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THE MULTIPLIER OPERATORS ON THE PRODUCT SPACES

LUNG-KEE CHEN

Introduction

Let HP(Rnl x Rn2) be the Hardy space defined on the product spaces (for
more details, see [1]) and let a function a(x 1, x2) denote a rectangle p atom
on HP(Rnl x Rn2) if (i) the a(xl, X2) is supported on a rectangle R I J
(I and J are cubes on Rnl and Rn2 respectively), (ii) Ilallz < IRI 1/2-1/p and
(iii) one picks and fixes two sufficiently large positive integers k and
(depending on p) such that

f/xTa(Xl, X2) dx 0 for all x2 ( J and al _< k

fxa(x, x2) &2 0 for all Xl I and I/1 1.

In the paper [3], R. Fefferman gave a very powerful theorem (see Theorem 1)
for studying the boundedness on the HP(Rnl x Rn2) spaces of a linear
operator. In his theorem, it mentioned that to consider the boundedness on
Hp of a linear operator one only needs to look at the boundedness of the
linear operator acting on the rectangle p atoms. This is true despite the
counterexample of L. Carleson which shows that the space HP(Rn x Rn)
cannot be decomposed into rectangle atoms.
We will use A to denote the Fourier Transform and A1 to denote the

Fourier Transform acting on the first variable. Throughout this paper, C
represents a constant, although different in different places. T denotes the
multiplier operator associated with the multiplier m, i.e.,

Tm’(s /) m(s /)jt(:, /).

THEOREM 1 (R. Fefferman [3]). Suppose that T is a bounded linear
operator on L2(Rn Rn). Suppose further that if a is an HP(Rn x Rna)
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rectangle p atom (0 < p <_ 1) supported on R, we have

fc IT(a)I Xl, X2) dx dx2 Cr

for all r >_ 2 and some fixed r > 0, where t denotes the complement of the r

fold enlargement of R. Then T is a bounded operator from HP(Rnl x Rn2) to
LP(Rnl X Rn2).

The purpose of this paper is to study several multiplier operators on
product spaces by establishing four general theorems, Theorem A, B, C, D.

Suppose C1, C2 are the arbitrary two real positive numbers and

E {(x, y)l Ixl C1, lyl C2},
E3 {(x, Y)I Ixl C1, lyl C2},

E2-- {(x, y)l Ixl >_ C1, lyl -< C2},
E4 {(x, y)l Ixl _< C1, lyl -< C2}.

Let Q(al, a2, m) denote the following statement.

Statement. Let al, a2, p, 0 < p < 1 be real numbers and let

b ai( i= 1,2.

Suppose m is a bounded function defined on Rnl Rn2 satisfying

Cs2bl+2(al-1)ltl+nlS 2b2+2(a2-1)lfll+n2

(2) sup f,
1 Rn2 < I:l 2Sl

[Ogm(, r/)[
9

d < CS2bl+2(al-1)ltl+nl

and

(3)

where

suw Io:m( , _< Cs2b2+2(a2-1,lfll+n2

gRn 2<lr/l<2s2

lal < + 1 and 1_1
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THEOREM A. Let a >_ 0, a 2 > 0. Suppose m is supported on E1 and the
statement Q(a1, a2, m). Then Tm maps HP(Rnl Rn2) boundedly to LP(R
R2), i.e.,

Tmfll < CIIfll.,

THEOREM B. Let a > 0, a 2 < 0. Suppose m is supported on E2 and the
statement Q(al, a2, m). Then Tm maps HV(R R-) boundedly to LP(R

THEOREM C. Let a < O, a 2 > O. Suppose m is supported on E3 and the
statement Q(a 1, a2, m). Then Tm maps HP(Rn Rnz) boundedly to LP(R1

THEOREM D. Let a < O, a 2 < O. Suppose m is supported on E4 and the
statement Q(a1, a2, m). Then Tm maps HP(Rn R) boundedly to LP(R

Now we use those theorems to get the following theorems.

THEOREM 2. Suppose 0 < p <_ 1. Let

n
1 1 1 1

Suppose m Ck(Rnl) CI(Rn2) and

where [al < k, 1/31 < I. Then Tm maps Ha(R, R) boundedly to La(Rx
Rn2) for p <_ q <_ 2.

