THE MULTIPLIER OPERATORS ON THE PRODUCT SPACES

Lung-Kee Chen

Introduction

Let $H^{p}\left(R^{n_{1}} \times R^{n_{2}}\right)$ be the Hardy space defined on the product spaces (for more details, see [1]) and let a function $a\left(x_{1}, x_{2}\right)$ denote a rectangle p atom on $H^{p}\left(R^{n_{1}} \times R^{n_{2}}\right)$ if (i) the $a\left(x_{1}, x_{2}\right)$ is supported on a rectangle $R=I \times J$ (I and J are cubes on $R^{n_{1}}$ and $R^{n_{2}}$ respectively), (ii) $\|a\|_{2} \leq|R|^{1 / 2-1 / p}$ and (iii) one picks and fixes two sufficiently large positive integers k and l (depending on p) such that

$$
\begin{array}{ll}
\int_{I} x_{1}^{\alpha} a\left(x_{1}, x_{2}\right) d x_{1}=0 & \text { for all } x_{2} \in J \text { and }|\alpha| \leq k \\
\int_{J} x_{2}^{\beta} a\left(x_{1}, x_{2}\right) d x_{2}=0 & \text { for all } x_{1} \in I \text { and }|\beta| \leq l .
\end{array}
$$

In the paper [3], R. Fefferman gave a very powerful theorem (see Theorem 1) for studying the boundedness on the $H^{p}\left(R^{n_{1}} \times R^{n_{2}}\right)$ spaces of a linear operator. In his theorem, it mentioned that to consider the boundedness on H^{p} of a linear operator one only needs to look at the boundedness of the linear operator acting on the rectangle p atoms. This is true despite the counterexample of L . Carleson which shows that the space $H^{p}\left(R^{n_{1}} \times R^{n_{2}}\right)$ cannot be decomposed into rectangle atoms.

We will use \wedge to denote the Fourier Transform and \wedge_{1} to denote the Fourier Transform acting on the first variable. Throughout this paper, C represents a constant, although different in different places. T_{m} denotes the multiplier operator associated with the multiplier m, i.e.,

$$
\widehat{T_{m} f}(\xi, \eta)=m(\xi, \eta) \hat{f}(\xi, \eta)
$$

Theorem 1 (R. Fefferman [3]). Suppose that T is a bounded linear operator on $L^{2}\left(R^{n_{1}} \times R^{n_{2}}\right)$. Suppose further that if a is an $H^{p}\left(R^{n_{1}} \times R^{n_{2}}\right)$
rectangle p atom $(0<p \leq 1)$ supported on R, we have

$$
\int_{c_{\tilde{R}_{r}}}|T(a)|^{p}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \leq C r^{-\sigma}
$$

for all $r \geq 2$ and some fixed $\sigma>0$, where ${ }^{c} \tilde{R}_{r}$ denotes the complement of the r fold enlargement of R. Then T is a bounded operator from $H^{p}\left(R^{n_{1}} \times R^{n_{2}}\right)$ to $L^{p}\left(R^{n_{1}} \times R^{n_{2}}\right)$.

The purpose of this paper is to study several multiplier operators on product spaces by establishing four general theorems, Theorem A, B, C, D.

Suppose C_{1}, C_{2} are the arbitrary two real positive numbers and

$$
\begin{array}{ll}
E_{1}=\left\{(x, y)| | x\left|\geq C_{1},|y| \geq C_{2}\right\},\right. & E_{2}=\left\{(x, y)| | x\left|\geq C_{1},|y| \leq C_{2}\right\}\right. \\
E_{3}=\left\{(x, y)| | x\left|\leq C_{1},|y| \geq C_{2}\right\},\right. & E_{4}=\left\{(x, y)| | x\left|\leq C_{1},|y| \leq C_{2}\right\}\right.
\end{array}
$$

Let $Q\left(a_{1}, a_{2}, m\right)$ denote the following statement.
Statement. Let $a_{1}, a_{2}, p, 0<p \leq 1$ be real numbers and let

$$
b_{i}=a_{i}\left(\left[n_{i}\left(\frac{1}{p}-\frac{1}{2}\right)\right]+1\right), \quad i=1,2
$$

Suppose m is a bounded function defined on $R^{n_{1}} \times R^{n_{2}}$ satisfying

$$
\begin{align*}
& \int_{s_{1}<|\xi| \leq 2 s_{1}} \int_{s_{2}<|\eta| \leq 2 s_{2}}\left|\partial_{\xi}^{\alpha} \partial_{\eta}^{\beta} m(\xi, \eta)\right|^{2} d \xi d \eta \tag{1}\\
& \quad \leq C s_{1}^{-2 b_{1}+2\left(a_{1}-1\right)|\alpha|+n_{1} s_{2}^{-2 b_{2}+2\left(a_{2}-1\right)|\beta|+n_{2}}}
\end{align*}
$$

$$
\begin{equation*}
\sup _{\eta \in R^{n_{2}}} \int_{s_{1}<|\xi| \leq 2 s_{1}}\left|\partial_{\xi}^{\alpha} m(\xi, \eta)\right|^{2} d \xi \leq C s_{1}^{-2 b_{1}+2\left(a_{1}-1\right)|\alpha|+n_{1}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{\xi \in R^{n_{1}}} \int_{s_{2}<|\eta| \leq 2 s_{2}}\left|\partial_{\eta}^{\beta} m(\xi, \eta)\right|^{2} d \eta \leq C s_{2}^{-2 b_{2}+2\left(a_{2}-1\right)|\beta|+n_{2}} \tag{3}
\end{equation*}
$$

where

$$
|\alpha| \leq\left[n_{1}\left(\frac{1}{p}-\frac{1}{2}\right)\right]+1 \quad \text { and } \quad|\beta| \leq\left[n_{2}\left(\frac{1}{p}-\frac{1}{2}\right)\right]+1
$$

Theorem A. Let $a_{1} \geq 0, a_{2} \geq 0$. Suppose m is supported on E_{1} and the statement $Q\left(a_{1}, a_{2}, m\right)$. Then T_{m} maps $H^{p}\left(R^{n_{1}} \times R^{n_{2}}\right)$ boundedly to $L^{p}\left(R^{n_{1}} \times\right.$ $R^{n_{2}}$), i.e.,

$$
\left\|T_{m} f\right\|_{L^{p}} \leq C\|f\|_{H^{p}} .
$$

Theorem B. Let $a_{1} \geq 0, a_{2} \leq 0$. Suppose m is supported on E_{2} and the statement $Q\left(a_{1}, a_{2}, m\right)$. Then T_{m} maps $H^{p}\left(R^{n_{1}} \times R^{n_{2}}\right)$ boundedly to $L^{p}\left(R^{n_{1}} \times\right.$ $R^{n_{2}}$).

