_{k}^{\prime}. We have $c_{k} w_{k}(t)=$ $c_{k}^{\prime} w_{k^{\prime}}(t), t \in I,\left|c_{k}^{\prime}\right|=\left|c_{k}\right|$. Let $N>2^{n}$ be a number which we choose later. A simple change of variable then gives us that for any $c \in R$,

$$
\begin{aligned}
\mid\{t & \left.\in I: \beta\left(\sum_{k \in \mathscr{K}_{N}}\left|c_{k}\right|^{2}\right)^{1 / 2} \leq\left|c+\sum_{k \in \mathscr{K}} c_{k} w_{k}(t)\right|\right\} \mid \\
& =2^{-n}\left|\left\{t \in[0,1): \beta\left(\sum_{k \in \mathscr{K}_{N}}\left|c_{k}^{\prime}\right|^{2}\right)^{1 / 2} \leq\left|c^{\prime}+\sum_{k \in \mathscr{K}_{2^{n}}} c_{k}^{\prime} w_{k^{\prime}}(t)\right|\right\}\right|
\end{aligned}
$$

Let $q^{\prime}>0$ be such that $1<q^{\prime}<q$. Define

$$
N=\left(2^{n}-1\right) /\left(q-q^{\prime}\right)
$$

We show that $\left\{k^{\prime}: k \in \mathscr{K}, k \geq N\right\}$ is a q^{\prime}-lacunary sequence. Let k_{j}^{\prime} and k_{j+1}^{\prime} be two consecutive numbers in \mathscr{K}^{\prime} so that $k_{j+1}^{\prime} \geq k_{j}^{\prime} \geq N$. Note that $k_{j}-\left(2^{n}-1\right) \leq k_{j}^{\prime} \leq k_{j}$ for any $k_{j} \in \mathscr{K}$. We have

$$
\begin{aligned}
\frac{k_{j+1}^{\prime}}{k_{j}^{\prime}} & \geq \frac{k_{j+1}-\left(2^{n}-1\right)}{k_{j}} \geq \frac{k_{j+1}}{k_{j}}-\frac{2^{n}-1}{k_{j}} \\
& \geq q-\frac{2^{n}-1}{N} \geq q^{\prime} .
\end{aligned}
$$

We may assume that $N>2^{n}$. For $k \in \mathscr{K}$ with $2^{n} \leq k<N, k^{\prime}$ may repeat. Assume that

$$
\left\{k^{\prime}: k \in \mathscr{K}, k<N\right\}=\left\{l_{1}, l_{2}, \ldots, l_{m}\right\}
$$

where $l_{1}<l_{2} \cdots<l_{m}$. Then $\left\{l_{1}, l_{2}, \ldots, l_{m}\right\} \cup\left\{k^{\prime}: k \in \mathscr{K}, k \geq N\right\}$ is a lacunary sequence with ratio $q^{\prime \prime}=\min \left\{q^{\prime}, l_{j+1} / l_{j}: 1 \leq j \leq m\right\}>1$.

For $j=1,2, \ldots, m$, let $d_{l_{j}}$ be such that

$$
\sum_{k \in \mathscr{K}_{2^{n}: k<N}} c_{k}^{\prime} w_{k^{\prime}}(t)=\sum_{1 \leq j \leq m} d_{l_{j}} w_{l_{j}}(t)
$$

From the result for $E=[0,1)$ we have
$\left|\left\{t \in[0,1): \beta\left(\sum_{1 \leq j \leq m}\left|d_{l_{j}}\right|^{2}+\sum_{k \in \mathscr{K}_{N}}\left|c_{k}^{\prime}\right|^{2}\right)^{1 / 2} \leq\left|c^{\prime}+\sum_{k \in \mathscr{K}_{2^{n}}} c_{k}^{\prime} w_{k^{\prime}}(t)\right|\right\}\right| \geq \alpha$.
It follows that

$$
\left|\left\{t \in[0,1): \beta\left(\sum_{k \in \mathscr{K}_{N}}\left|c_{k}^{\prime}\right|^{2}\right)^{1 / 2} \leq\left|c^{\prime}+\sum_{k \in \mathscr{H}_{2^{n}}} c_{k}^{\prime} w_{k^{\prime}}(t)\right|\right\}\right| \geq \alpha
$$