Remark. R. Fefferman and K.C. Lin [2] have obtained the result for
p 1 in Theorem 2 under a weaker hypothesis,

d dr/ __< CS-21ctl+nlS2-21/3[+n2.
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THEOREM 3. Suppose 0 < p <_ 1 and m is defined on Rnl R2 satisfying

(4)
_< C(1 + + Inl)

for

1 1

Then

Zmfllza((R"lxRn)-) < CIIfll,’(g"lxg")

forp<q<2.

THEOREM 4. Suppose 0 < p <_ 1 and rn is defined on Rnl X R satisfying

Im(,7)l-< (1 + Il)-(t"’(1/p-1/2)l+l)(1 + 1,1l)

and the inverse Fourier transform of m has compact support. Then

forp<q<2.

Proofs of the theorems. Without loss of generality, one assumes C
C2 1 in the definitions of Ei, 1,2,3, 4. The idea of the proof of
Theorem A is basically from [4]. Let a be a smooth rectangle atom with
vanishing moments and supp a c I J R, Ilall2 < III1/2-1/pIJI 1/2-1/p
where I and J are cubes on R’’ and Rn, respectively. Let us take a smooth
function on R and its Fourier transform (t) has compact support {1/2 <
[t[ < 2} such that Ejz(2-J[t[) 1 for all t 0. Let

mi,j( s, rl) m(,
and

Tijf(, rl) mi,j(, n)f(, rl) (rij * f) (,

It is clear Tf Y’,iyTiyf.
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CLet us decompose Rr, the complement of/r, into three pieces

and

LEMMA A. Let a >_ 0, a 2 >_ 0. Suppose m(, q) satisfies (1), (2), (3) in
Theorem A and m(, ) is supported on E1. Then

(6)

/. [P 2--p n A2 p

fk Tiya dxdy <_ Cr-lp+n2(--)2J((aE-1)l+Xz-b2+T)PlJl-2P+-zP+

and

(7)
P n k A1 p

j Tija dxdy <_ Cr-kp+n( )2i((a-l)k+X-b+)P[II--ffP+-P+

where

1 1
1= n2 --- +1,

0 < p _< 1, h 1, h 2 are arbitrarily nonnegative integers and h _< k, h 2 _< 1.

Proof Since rn is supported on El, without loss of generality, we assume
mi, y(, r/) 0 if < 0 or j < 0. After a translation, it suffices to assume the
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origin (0, 0) is the center of the rectangle I J. Write

Tija( x, y)

(8)

(9)

(10)

fKi(x x’, y y’)a( x’, y’) dx’ dy’

f (Ki(x x’, y y’) E
lalAl-1

1 y’ -x’ a)-.. OKij( x, Y )( )

a(x’, y’) dx’ dy’

1 fi fol(1-t)Xl-lOxKij(x-tx’,y-y’)(-x’)}kl E .l XJIcl=A1

a(x’, y’) dtdx’ dy’

--A1 E f01f/ (1 t)X’-l( y’Cg&xKij( x tx’, y )
J

E OxKij(x tx’ y)(-y’)# (-x’)

a(x’, y’) dy’ dx’ dt

where A and h2 are integers and 0 _< h < k, 0 _< h2 < 1. Here we should
remark that if one sets hi 0 or A2 0 then it means one does not subtract
the Taylor polynomial on the equation (8) or (9). For example, if 1 0 and

’ 2 :# 0 then
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Let us look at the integral in the parentheses of (10). It is dominated by

< l(-x’) -y ) OyOfcgij(x tx’ y )12
J

X (f/x)a 12)1/2
<_ 1II1/2-1/p+xl/nlljI 1/2-1/p+x2/n2

(fi folfo dx’ )X /& --sY
2 1/2

3,’0; Ki( x tx’ y ) ds dt dy’
J

=-- 1II1/2-x/P+/nlljI1/2-x/;+Iz/nzLi](x, y).

4(_y,) OyOfcKij(x tx’, y sy’)a(x’, y’)lds at dx’ dy’

ds dt dx’ dy’ t 1/2
]

Hence

(11) folTqalP < C[I[(1/2-1/p+A’/nl)P[JI(1/2-1/p+A2/n2)pf"DILij(X’ y)[p dxdy

for any measurable set D. Next, one will compute the integral
c~3fDlLi, j(x, y)lp dxdy with respect to D Rr, cllr and C/r2, respectively.

