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SOME SINGULAR SERIES AVERAGES AND THE DISTRIBUTION
OF GOLDBACH NUMBERS IN SHORT INTERVALS

J.B. FriEDLANDER! AND D.A. GOLDSTON?

1. Introduction

The Goldbach conjecture asserts that every even integer exceeding two can
be written as the sum of two primes. As this has still not been substantiated,
there is reason to distinguish those even integers which can be written as the
sum of two primes; we call such an integer a Goldbach number. There are
many results that have been proven about Goldbach numbers (see, for
example, the introduction in [Go, ).

In this paper we shall be concerned with the question of the existence of
Goldbach numbers in short intervals and the asymptotic formula for the
number of representations of the even integers in a short interval as the sum
of two primes.

It was proven by Montgomery and Vaughan [MV,] that every interval
(N — K, N] contains Goldbach numbers provided that K > N7/72*¢ and
N > Ny(g). More recently Perelli and Pintz [PP] have proven that almost
every even integer in the interval (N — K, N] is a Goldbach number if
K> N7/36 +e'

In the case that one admits conditional results it is possible to treat
significantly shorter intervals and there has been a history of results based on
certain unproved hypotheses. The first such result (which preceded the
unconditional results) was due to Linnik [L,] who proved, under the assump-
tion of the Riemann Hypothesis, that one could find Goldbach numbers in
every interval (N — K, N] with K > (log N)*** and N > N,(¢). Linnik’s
result was sharpened by Kaitai [K] and later but independently by Mont-
gomery and Vaughan [MV,] so as to replace (log N)**¢ by C log? N for a
suitable absolute constant C, again under the assumption of the Riemann
Hypothesis.

The next step was taken by Goldston [Go,]. To describe this we need to
define the integral

J(N, k) =/1”(¢(x+h) —y(x)D — h)*dx, (1.1)
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where ¢(x) = £, _,A(n), and A is the von Mangoldt function, defined to be
log p if n =p™, m > 1, and zero otherwise. This integral, first studied by
Selberg [Se], was used in the work of Montgomery and Vaughan, and, in
essence, in the work of Katai. It is expected that J(N,h) satisfies the
asymptotic formula

J(N,h) ~hN log(N/h), 1<h<N'"* (1.2)

It has been proven in [GM] that, assuming the Riemann Hypothesis, this
relation is equivalent to a form of Montgomery’s pair correlation conjecture
[M,]. We shall use this formula in a shorter range but in the stronger form

J(N,h) = hN log(N/h) + O(hN), 1<h<logN. (13)

Much more than this is expected to be true, see [Go,, (36)]. We actually do
not need to assume as strong an error term as in (1.3), as will be clear from
the proof.

As consequences of the main theorem of [Go,] it follows that, subject to
(1.2), there exists a Goldbach number in every interval (N — K, N] with
K > (2 + ¢)log N, N > N(¢g) and moreover, if one takes K/log N — o then
the number of representations

r(ny= Y 1

p+p'=n

satisfies the expected asymptotic formula

N
r(n) ~K————. 14
N——KgnsN () (log N)2 9

The method in [Go,] provides an upper bound to the error term in (a
weighted version of) (1.4) in terms of the integral J(N, K). As was indicated
in [Go,] a known lower bound for J(N, K) proved in [Go,] limits the method
of [Go,] to intervals no shorter than log N.

In this paper we consider a different method which allows us to study
Goldbach numbers in much shorter intervals. This is accomplished by relat-
ing the problem to the distribution of primes in arithmetic progressions and
thereby in particular to the well-known Elliott-Halberstam conjecture [EH].

For integers a and g with g > 1 let

¥(x;9,a) = Y A(n)

n<x
n=a(mod q)
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and E'(x; q,a) = ¥(x; q,a) — xx,(a)/P(q) where x, is the principal charac-
ter mod g. We consider estimates of the form

max ), |E'(x;q,a)| < ud

—_— 1.5
a <o (log x)A (1.3)
which hold for arbitrary 4 > 0 with an implied constant that depends on A.
The Bombieri-Vinogradov theorem [B] implies that (1.5) holds for Q =
x/%(log x)~B for a suitable B = B(A4), and the Elliott-Halberstam conjec-
ture predicts that it holds with much larger Q (not too much smaller than x).
Upper limits have been found in [FG] and [FGHM] for the size of Q such
that (1.5) can hold and, in particular, it follows from [FGHM] that for each
A > 0, (1.5) will not hold in general for any