Theorem C. Let $a_{1} \leq 0, a_{2} \geq 0$. Suppose m is supported on E_{3} and the statement $Q\left(a_{1}, a_{2}, m\right)$. Then T_{m} maps $H^{p}\left(R^{n_{1}} \times R^{n_{2}}\right)$ boundedly to $L^{p}\left(R^{n_{1}} \times\right.$ $R^{n_{2}}$).

Theorem D. Let $a_{1} \leq 0, a_{2} \leq 0$. Suppose m is supported on E_{4} and the statement $Q\left(a_{1}, a_{2}, m\right)$. Then T_{m} maps $H^{p}\left(R^{n_{1}} \times R^{n_{2}}\right)$ boundedly to $L^{p}\left(R^{n_{1}} \times\right.$ $R^{n_{2}}$).

Now we use those theorems to get the following theorems.

Theorem 2. Suppose $0<p \leq 1$. Let

$$
k=\left[n_{1}\left(\frac{1}{p}-\frac{1}{2}\right)\right]+1, \quad l=\left[n_{2}\left(\frac{1}{p}-\frac{1}{2}\right)\right]+1
$$

Suppose $m \in C^{k}\left(R^{n_{1}}\right) \times C^{l}\left(R^{n_{2}}\right)$ and

$$
\left|\partial_{\xi}^{\alpha} \partial_{\eta}^{\beta} m(\xi, \eta)\right| \leq C|\xi|^{-|\alpha|}|\eta|^{-|\beta|}
$$

where $|\alpha| \leq k,|\beta| \leq l$. Then T_{m} maps $H^{q}\left(R^{n_{1}} \times R^{n_{2}}\right)$ boundedly to $L^{q}\left(R^{n_{1}} \times\right.$ $R^{n_{2}}$) for $p \leq q \leq 2$.

Remark. R. Fefferman and K.C. Lin [2] have obtained the result for $p=1$ in Theorem 2 under a weaker hypothesis,

$$
\int_{s_{1}<|\xi| \leq 2 s_{1}} \int_{s_{2}<|\eta| \leq 2 s_{2}}\left|\partial_{\xi}^{\alpha} \partial_{\eta}^{\beta} m(\xi, \eta)\right|^{2} d \xi d \eta \leq C s_{1}^{-2|\alpha|+n_{1}} s_{2}^{-2|\beta|+n_{2}}
$$

Theorem 3. Suppose $0<p \leq 1$ and m is defined on $R^{n_{1}} \times R^{n_{2}}$ satisfying
(4)

$$
\left|\partial_{\xi}^{\alpha} \partial_{\eta}^{\beta} m(\xi, \eta)\right| \leq C(1+|\xi|)^{-\left(\left[n_{1}(1 / p-1 / 2)\right]+1\right)}(1+|\eta|)^{-\left(\left[n_{2}(1 / p-1 / 2)\right]+1\right)}
$$

for

$$
|\alpha| \leq\left[n_{1}\left(\frac{1}{p}-\frac{1}{2}\right)\right]+1, \quad|\beta| \leq\left[n_{2}\left(\frac{1}{p}-\frac{1}{2}\right)\right]+1
$$

Then

$$
\left\|T_{m} f\right\|_{L^{q}\left(\left(R^{\left.n_{1} \times R^{n_{2}}\right)}\right.\right.} \leq C\|f\|_{H^{q}\left(R^{\left.n_{1} \times R^{n_{2}}\right)}\right.}
$$

for $p \leq q \leq 2$.
Theorem 4. Suppose $0<p \leq 1$ and m is defined on $R^{n_{1}} \times R^{n_{2}}$ satisfying

$$
|m(\xi, \eta)| \leq(1+|\xi|)^{-\left(\left[n_{1}(1 / p-1 / 2)\right]+1\right)}(1+|\eta|)^{-\left(\left[n_{2}(1 / p-1 / 2)\right]+1\right)}
$$

and the inverse Fourier transform of m has compact support. Then

$$
\left\|T_{m} f\right\|_{L^{q}\left(R^{\left.n_{1} \times R^{n_{2}}\right)}\right.} \leq C\|f\|_{H^{q}\left(R^{\left.n_{1} \times R^{n_{2}}\right)}\right.}
$$

for $p \leq q \leq 2$.
Proofs of the theorems. Without loss of generality, one assumes $C_{1}=$ $C_{2}=1$ in the definitions of $E_{i}, i=1,2,3,4$. The idea of the proof of Theorem A is basically from [4]. Let a be a smooth rectangle atom with vanishing moments and $\operatorname{supp} a \subset I \times J \equiv R, \quad\|a\|_{2} \leq|I|^{1 / 2-1 / p}|J|^{1 / 2-1 / p}$ where I and J are cubes on $R^{n_{1}}$ and $R^{n_{2}}$, respectively. Let us take a smooth function on R^{1} and its Fourier transform $\hat{\phi}(t)$ has compact support $\{1 / 2<$ $|t|<2\}$ such that $\sum_{j \in Z} \hat{\phi}\left(2^{-j}|t|\right)=1$ for all $t \neq 0$. Let

$$
m_{i, j}(\xi, \eta)=m(\xi, \eta) \hat{\phi}\left(2^{-i}|\xi|\right) \hat{\phi}\left(2^{-j}|\eta|\right)
$$

and

$$
\widehat{T_{i j} f}(\xi, \eta)=m_{i, j}(\xi, \eta) \hat{f}(\xi, \eta) \equiv\left(K_{i j} * f\right)^{\wedge}(\xi, \eta)
$$

It is clear $T f=\sum_{i j} T_{i j} f$.