First let us compute

fl3rl Lij ( X, y)
p
dx dy

f( &ayAIxI)-P(BIyI)-lp((AIxI)(BIyI)tLg(x y))P
where A and B will be given later. By H61der’s inequality, it is not bigger
than

( A Ix ) k(z2---Pp)( B ly 1)
2-p

2p ) 2(gz-_p dx dy

fk3l(AIx[)(Blyl)tLij(x y) dxdy

2pCh-kPn-lP(r’-k’2-p’+nlX--) + r’-l’_p)+nzX-))
2/9}1 -I(P-P)"2+IX--)(ft3r(AIxI (BIyl)lll(_(. +lX)lJl 27p )2k 21

)
p/2

f, folfoX o: < sy’OcKij(x tx’, y )[ dsdt dy’ dxdy
J
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Since (x, y) c/3 and (x’, y’) I J, 0 < s, < 1, one has Ixl Ix tx’t
lyl ly s’l. Therefore, the above inequality is equivalent to

After a change of variables, the last inequality is dominated by

(12)

z-kPB-tP(r(-k(22_Pp)+n,X2:2-’-P-P) + r(-l(22-P_p)+n2-))
2p p 2p p

iil(-k( ) +1X)+ 71Jl(-l(_, +1x-)+ --2 )
p/2

ocgij ( x, y)l dx dyfRn,R.llAxlklBylloy
Here one lets

A 2-i(a- 1), B 2 -j(a2-1).

From the hypothesis (1), one concludes

(13) )
1/2

<_ c2i(’l-bl +nl/2)2](X2-b2+n2/2)

for every multi-indexes tr, a. (Recall 161 =/1 and I/1 =/2.) Then, applying
Plancherel’s Theorem on the integral (12) and using formula (13), one has
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From (11) and the above inequality, one has

ITa dxdy

2/9
+"1)(’’) r(--l()+n2)(’-))<_ C( r(-k(L--p-

A1 2p

__
p

iil- + ),+-k<-zT) +iX )+

A2 2p 2p p

x ijl- +)+-t,+iX--)+

nl n22i((aa-1)k+X-bl+)p2J((a2-1)l+X2-b2+)p.

(5) is proved.
Since the proofs of (6) and (7) are similar, we show (6). t .a i]a.

Hence, it is clear that

Let us write

] Tua dr dy T]a dr dy

<-- fl2r(B[y[)-lp((Bly[)llT.al)Pdxdy

2-p

n )(2-p)<_ CB_lpli 2 r(_l( 22___P_p)+
2p 1)(-)X IJI (-/(_--zT +

where the last second inequality is obtained by applying H61der inequality.
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Following the same procedure as in the proof of (5), one has

2rl(Blyl)lT.a dxdy

<_CfcRB ]fof/ (-) x-ysy’)
IBI =A2 r2( lYl)21

XJ
Y’ IOygj( x’,

a(x’, y’) dx’ dy’ ds
2

Since

C/r2 (Ix[ < 211I[ l/nl} {[y[ > l’[Jll/n2},
by Minkowski’s inequality, the last inequality is less than

C E
1/[ A (fly>r[jll/n2(Bl)2[)2l([ fo fJY’l;t2(flx [<2vl’llll/nl flOygJ(x-x’ y-syt)

a(x’, y’) c’l dy’ ds ay

By Plancherel’s Theorem, the above integral on the parentheses is dominated
by

flyl>rlall/( fol f)y’Ix( BIyl)I
x

o,
0f/(,y-sy’) (,) a ay’as y

Iji222Siy (/01SjI>rlJ111"2
(BlYl)

OyKs(,y-sy’)l(,y’) d dy’ds dy
nl

--< 1J[22 +1 fly[>r[Jil/n2f01ffNnil 1( y(Blyl) 0y , sy’)

x(, y’) a a’asa

< CIjI2-2+l SolSjSR,,,f.n (Bly sy’I)IOyI3Ksl(<’ y sy’) dy

tT’(e, Y’)I de dy’ as.
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By a change of variables on the last inequality, one has

(14)

lOyj 12 dyll(, d ay’.

Let B 2 -j(a2-1). As in the inequality (13), one constructs a similar inequal-
ity

by using the hypothesis (3).
Hence, applying Plancherel’s Theorem on the integral fRn:l 12@ on

(14) and applying (15), the inequality (14) is not bigger than

d dy’

< C2J(2(X2_b2)+n2)lli2(1/2-1/p)lji2(1/2- l/p)+ 22/n2+

Therefore, __
A2 P

1T.a drdy _< c2J((a2-1)l+X2-b2+n2/2)Pr-lp+n2(

This is (6). Lemma A is proved.