Q >x/L094, where L = L(x) = exp((loglog x)*/logloglog x).
(1.6)

This level of Q represents the essential limit of the method in [FGHM].
We shall also need a modified version of (1.5). We define the truncated von
Mangoldt function for n > 2 by

Ag(n) = X p(d)log(Q/d) (1.7)
dln
d<Q

and equal to zero otherwise; for Q > n this is just A(n). We define

bo(x;59,a) = Y Ag(n)

n<x,n¥a
n=a(mod q)

(it turns out to be convenient to delete the term n = a; in the case of A this
is unimportant), and we let Ej(x;q, a) = ¢y(x; q,a) — xx,(a)/$(q). We
shall require the upper bound

X

max ), |Eyp(x;q,a)| < (1.8)

<0 (log x)*’

for arbitrary A > 0; in fact, as will be evident in what follows, we require
such bounds as this and (1.5) only maximized over some range of a and only
for some A4 not very large.

The function A, has been introduced by Goldston in [Go,] where it was
used to study primes in short intervals and to give a new proof of a theorem
of Bombieri and Davenport [BD] which avoids the circle method and offers a
number of advantages. The estimate (1.8) can be shown to hold in the range
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0 < x'/*(log x) 2 and may be expected to hold in essentially the same range
as (1.5). Indeed, the Bombieri-Vinogradov theorem has been found capable
of very wide generalization. Actually, in some respects, the behaviour of A,
in arithmetic progressions is better than that of A since one can prove, using
ideas similar to those in Proposition 3 below, an asymptotic formula for
1//Q(x; g, a) with a much greater uniformity in g than is known to hold in the
corresponding formula for ¢(x; g, a). In the case of a closely related function
this has been done already by Heath-Brown in [H-B].

Nevertheless, partly because it is not as immediately clear for A, as for A
that its support is almost completely concentrated in the reduced residue
classes, it seems worthwhile to also give the results in terms of a modified
version of these mean value statements (which in the case of (1.5) is easily
seen to be equivalent). Because this formulation is a natural one which seems
to be useful for other functions we state it more generally.

We left f denote a general arithmetic function and let a and g be given
such that their greatest common divisor is (a, g) = A. We consider the error
term given by

E (x;q.a) = ¥ f(n)-;I;%KT T f(n)

n<x,n#a n<x
n=a(mod q) (n,q)=A

and we consider the estimate

x
max ), |E/(x;q,a)| < ———.
> LN = o

(1.9)

In the particular cases f = A, AQ we denote E; by E, E,.
Returning to the Goldbach problem, we let

R(n) = Y A(J)A(n —J).

j<n
The expected asymptotic formula for R(n) is
R(n) = n&(n) + o(n) (1.10)
where &(n) is defined for all integers n # 0 by

0 if n is odd;
&(n) ={&T1 (2 — ;) if n is even, n + 0; (1.11)

pln
p>2
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and

G- 2PI>‘[2(1 - G—%T)—z)

Our main result is:

THEOREM. Let € > 0, A > 0 be fixed. Then, for some ¢ = c(A) and for
all N,Q, Kwith N >3, N* < Q < N(L(N))"*“D, 2 < K < Q'* we have

§ (K- lkl)(R(N +k) = (N+k)S(N + k))l
k=-K

<J(N,K) — KN log(Q/K) + O(KN)
+ O(K2N(log N) ™)

+ O(K2 log Nmax max Y (|E(N;d,a)|
k a dSQ

+|Eo(N + k;d,a)l)), (1.12)

where the maxima are taken over k| < K, 0 < |la| < 2N. The same result
holds with E', Ej, in place of E, E,.

Our first corollary is concerned with the expected asymptotic formula (1.4).

CoOROLLARY 1. Assume that (1.3) holds for J(N, K) and that we have (1.5)
and (1.8) (or alternatively that we have (1.9) for both f = A and f = A,) for
Ix — NI <K, over 0 < |al <2N, and Q = N exp(—(log N)*/?). Then, for
K= (log N)2/3+£’

Y ) ~——r ¥ n&(n) ~K—2

N-K<n<N (log N)? N-K<n<n (log N)*’

The limit 2/3 of the method comes from an appeal to Vinogradov’s
estimates for exponential sums. By making an assumption that such exponen-
tial sums satisfy heuristically expected estimates one could reduce it further.
It is more interesting to note however that, if one asks not for the asymptotic
formula but only for the existence of Goldbach numbers in such intervals,
then one can, without such an additional assumption, treat substantially
shorter intervals. This is the content of our second corollary.