Let us decompose ${ }^{c} \tilde{R}_{r}$, the complement of \tilde{R}_{r}, into three pieces

$$
\begin{aligned}
{ }^{c} \tilde{R}_{r}^{1} & =\left\{(\xi, \eta) \mid \xi \in{ }^{c} \tilde{I}_{r}, \eta \in \tilde{J}_{2}\right\} \\
{ }^{c} \tilde{R}_{r}^{2} & =\left\{(\xi, \eta) \mid \xi \in \tilde{I}_{2}, \eta \in{ }^{c} \tilde{J}_{r}\right\}
\end{aligned}
$$

and

$$
{ }^{c} \tilde{R}_{r}^{3}={ }^{c} \tilde{R}_{r} \backslash\left({ }^{c} \tilde{R}_{r}^{1} \cup{ }^{c} \tilde{R}_{r}^{2}\right)
$$

Lemma A. Let $a_{1} \geq 0, a_{2} \geq 0$. Suppose $m(\xi, \eta$) satisfies (1),(2),(3) in Theorem A and $m(\xi, \eta)$ is supported on E_{1}. Then

$$
\begin{align*}
& \int_{\tilde{R}_{r}^{3}}\left|T_{i j} a\right|^{p} d x d y \tag{5}\\
& \leq C\left(r^{\left(-k\left(\frac{2 p}{2-p}\right)+n_{1}\right)\left(\frac{2-p}{2}\right)}+r^{\left(-l\left(\frac{2 p}{2-p}\right)+n_{2}\right)\left(\frac{2-p}{2}\right)}\right) \\
& \cdot|I|^{\left(\frac{1}{2}-\frac{1}{p}+\frac{\lambda_{1}}{n_{1}}\right) p+\left(-k\left(\frac{2 p}{2-p}\right) \frac{1}{n_{1}}+1\right)\left(\frac{2-p}{2}\right)+\frac{p}{2}} \\
& \cdot|J|^{\left(\frac{1}{2}-\frac{1}{p}+\frac{\lambda_{2}}{n_{2}}\right) p+\left(-l\left(\frac{2 p}{2-p}\right) \frac{1}{n_{2}}+1\right)\left(\frac{2-p}{2}\right)+\frac{p}{2}} \\
& \cdot 2^{i\left(\left(a_{1}-1\right) k+\lambda_{1}-b_{1}+\frac{n_{1}}{2}\right) p} 2^{j\left(\left(a_{2}-1\right) l+\lambda_{2}-b_{2}+\frac{n_{2}}{2}\right) p}
\end{align*}
$$

(6)
and

$$
\begin{equation*}
\int_{c_{\tilde{R}_{r}^{1}}}\left|\sum_{j} T_{i j} a\right|^{p} d x d y \leq C r^{-k p+n_{1}\left(\frac{2-p}{2}\right)^{i\left(\left(a_{1}-1\right) k+\lambda_{1}-b_{1}+\frac{n_{1}}{2}\right) p}|I|^{-\frac{k}{n_{1}} p+\frac{\lambda_{1}}{n_{1}} p+\frac{p}{2}}, ~} \tag{7}
\end{equation*}
$$

where

$$
k=\left[n_{1}\left(\frac{1}{p}-\frac{1}{2}\right)\right]+1, \quad l=\left[n_{2}\left(\frac{1}{p}-\frac{1}{2}\right)\right]+1
$$

$0<p \leq 1, \lambda_{1}, \lambda_{2}$ are arbitrarily nonnegative integers and $\lambda_{1} \leq k, \lambda_{2} \leq l$.
Proof. Since m is supported on E_{1}, without loss of generality, we assume $m_{i, j}(\xi, \eta)=0$ if $i<0$ or $j<0$. After a translation, it suffices to assume the
origin $(0,0)$ is the center of the rectangle $I \times J$. Write
$T_{i j} a(x, y)$

$$
=\int K_{i j}\left(x-x^{\prime}, y-y^{\prime}\right) a\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}
$$

$$
\begin{align*}
= & \int\left(K_{i j}\left(x-x^{\prime}, y-y^{\prime}\right)-\sum_{|\alpha| \leq \lambda_{1}-1} \frac{1}{\alpha!} \partial_{x}^{\alpha} K_{i j}\left(x, y-y^{\prime}\right)\left(-x^{\prime}\right)^{\alpha}\right) \tag{8}\\
& \times a\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime} \\
= & \lambda_{1} \sum_{|\tilde{\alpha}|=\lambda_{1}} \frac{1}{\tilde{\alpha}!} \int_{I \times J} \int_{0}^{1}(1-t)^{\lambda_{1}-1} \partial_{x}^{\tilde{\alpha}} K_{i j}\left(x-t x^{\prime}, y-y^{\prime}\right)\left(-x^{\prime}\right)^{\tilde{\alpha}} \\
& a\left(x^{\prime}, y^{\prime}\right) d t d x^{\prime} d y^{\prime}
\end{align*}
$$

(9)

$$
\begin{aligned}
&=\lambda_{1} \sum_{|\tilde{\alpha}|=\lambda_{1}} \int_{0}^{1} \int_{I \times J}(1-t)^{\lambda_{1}-1}\left(\partial_{x}^{\tilde{\alpha}} K_{i j}\left(x-t x^{\prime}, y-y^{\prime}\right)\right. \\
&\left.-\sum_{|\beta| \leq \lambda_{2}-1} \frac{1}{\beta!} \partial_{y}^{\beta} \partial_{x}^{\tilde{\alpha}} K_{i j}\left(x-t x^{\prime}, y\right)\left(-y^{\prime}\right)^{\beta}\right)\left(-x^{\prime}\right)^{\tilde{\alpha}}
\end{aligned}
$$

$$
a\left(x^{\prime}, y^{\prime}\right) d y^{\prime} d x^{\prime} d t
$$

$$
\begin{align*}
=\lambda_{1} \lambda_{2} \sum_{|\tilde{\alpha}|=\lambda_{1}} \frac{1}{\tilde{\alpha}!} \sum_{|\tilde{\beta}|=\lambda_{2}} \frac{1}{\tilde{\beta}!}\{ & \int_{I \times J} \int_{0}^{1} \int_{0}^{1}(1-t)^{\lambda_{1}-1}(1-s)^{\lambda_{2}-1} \tag{10}\\
& \cdot\left(-x^{\prime}\right)^{\tilde{\alpha}}\left(-y^{\prime}\right)^{\tilde{\beta}} \partial_{y}^{\tilde{\beta}} \partial_{x}^{\tilde{\alpha}} K_{i j}\left(x-t x^{\prime}, y-s y^{\prime}\right) \\
& \left.\times a\left(x^{\prime}, y^{\prime}\right) d s d t d x^{\prime} d y^{\prime}\right\}
\end{align*}
$$