and that (2) holds for $E=I$.
Let E be a union of finitely many disjoint dyadic intervals $I_{j}, E=\bigcup_{j=1}^{m} I_{j}$. We may assume $\left|I_{j}\right|=2^{-n}$ for all j. Let N be the number stated as above. Note that N depends only on the length of I. We have

$$
\begin{aligned}
& \inf _{c \in R}\left|\left\{t \in E: \beta\left(\sum_{k \in \mathscr{K}_{N}}\left|c_{k}\right|^{2}\right)^{1 / 2} \leq\left|c+\sum_{k \in \mathscr{K}} c_{k} w_{k}(t)\right|\right\}\right| \\
& \quad=\inf _{c \in R} \sum_{j=1}^{m}\left|\left\{t \in I_{j}: \beta\left(\sum_{k \in \mathscr{K}_{N}}\left|c_{k}\right|^{2}\right)^{1 / 2} \leq\left|c+\sum_{k \in \mathscr{K}} c_{k} w_{k}(t)\right|\right\}\right| \\
& \quad \geq \sum_{j=1}^{m} \inf _{c \in R}\left|\left\{t \in I_{j}: \beta\left(\sum_{k \in \mathscr{K}_{N}}\left|c_{k}\right|^{2}\right)^{1 / 2} \leq\left|c+\sum_{k \in \mathscr{K}} c_{k} w_{k}(t)\right|\right\}\right| \\
& \quad \geq \sum_{j=1}^{m} \alpha\left|I_{j}\right|=\alpha|E|
\end{aligned}
$$

Let E be any measurable set with $|E| \neq 0$. For $j=0,1, \ldots ; i=1,2, \ldots, 2^{j}$, let $I_{i, j}$ be the dyadic intervals $(i-1) 2^{-j} \leq t<i 2^{-j}$.

We will show that for any $\varepsilon>0$, there exists a set $G=\bigcup I_{i, j}$, a finite union of disjoint dyadic intervals such that $\left|E \cap\left(\cup I_{i, j}\right)\right|>(1 / 2)|E|$ and $\left|I_{i, j} \cap E^{c}\right|<\varepsilon\left|I_{i, j} \cap E\right|$. We use Calderon-Zygmund decomposition of χ_{E} to construct such G. Let $\eta=1 /(1+\varepsilon)$. Given E, we begin with $j=0$. If $\left|E \cap I_{1,0}\right|=|E| \geq \eta\left|I_{1,0}\right|$, we choose $I_{1,0}$ and stop. If $\left|E \cap I_{1,0}\right|<\eta\left|I_{1,0}\right|$, consider $E \cap I_{1,1}$ and $E \cap I_{2,1}$. If $\left|E \cap I_{1,1}\right| \geq \eta\left|I_{1,1}\right|$, choose $I_{1,1}$. Note that necessarily $\left|E \cap I_{2,1}\right|<\eta\left|I_{2,1}\right|$. We proceed to the next level, $j=2$, disregarding all subsequent divisions of $I_{1,1}$. In this manner we obtain a set F which is the union of countably many non-overlapping dyadic intervals. F obviously contains all points of density of E, and $\eta|F| \leq|E|$. If $F=\bigcup_{j=0}^{\infty} I_{j}$, let $G=\bigcup_{j=0}^{m} I_{j}$ be such that $|G|>(1 / 2)|F|$. We have

$$
|E \cap G| \geq|E \cap F|-|F \backslash G| \geq|E|-(1 / 2)|E|=(1 / 2)|E|
$$

Let I_{j} be any dyadic interval in G. From the construction of F we have $\left|I_{j} \cap E\right|>\eta\left|I_{j}\right|$. It follows that $\left|I_{j} \cap E^{c}\right|=\left|I_{j}\right|-\left|I_{j} \cap E\right| \leq \varepsilon\left|I_{j} \cap E\right|$.