Proof of Theorem A. As in Lemma A, since m is supported on El,
without loss of generality, we assume mij() 0 if < 0 or j < 0. Let us
write

and recall k [n(1/p 1/2)] + 1, [n2(l/p 1/2)] + 1. Then there
exists tr > 0 such that

2/9 2/9 2max((-k(2-p) +nl),(-l(2-p)+n2)} < -(2_p) tr.
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Hence

2p )+nlX_) r(_l(22p_p)+n2X_) < 2r-,r{-k{g77- +

if r > 2. For each rectangle I J, there exist io, Jo Z such that lII 1/"1 .
2 io, IJI1/n2 = 2-io. Therefore, if 0 < p < 1,

(16)

.,ch ij "cl3r i>io J>Jo i>io J<Jo i<io J>Jo i<io J<Jo

We are going to apply (5) in Lemma A by choosing the distinct /1 and /2
on the distinct terms of sums on (16). That is to say, (i) in the sums

i > Y"j Jo one picks A A2 0, (ii) in the sums Y’-i ioY" < io on takes
i O, 2 [nE(1/p 1/2)] + 1, (iii) in the sums Ei<ioEo one lets
A k [nl(1/p- 1/2)] + 1, /2--’ 0 and (iv) in the sums Ei<ioE<o on
sets A k [nl(1/p 1/2)] + 1, i 2 [hE(lip 1/2)] + 1. Hence,
from (16),

i--io J >Jo J<Jo J>Jo J<Jo
2p )__.1 . p n

’2i((al 1)k-b+--)p< Cr-,

_
ii1( )p+(-k(-- nl

+ 1)( )+

ii

A 2p

_
p n

IJl(--7+)P+(-ttT-p) +_)+2j((a2-1)l+A2-b2+)p
<Jo

+ [jl(E--)p+(-l( )-2+l)(--)+-2J((a2-1)l-b2+.)p
J>Jo

< >Jo <jo

k n [< Cr IIl(--)P2i(-k+w)p 2-Jn2p/22Jn2p/2
iio <Jo

.2}+ 2-"2(1/2-72)P2(-t+T)p + Cr
J>-Jo i<io

< Cr 2-in( )P2i(-k+T)P d- E
i>i i<i
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where the last two inequalities are obtained by the fact, n2/2 < and
nl/2 < k.
On the other hand, for the boundedness of the integrals

’ and f ’l Ta

these can be proved by following the same ideas as the proof in the above
case, applying (6), (7) in Lemma A and the next two inequalities, respectively,

.< .<
p

farlTal’ fa r] Ei ri a 1" and fhrlTal’ Ei fa,] ria
Theorem A is proved.

Proof of Theorems B, C, D. As in the proof of Theorem A, one can prove
Theorems B, C, D by establishing the corresponding lemmas. In the proof of
Lemma A, the equations have nothing to do with the "signs" of a 1, a 2 except
(13) and (15). The existences of (13) and (15) depend on the signs of and a
(j and a2), in particular, on ia > 0 (ja 2 > 0). Therefore, we omit those
proofs.

Proof of Theorem 2. Taking a smooth function q on R with compact
support {t[ Itl < 2} and @(t) 1 if Itl _< 1, let

(17)
m(:, r/) (1 q,(:))(1 q,(r/))m(:, r/) + (1 q,(:))q,(r/)m(:, r/)

+ @(:)(1 @(r/))m(, r/) + @()$(r/)m(,’O)

ml(s, r/) + m2 + m3 + m4.

Then one applies mi, 1, 2,3, 4, to Theorems A, B, C, D, respectively.
Theorem 2 is followed by setting a a2 0 in Theorems A, B, C, D.

Proof of Theorem 3. Again, we borrow the decomposition (17) of m on
the proof of Theorem 2. Then the boundedness of T is obtained by setting
a a2 1 on Theorem A, a 1, a2 0 on Theorem B, a 0, a2 1 on
Theorem C and a a2 0 on Theorem D.
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Proof of Theorem 4. Since the inverse Fourier transform of m has
compact support, there exists a smooth function b such that

m(sC, r/) f/n, Rn2b(s s’’ r/ r/’)m(:’, r/’) dsC’ dr/’.

Theorem 4 is proved by applying Theorem 3.
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