where λ_{1} and λ_{2} are integers and $0 \leq \lambda_{1} \leq k, 0 \leq \lambda_{2} \leq l$. Here we should remark that if one sets $\lambda_{1}=0$ or $\lambda_{2}=0$ then it means one does not subtract the Taylor polynomial on the equation (8) or (9). For example, if $\lambda_{1}=0$ and $\lambda_{2} \neq 0$ then

$$
\begin{aligned}
T_{i j} a(x, y)= & \int K_{i j}\left(x-x^{\prime}, y-y^{\prime}\right) a\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime} \\
= & \lambda_{2} \sum_{|\tilde{\beta}|=\lambda_{2}} \frac{1}{\tilde{\beta}!} \int_{I \times J} \int_{0}^{1}(1-s)^{\lambda_{2}-1}\left(-y^{\prime}\right)^{\tilde{\beta}} \\
& \times \partial_{y}^{\tilde{\beta}} K_{i j}\left(x-x^{\prime}, y-s y^{\prime}\right) d s d x^{\prime} d y^{\prime} .
\end{aligned}
$$

Let us look at the integral in the parentheses of (10). It is dominated by

$$
\begin{aligned}
\int_{I \times J} \int_{0}^{1} & \int_{0}^{1}\left|\left(-x^{\prime}\right)^{\tilde{\alpha}}\left(-y^{\prime}\right)^{\tilde{\beta}} \partial_{y}^{\tilde{\beta}} \partial_{x}^{\tilde{\alpha}} K_{i j}\left(x-t x^{\prime}, y-s y^{\prime}\right) a\left(x^{\prime}, y^{\prime}\right)\right| d s d t d x^{\prime} d y^{\prime} \\
\leq & \left(\int_{I \times J} \int_{0}^{1} \int_{0}^{1}\left|\left(-x^{\prime}\right)^{\tilde{\alpha}}\left(-y^{\prime}\right)^{\tilde{\beta}} \partial_{y}^{\tilde{\beta}} \partial_{x}^{\tilde{\alpha}} K_{i j}\left(x-t x^{\prime}, y-s y^{\prime}\right)\right|^{2} d s d t d x^{\prime} d y^{\prime}\right)^{1 / 2} \\
& \times\left(\int_{I \times J}|a|^{2}\right)^{1 / 2} \\
\leq & |I|^{1 / 2-1 / p+\lambda_{1} / n_{1}|J|^{1 / 2-1 / p+\lambda_{2} / n_{2}}} \\
& \times\left(\int_{I \times J} \int_{0}^{1} \int_{0}^{1}\left|\partial_{y}^{\tilde{\beta}} \partial_{x}^{\tilde{\alpha}} K_{i j}\left(x-t x^{\prime}, y-s y^{\prime}\right)\right|^{2} d s d t d x^{\prime} d y^{\prime}\right)^{1 / 2} \\
& \equiv|I|^{1 / 2-1 / p+\lambda_{1} / n_{1}}|J|^{1 / 2-1 / p+\lambda_{2} / n_{2}} L_{i j}(x, y)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\int_{D}\left|T_{i j} a\right|^{p} \leq C|I|^{\left(1 / 2-1 / p+\lambda_{1} / n_{1}\right) p}|J|^{\left(1 / 2-1 / p+\lambda_{2} / n_{2}\right) p} \int_{D}\left|L_{i j}(x, y)\right|^{p} d x d y \tag{11}
\end{equation*}
$$

for any measurable set D. Next, one will compute the integral $\int_{D}\left|L_{i, j}(x, y)\right|^{p} d x d y$ with respect to $D={ }^{c} \tilde{R}_{r}^{3},{ }^{c} \tilde{R}_{r}^{1}$ and ${ }^{c} \tilde{R}_{r}^{2}$, respectively.

First let us compute

$$
\begin{aligned}
\int_{c_{\tilde{R}_{r}^{3}}} & \left.L_{i j}(x, y)\right|^{p} d x d y \\
& =\int_{c_{\tilde{R}_{r}^{3}}}(A|x|)^{-k p}(B|y|)^{-l p}\left((A|x|)^{k}(B|y|)^{l} L_{i j}(x, y)\right)^{p} d x d y
\end{aligned}
$$

where A and B will be given later. By Hölder's inequality, it is not bigger than

$$
\begin{aligned}
& \left(\int_{C_{\tilde{R}}^{r}}(A|x|)^{-k\left(\frac{2 p}{2-p}\right)}(B|y|)^{-l\left(\frac{2 p}{2-p}\right)} d x d y\right)^{\frac{2-p}{2}} \\
& \quad \cdot\left(\left.\int_{c_{\tilde{R}_{r}^{3}}}(A|x|)^{k}(B|y|)^{l} L_{i j}(x, y)\right|^{2} d x d y\right)^{p / 2} \\
& \leq \\
& C A^{-k p} B^{-l p}\left(r^{\left(-k\left(\frac{2 p}{2-p}\right)+n_{1}\right)\left(\frac{2-p}{2}\right)}+r^{\left(-l\left(\frac{2 p}{2-p}\right)+n_{2}\right)\left(\frac{2-p}{2}\right)}\right) \\
& \quad \cdot|I|^{\left(-k\left(\frac{2 p}{2-p}\right) \frac{1}{n_{1}}+1\right)\left(\frac{2-p}{2}\right)}|J|^{\left(-l\left(\frac{2 p}{2-p}\right) \frac{1}{n_{2}}+1\right)\left(\frac{2-p}{2}\right)}\left(\int_{c_{\tilde{R}_{r}^{3}}}(A|x|)^{2 k}(B|y|)^{2 l}\right. \\
& \left.\quad \cdot \int_{I \times J} \int_{0}^{1} \int_{0}^{1}\left|\partial_{y}^{\tilde{\beta}} \partial_{x}^{\tilde{\alpha}} K_{i j}\left(x-t x^{\prime}, y-s y^{\prime}\right)\right|^{2} d s d t d x^{\prime} d y^{\prime} d x d y\right)^{p / 2} .
\end{aligned}
$$