Let $G=\bigcup_{\text {finite }} I_{j}$. We may assume $n=-\log _{2}\left|I_{j}\right|$ for all $I_{j} \in G$. Let

$$
S_{1}=\left\{t \in G: \beta\left(\sum_{k \in \mathscr{K}_{N}}\left|c_{k}\right|^{2}\right)^{1 / 2} \leq\left|c+\sum_{k \in \mathscr{K}} c_{k} w_{k}(t)\right|\right\}
$$

and

$$
S_{2}=G \cap E^{c}
$$

where N is as stated above.
It is clear that

$$
\left\{t \in E: \beta\left(\sum_{k \in \mathscr{H}_{N}}\left|c_{k}\right|^{2}\right)^{1 / 2} \leq\left|c+\sum_{k \in \mathscr{K}} c_{k} w_{k}(t)\right|\right\} \supset S_{1} \backslash S_{2}
$$

We have

$$
\left|S_{1}\right| \geq \alpha|G| \geq \alpha|G \cap E|
$$

We also have

$$
\left|G \cap E^{c}\right|=\sum\left|I_{j} \cap E^{c}\right| \leq \varepsilon \sum\left|I_{j} \cap E\right|=\varepsilon|G \cap E| .
$$

Taking $\varepsilon=\alpha / 2$ we have $\left|S_{1}\right|-\left|S_{2}\right| \geq(\alpha-\varepsilon)|G \cap E| \geq(\alpha / 4)|E|$.
Corollary 2. There exists a constant $A>0$ so that for any measurable set $E \subset[0,1],|E| \neq 0$, and any q-lacunary sequence $\mathscr{K}, q>1$, there is an
integer N which depends only on E and q such that for any real numbers $\left\{c_{k}\right\}_{k \in \mathscr{H}}$ with $\sum_{k \in \mathscr{H}}\left|c_{k}\right|^{2}<\infty$, we have

$$
A\left(\sum_{k \in \mathscr{K}_{N}}\left|c_{k}\right|^{2}\right)^{1 / 2} \leq \inf _{c \in R}\left(\frac{1}{|E|} \int_{E}\left|c+\sum_{k \in \mathscr{H}} c_{k} w_{k}(t)\right|^{p} d t\right)^{1 / p}
$$

Proof. Let N be the number stated in Theorem 1. Let

$$
E_{1}=\left|\left\{t \in E: \beta\left(\sum_{k \in \mathscr{K}_{N}}\left|c_{k}\right|^{2}\right)^{1 / 2} \leq\left|c+\sum_{k \in \mathscr{K}} c_{k} w_{k}(t)\right|\right\}\right|
$$

We have

$$
\begin{aligned}
\frac{1}{|E|} & \int_{E}\left|c+\sum_{k \in \mathscr{K}} c_{k} w_{k}(t)\right|^{p} d t \\
& \geq \frac{\left|E_{1}\right|}{|E|} \cdot \frac{1}{\left|E_{1}\right|} \int_{E_{1}}\left|c+\sum_{k \in \mathscr{K}} c_{k} w_{k}(t)\right|^{p} d t \\
& \geq \alpha \beta^{p} \cdot \frac{1}{\left|E_{1}\right|} \int_{E_{1}}\left(\sum_{k \in \mathscr{K}_{N}}\left|c_{k}\right|^{2}\right)^{p / 2} d t=\alpha \beta^{p}\left(\sum_{k \in \mathscr{K}_{N}}\left|c_{k}\right|^{2}\right)^{p / 2}
\end{aligned}
$$

References

1. D.L. Burkholder, Independent sequences with the Stein property, Ann. Math. Statist. 39 (1968), 1282-1288.
2. Y. Sagher and K. Zhou, Local norm inequalities for Lacunary series, Indiana Univ. Math. J. 39 (1990), 45-60.
3. E.M. Stein, On limits of sequences of operators, Ann. of Math. 74 (1961), 140-170.
4. A. Zygmund, Trigonometric series, Cambridge University Press, Oxford, 1959.

University of Illinois at Chicago,
Chicago, Illinois
California State University at Sacramento
Sacramento, California