Since $(x, y) \in{ }^{c} \tilde{R}_{r}^{3}$ and $\left(x^{\prime}, y^{\prime}\right) \in I \times J, 0 \leq s, t \leq 1$, one has $|x| \approx\left|x-t x^{\prime}\right|$, $|y| \approx\left|y-s y^{\prime}\right|$. Therefore, the above inequality is equivalent to

$$
\begin{aligned}
& C A^{-k p} B^{-l p}\left(r^{\left(-k\left(\frac{2 p}{2-p}\right)+n_{1}\right)\left(\frac{2-p}{2}\right)}+r^{\left(-l\left(\frac{2 p}{2-p}\right)+n_{2}\right)\left(\frac{2-p}{2}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cdot\left(\int_{0}^{1} \int_{0}^{1} \int_{I \times J} \int_{C_{R_{r}^{3}}} \mid\left(A\left|x-t x^{\prime}\right|\right)^{k}\left(B\left|y-s y^{\prime}\right|\right)^{l}\right. \\
& \left.\times\left.\partial_{y}^{\tilde{\beta}} \partial_{x}^{\tilde{\alpha}} K_{i j}\left(x-t x^{\prime}, y-s y^{\prime}\right)\right|^{2} d x d y d x^{\prime} d y^{\prime} d s d t\right)^{p / 2} .
\end{aligned}
$$

After a change of variables, the last inequality is dominated by

$$
\begin{aligned}
& A^{-k p} B^{-l p}\left(r^{\left(-k\left(\frac{2 p}{2-p}\right)+n_{1}\right)\left(\frac{2-p}{2}\right)}+r^{\left(-l\left(\frac{2 p}{2-p}\right)+n_{2}\right)\left(\frac{2-p}{2}\right)}\right)
\end{aligned}
$$

$$
\begin{align*}
& \cdot\left(\left.\int_{R^{n_{1} \times R^{n_{2}}}}|A x|^{k}|B y|^{l^{\beta} \tilde{\beta}} \partial_{x}^{\tilde{\alpha}} K_{i j}(x, y)\right|^{2} d x d y\right)^{p / 2} . \tag{12}
\end{align*}
$$

Here one lets

$$
A=2^{-i\left(a_{1}-1\right)}, \quad B=2^{-j\left(a_{2}-1\right)}
$$

From the hypothesis (1), one concludes

$$
\begin{align*}
& \left(\int_{|\xi| \approx 2^{i}} \int_{|\eta| \approx 2^{j}}\left|\left(A \partial_{\xi}\right)^{\sigma}\left(B \partial_{\eta}\right)^{\delta}\left(\xi^{\tilde{\alpha}} \eta^{\tilde{\beta}} m_{i, j}(\xi, \eta)\right)\right|^{2} d \xi d \eta\right)^{1 / 2} \tag{13}\\
& \quad \leq C 2^{i\left(\lambda_{1}-b_{1}+n_{1} / 2\right)} 2^{j\left(\lambda_{2}-b_{2}+n_{2} / 2\right)}
\end{align*}
$$

for every multi-indexes σ, δ. (Recall $|\tilde{\alpha}|=\lambda_{1}$ and $|\tilde{\beta}|=\lambda_{2}$.) Then, applying Plancherel's Theorem on the integral (12) and using formula (13), one has

$$
\begin{aligned}
& \int_{c_{\tilde{R}_{r}^{3}}}\left|L_{i j}(x, y)\right|^{p} d x d y \\
& \leq C\left(r^{\left(-k\left(\frac{2 p}{2-p}\right)+n_{1}\right)\left(\frac{2-p}{2}\right)}+r^{\left(-l\left(\frac{2 p}{2-p}\right)+n_{2}\right)\left(\frac{2-p}{2}\right)}\right) \\
& \cdot|I|^{\left(-k\left(\frac{2 p}{2-p}\right) \frac{1}{n_{1}}+1\right)\left(\frac{2-p}{2}\right)+\frac{p}{2}|J|^{\left(-l\left(\frac{2 p}{2-p}\right) \frac{1}{n_{2}}+1\right)\left(\frac{2-p}{2}\right)+\frac{p}{2}}} \begin{aligned}
& 2^{i\left(\left(a_{1}-1\right) k+\lambda_{1}-b_{1}+\frac{n_{1}}{2}\right) p} 2^{j\left(\left(a_{2}-1\right) l+\lambda_{2}-b_{2}+\frac{n_{2}}{2}\right) p} .
\end{aligned}
\end{aligned}
$$

From (11) and the above inequality, one has

$$
\begin{aligned}
& \int_{C_{R_{r}^{3}}^{3}}\left|T_{i j} a\right|^{p} d x d y \\
& \leq C\left(r^{\left(-k\left(\frac{2 p}{2-p}\right)+n_{1}\right)\left(\frac{2-p}{2}\right)}+r^{\left(-l\left(\frac{2 p}{2-p}\right)+n_{2}\right)\left(\frac{2-p}{2}\right)}\right) \\
& \cdot|I|^{\left(\frac{1}{2}-\frac{1}{p}+\frac{\lambda_{1}}{n_{1}}\right) p+\left(-k\left(\frac{2 p}{2-p}\right) \frac{1}{n_{1}}+1\right)\left(\frac{2-p}{2}\right)+\frac{p}{2}} \\
& \times|J|^{\left(\frac{1}{2}-\frac{1}{p}+\frac{\lambda_{2}}{n_{2}}\right) p+\left(-l\left(\frac{2 p}{2-p}\right) \frac{1}{n_{2}}+1\right)\left(\frac{2-p}{2}\right)+\frac{p}{2}} \\
& \cdot 2^{i\left(\left(a_{1}-1\right) k+\lambda_{1}-b_{1}+\frac{n_{1}}{2}\right) p} 2^{j\left(\left(a_{2}-1\right) l+\lambda_{2}-b_{2}+\frac{n_{2}}{2}\right) p} .
\end{aligned}
$$

(5) is proved.

Since the proofs of (6) and (7) are similar, we show (6). Let $T_{j} a \equiv \sum_{i} T_{i j} a$. Hence, it is clear that

$$
\widehat{T_{j} a}(\xi, \eta)=m(\xi, \eta) \hat{\phi}\left(2^{-j}|\eta|\right) \hat{f}(\xi, \eta) \equiv \hat{K}_{j}(\xi, \eta) \hat{f}(\xi, \eta)
$$

Let us write

$$
\begin{aligned}
& \int_{C_{\tilde{R}}^{2}} \mid\left.\sum_{i} T_{i j} a\right|^{p} d x d y= \\
& \int_{C_{\tilde{R}}^{r}}\left|T_{j} a\right|^{p} d x d y \\
& \leq \int_{c_{\tilde{R}_{r}^{2}}}(B|y|)^{-l p}\left((B|y|)^{l}\left|T_{j} a\right|\right)^{p} d x d y \\
& \leq\left(\int_{c_{\tilde{R}_{r}^{2}}}(B|y|)^{-l\left(\frac{2 p}{2-p}\right)} d x d y\right)^{(2-p) / 2} \\
& \times\left(\int_{c_{\tilde{R}_{r}^{2}}}\left|(B|y|)^{l} T_{j} a\right|^{2} d x d y\right)^{p / 2} \\
& \leq C B^{-l p}|I|^{\frac{2-p}{2}} r^{\left(-l\left(\frac{2 p}{2-p}\right)+n_{2}\right)\left(\frac{2-p}{2}\right)} \\
& \times|J|^{\left(-l\left(\frac{2 p}{2-p}\right) \frac{1}{n_{2}}+1\right)\left(\frac{2-p}{2}\right)} \\
& \cdot\left(\int_{c_{\tilde{R_{r}^{2}}}}\left|(B|y|)^{l} T_{j} a\right|^{2} d x d y\right)^{p / 2},
\end{aligned}
$$

where the last second inequality is obtained by applying Hölder inequality.

Following the same procedure as in the proof of (5), one has

$$
\begin{aligned}
& \int_{c_{\tilde{R}_{r}^{2}}}\left|(B|y|)^{l} T_{j} a\right|^{2} d x d y \\
& \quad \leq C \sum_{|\tilde{\beta}|=\lambda_{2}} \int_{c^{2} \tilde{R}_{r}^{2}}(B|y|)^{2 l \mid} \mid \int_{0}^{1} \int_{I \times J}\left(-y^{\prime}\right)^{\tilde{\beta}} \partial_{y}^{\tilde{\beta}} K_{j}\left(x-x^{\prime}, y-s y^{\prime}\right) \\
& \\
& \quad \times\left. a\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime} d s\right|^{2} d x d y
\end{aligned}
$$

Since

$$
{ }^{c} \tilde{R}_{r}^{2}=\left\{|x|<2 \sqrt{n_{1}}|I|^{1 / n_{1}}\right\} \cap\left\{|y|>r|J|^{1 / n_{2}}\right\}
$$

by Minkowski's inequality, the last inequality is less than

$$
\begin{array}{r}
C \sum_{|\tilde{\beta}|=\lambda_{2}}\left\{\int _ { | y | > r | J | ^ { 1 / n _ { 2 } } } (B | y |) ^ { 2 l } \left(\int _ { 0 } ^ { 1 } \int _ { J } | y ^ { \prime } | ^ { \lambda _ { 2 } } \left(\int_{|x|<2 \sqrt{n_{1}}|I|^{1 / n_{1}}} \mid \int_{I} \partial_{y}^{\tilde{\beta}} K_{j}\left(x-x^{\prime}, y-s y^{\prime}\right)\right.\right.\right. \\
\left.\left.\left.\left.a\left(x^{\prime}, y^{\prime}\right) d x^{\prime}\right|^{2} d x\right)^{1 / 2} d y^{\prime} d s\right)^{2} d y\right\}
\end{array}
$$

By Plancherel's Theorem, the above integral on the parentheses is dominated by

$$
\begin{aligned}
& \int_{|y|>r|J|^{1 / n_{2}}}\left(\int_{0}^{1} \int_{J}\left|y^{\prime}\right|^{\lambda_{2}}(B|y|)^{l}\right. \\
& \left.\quad \times\left(\int_{R^{n_{1}}}\left|\partial_{y}^{\tilde{\beta}} \widehat{K}_{j}^{1}\left(\xi, y-s y^{\prime}\right) \hat{a}^{1}\left(\xi, y^{\prime}\right)\right|^{2} d \xi\right)^{1 / 2} d y^{\prime} d s\right)^{2} d y \\
& \leq|J|^{2} \frac{\lambda_{2}}{n_{2}} \int_{|y|>r|J|^{1 / n_{2}}}\left(\int_{0}^{1} \int_{J}(B|y|)^{l}\right. \\
& \left.\quad \times\left(\int_{R^{n_{1}}}\left|\partial_{y}^{\tilde{\beta}} \widehat{K}_{j}^{1}\left(\xi, y-s y^{\prime}\right) \hat{a}^{1}\left(\xi, y^{\prime}\right)\right|^{2} d \xi\right)^{1 / 2} d y^{\prime} d s\right)^{2} d y \\
& \leq|J|^{2} \frac{\lambda_{2}}{n_{2}}+1 \\
& \quad \int_{|y|>r|J|^{1 / n_{2}}} \int_{0}^{1} \int_{J} \int_{R^{n_{1}}} \mid(B|y|)^{l} \partial_{y}^{\tilde{\beta}} \widehat{K}_{j}^{1}\left(\xi, y-s y^{\prime}\right) \\
& \times\left.\hat{a}^{1}\left(\xi, y^{\prime}\right)\right|^{2} d \xi d y^{\prime} d s d y \\
& \leq \\
& \quad \times|J|^{\frac{\lambda_{2}}{n_{2}}+1} \int_{0}^{1} \int_{J} \int_{R^{n_{1}}} \int_{R^{n_{2}}}\left|\left(B\left|y-s y^{\prime}\right|\right)^{l} \partial_{y}^{\tilde{\beta}} \widehat{K}_{j}^{1}\left(\xi, y-s y^{\prime}\right)\right|^{2} d y
\end{aligned}
$$

By a change of variables on the last inequality, one has

$$
\begin{align*}
& \int_{c_{R_{r}^{2}}}\left|(B|y|)^{l} T_{j} a\right|^{2} d x d y \tag{14}\\
& \quad \leq C|J|^{2} \frac{\lambda_{2}}{n_{2}}+1 \\
& \quad \int_{J} \int_{R^{n_{1}}} \int_{R^{n_{2}}}\left|(B|y|)^{l} \partial_{y}^{\beta} \widehat{K}_{j}^{1}(\xi, y)\right|^{2} d y\left|\hat{a}^{1}\left(\xi, y^{\prime}\right)\right|^{2} d \xi d y^{\prime} .
\end{align*}
$$

Let $B=2^{-j\left(a_{2}-1\right)}$. As in the inequality (13), one constructs a similar inequality

$$
\begin{equation*}
\sup _{\xi \in R^{n_{1}}}\left(\left.\int_{|\eta| \approx 2^{j}}\left(B \partial_{\eta}\right)^{\delta}\left(\eta^{\tilde{\beta}} \widehat{K_{j}}(\xi, \eta)\right)\right|^{2} d \xi d \eta\right)^{1 / 2} \leq C 2^{j\left(\lambda_{2}-b_{2}+n_{2} / 2\right)} \tag{15}
\end{equation*}
$$

by using the hypothesis (3).
Hence, applying Plancherel's Theorem on the integral $\int_{R^{n_{2}}}|\cdots|^{2} d y$ on (14) and applying (15), the inequality (14) is not bigger than

$$
\begin{aligned}
& |J|^{2 \lambda_{2} / n_{2}+1} \int_{R^{n_{2}}} \int_{R^{n_{1}}} 2^{2 j\left(\lambda_{2}-b_{2}\right)+j n_{2}}\left|\hat{a}^{1}\left(\xi, y^{\prime}\right)\right|^{2} d \xi d y^{\prime} \\
& \quad \leq C 2^{j\left(2\left(\lambda_{2}-b_{2}\right)+n_{2}\right)}|I|^{2(1 / 2-1 / p)}|J|^{2(1 / 2-1 / p)+2 \lambda_{2} / n_{2}+1}
\end{aligned}
$$

Therefore,

$$
\int_{c_{\tilde{R}_{r}^{2}}^{2}}\left|T_{j} a\right|^{p} d x d y \leq C 2^{j\left(\left(a_{2}-1\right) l+\lambda_{2}-b_{2}+n_{2} / 2\right) p} r^{-l p+n_{2}\left(\frac{2-p}{2}\right)}|J|^{-\frac{l}{n_{2}} p+\frac{\lambda_{2}}{n_{2}} p+\frac{p}{2}} .
$$

This is (6). Lemma A is proved.
Proof of Theorem A. As in Lemma A, since m is supported on E_{1}, without loss of generality, we assume $m_{i j}(\xi)=0$ if $i<0$ or $j<0$. Let us write

$$
\int_{c_{\tilde{R}}^{r}}|T a|^{p}=\int_{c_{\tilde{R}_{r}^{1}}} \cdots+\int_{c_{\tilde{R}_{r}^{2}}} \cdots+\int_{c_{\tilde{R}_{r}^{3}}} \cdots
$$

and recall $k=\left[n_{1}(1 / p-1 / 2)\right]+1, l=\left[n_{2}(1 / p-1 / 2)\right]+1$. Then there exists $\sigma>0$ such that

$$
\max \left\{\left(-k\left(\frac{2 p}{2-p}\right)+n_{1}\right),\left(-l\left(\frac{2 p}{2-p}\right)+n_{2}\right)\right\} \leq-\left(\frac{2}{2-p}\right) \sigma
$$

Hence

$$
r^{\left(-k\left(\frac{2 p}{2-p}\right)+n_{1}\right)\left(\frac{2-p}{2}\right)}+r^{\left(-l\left(\frac{2 p}{2-p}\right)+n_{2}\right)\left(\frac{2-p}{2}\right)} \leq 2 r^{-\sigma}
$$

if $r \geq 2$. For each rectangle $I \times J$, there exist $i_{0}, j_{0} \in Z$ such that $|I|^{1 / n_{1}} \approx$ $2^{-i_{0}},|J|^{1 / n_{2}} \approx 2^{-j_{0}}$. Therefore, if $0<p \leq 1$,

$$
\begin{equation*}
\int_{c_{R_{r}^{3}}^{3}}|T a|^{p} \leq \sum_{i j} \int_{c_{R_{r}^{3}}^{3}}\left|T_{i j} a\right|^{p}=\sum_{i \geq i_{0}} \sum_{j \geq j_{0}}+\sum_{i \geq i_{0}} \sum_{j<j_{0}}+\sum_{i<i_{0}} \sum_{j \geq j_{0}}+\sum_{i<i_{0}} \sum_{j<j_{0}} \tag{16}
\end{equation*}
$$

We are going to apply (5) in Lemma A by choosing the distinct λ_{1} and λ_{2} on the distinct terms of sums on (16). That is to say, (i) in the sums $\sum_{i \geq i_{0}} \sum_{j \geq j_{0}}$ one picks $\lambda_{1}=\lambda_{2}=0$, (ii) in the sums $\sum_{i \geq i_{0}} \Sigma_{j<j_{0}}$ on takes $\lambda_{1}=0, \lambda_{2}=l=\left[n_{2}(1 / p-1 / 2)\right]+1$, (iii) in the sums $\sum_{i<i_{0}} \sum_{j \geq j_{0}}$ one lets $\lambda_{1}=k=\left[n_{1}(1 / p-1 / 2)\right]+1, \lambda_{2}=0$ and (iv) in the sums $\sum_{i<i_{0}} \sum_{j<j_{0}}$ on sets $\lambda_{1}=k=\left[n_{1}(1 / p-1 / 2)\right]+1, \lambda_{2}=l=\left[n_{2}(1 / p-1 / 2)\right]+1$. Hence, from (16),

$$
\begin{aligned}
\int_{C_{\tilde{R}_{r}^{3}}}|T a|^{p} \leq & \sum_{i \geq i_{0}}\left(\sum_{j \geq j_{0}}+\sum_{j<j_{0}}\right)+\sum_{i<i_{0}}\left(\sum_{j \geq j_{0}}+\sum_{j<j_{0}}\right) \\
\leq & C r^{-\sigma} \sum_{i \geq i_{0}}|I|^{\left(\frac{1}{2}-\frac{1}{p}\right) p+\left(-k\left(\frac{2 p}{2-p}\right) \frac{1}{n_{1}}+1\right)\left(\frac{2-p}{2}\right)+\frac{p}{2} 2^{i\left(\left(a_{1}-1\right) k-b_{1}+\frac{n_{1}}{2}\right) p}} \\
& \cdot\left\{\sum_{j<j_{0}}|J|^{\left(\frac{1}{2}-\frac{1}{p}+\frac{\lambda_{2}}{n_{2}}\right) p+\left(-l\left(\frac{2 p}{2-p}\right) \frac{1}{n_{2}}+1\right)\left(\frac{2-p}{2}\right)+\frac{p}{2} 2^{j\left(\left(a_{2}-1\right) l+\lambda_{2}-b_{2}+\frac{n_{2}}{2}\right) p}}\right. \\
& +\sum_{j \geq j_{0}}|J|^{\left.\left(\frac{1}{2}-\frac{1}{p}\right) p+\left(-l\left(\frac{2 p}{2-p}\right) \frac{1}{n_{2}}+1\right)\left(\frac{2-p}{2}\right)+\frac{p}{2} 2^{j\left(\left(a_{2}-1\right) l-b_{2}+\frac{n_{2}}{2}\right) p}\right\}} \\
& +C r^{-\sigma} \sum_{i<i_{0}} \cdots\left(\sum_{j \geq j_{0}} \cdots+\sum_{j<j_{0}} \cdots\right) \\
\leq & C r^{-\sigma} \sum_{i \geq i_{0}}|I|^{\left(\frac{1}{2}-\frac{k}{n_{1}}\right) p} 2^{i\left(-k+\frac{n_{1}}{2}\right) p}\left\{\sum_{j<j_{0}} 2^{-j_{0} n_{2} p / 2} 2^{j n_{2} p / 2}\right. \\
& \left.\sum_{j \geq j_{0}} 2^{-j_{0} n_{2}\left(\frac{1}{2}-\frac{l}{n_{2}}\right) p} 2^{j\left(-l+\frac{n_{2}}{2}\right) p}\right\}+C r^{-\sigma} \sum_{i<i_{0}} \cdots \\
\leq & C r^{-\sigma}\left\{\sum_{i \geq i_{0}} 2^{-i_{0} n_{1}\left(\frac{1}{2}-\frac{k}{\left.n_{1}\right) p} 2^{i\left(-k+\frac{n_{1}}{2}\right) p}+\sum_{i<i_{0}} \cdots\right\}}\right\}
\end{aligned}
$$

where the last two inequalities are obtained by the fact, $n_{2} / 2<l$ and $n_{1} / 2<k$.

On the other hand, for the boundedness of the integrals

$$
\int_{c_{\tilde{R}_{r}^{1}}}|T a|^{p} \text { and } \int_{c_{R_{r}^{2}}^{2}}|T a|^{p}
$$

these can be proved by following the same ideas as the proof in the above case, applying (6), (7) in Lemma A and the next two inequalities, respectively,

$$
\int_{c \tilde{R}_{r}^{2}}|T a|^{p} \leq \sum_{j} \int_{c_{\tilde{R}_{r}^{2}}}\left|\sum_{i} T_{i j} a\right|^{p} \quad \text { and } \quad \int_{c_{\tilde{R}}^{r}}|T a|^{p} \leq \sum_{i} \int_{c_{\tilde{R}_{r}^{1}}}\left|\sum_{j} T_{i j} a\right|^{p} .
$$

Theorem A is proved.

Proof of Theorems B, C, D. As in the proof of Theorem A, one can prove Theorems $\mathrm{B}, \mathrm{C}, \mathrm{D}$ by establishing the corresponding lemmas. In the proof of Lemma A, the equations have nothing to do with the "signs" of a_{1}, a_{2} except (13) and (15). The existences of (13) and (15) depend on the signs of i and a_{1} (j and a_{2}), in particular, on $i a_{1}>0\left(j a_{2}>0\right)$. Therefore, we omit those proofs.

Proof of Theorem 2. Taking a smooth function ψ on R^{1} with compact support $\{t||t|<2\}$ and $\psi(t)=1$ if $|t| \leq 1$, let

$$
\begin{align*}
m(\xi, \eta)= & (1-\psi(\xi))(1-\psi(\eta)) m(\xi, \eta)+(1-\psi(\xi)) \psi(\eta) m(\xi, \eta) \tag{17}\\
& +\psi(\xi)(1-\psi(\eta)) m(\xi, \eta)+\psi(\xi) \psi(\eta) m(\xi, \eta) \\
\equiv & m_{1}(\xi, \eta)+m_{2}+m_{3}+m_{4}
\end{align*}
$$

Then one applies $m_{i}, i=1,2,3,4$, to Theorems A, B, C, D, respectively. Theorem 2 is followed by setting $a_{1}=a_{2}=0$ in Theorems A, B, C, D.

Proof of Theorem 3. Again, we borrow the decomposition (17) of m on the proof of Theorem 2 . Then the boundedness of T is obtained by setting $a_{1}=a_{2}=1$ on Theorem A, $a_{1}=1, a_{2}=0$ on Theorem $\mathrm{B}, a_{1}=0, a_{2}=1$ on Theorem C and $a_{1}=a_{2}=0$ on Theorem D.

Proof of Theorem 4. Since the inverse Fourier transform of m has compact support, there exists a smooth function ϕ such that

$$
m(\xi, \eta)=\int_{R^{n_{1} \times R^{n_{2}}}} \phi\left(\xi-\xi^{\prime}, \eta-\eta^{\prime}\right) m\left(\xi^{\prime}, \eta^{\prime}\right) d \xi^{\prime} d \eta^{\prime}
$$

Theorem 4 is proved by applying Theorem 3.

References

[1] S.Y.A. Chang and R. Fefferman, Some recent developments in Fourier analysis and H^{p} theorem on product domains, Bull. Amer. Math. Soc., 12(1985), 1-43.
[2] R. Fefferman and K.C. Lin, A sharp result on multiplier operators, preprint.
[3] R. Fefferman, Harmonic analysis on product spaces, Ann. of Math. 126(1987), 109-130.
[4] A. Miyachi, On some Fourier multipliers for $H^{p}\left(R^{n}\right)$, J. Fac. Sci. Univ. Tokyo, Sect. 1A Math. 27(1980), 157-179.

Oregon State University
Corvallis, Oregon