GOLDBACH NUMBERS IN SHORT INTERVALS 163

CoROLLARY 2. Assume that (1.3) holds for J(N, K) and that (1.5) and
(1.8) (or (1.9) for f= A and f= Ay) both hold for |x — N| <K, over
0 < |lal < 2N, and a given level Q < N(L(N)) D Then there exist Gold-
bach numbers in the interval (N — K, N provided that K > c log(N/Q) for a
suitable positive absolute constant c.

In particular, if we assume that these mean value estimates hold for Q just
below the limit N(L(N))~ ¢ then one has Goldbach numbers for all K >
C(loglog N)?/logloglog N, for some C, and, even assuming a much safer
level, one can get such numbers in all intervals of length K > (loglog N)2
for some B.

One of the advantages of the method of [Go,] over the earlier method of
[BD] for studying primes in short intervals is the potential it offers, given
strong mean value statements, to treat shorter intervals. Thus, as remarked in
[Go,], the assumption of (1.5) and (1.8) for Q < x!~¢ for all ¢ > 0 implies
that liminf(p, ,, — p,)/log p, = 0. As a by-product of the present work we
get the following analogue of Corollary 2.

CoROLLARY 2'. Assume that (1.5) and (1.8) (or (1.9) for f= A and
f=Ap) both hold for x =N, over 0< |a|l <K, and a given level Q <
N(og N) B Then, for some n with N(log N)~% < p, < N, we havep, ,, —
D,, < K provided that K > c log(N/Q) for a suitable positive absolute con-
stant c.

Actually, with a little more effort one can choose, say, N/2 < p, < N. In
the case where one assumes (1.5) and (1.8) rather than (1.9) the above result
is more or less implicit in [Go,]. It is worthwhile to note that in this case, as
opposed to the statements about the Goldbach problem, we do not require
la| to be very large, certainly we may take it bounded by log x. For a of this
size it may possibly be that bounds such as (1.9) hold even with Q as large as
x(log x)™B; the methods devised so far cannot rule this out. In this most
optimistic case one deduces that liminf(p,,, — p,)/loglog p, is bounded.
One should note however, that for this problem in contrast to the Goldbach
problem, the assumption of (1.3) gives a great deal in an almost trivial
fashion. Indeed it follows from (1.3) that liminf(p,,, — p,) is actually
bounded.

In the course of proving the asymptotic formula in Corollary 1 we are led
to the problem of estimating the sum ¥, _ ,&(n) with as small an error term
as possible. Improving earlier results of Hardy-Littlewood [HL] and of
Bombieri-Davenport [BD], Montgomery [M, ] proved the formula

_ngx(p’lz:l) l(g: ;) = (x+0(logx))1£!2(1 - —(—;{1—)2)
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where r is a positive integer and the implied constant is absolute. There
appears to have been some doubt as to whether this estimate could be
improved although in [MV,, p 210] it is suggested that “possibly . .. one might
replace the error by c log x + o(log x)”. We shall prove this in the following
stronger form:

ProrosiTION 1. Let r be a positive integer. We have for x > r,

FE T (5] - (o P e of o)
(p,2r)=1

1
x}il’z(l— (p—l)z)’

where the implied constant is absolute.

The restriction r < x can be dropped on replacing r/¢$(r) by loglog3r in
the above O-term (and perhaps even without doing so). In our case we need
only r = 1 and, in the notation of (1.11), this is

Y &(n)=x- %—log x + O((log x)*?). (1.13)

n<x

The paper is arranged as follows. In §2 we prove Proposition 1 and give an
analogous formula for a similar weighted sum. In §3 we prove that the two
forms of the Theorem, that with E, E, and that with E’, E}, are equivalent.
In §4 and §5 we recall from [Go,], and in some cases refine, some basic facts
about the truncated von Mangoldt function and its use in studying primes in
short intervals. In §6 we relate the latter problem to the Goldbach problem
and complete the proofs.

2. Some singular series averages

In addition to Proposition 1 we shall require for later use the following
result of [Go,] which refines [M;, Lemma 17.5] and [Go,, Lemma 3].

ProposITION 2. We have

K

Y (K- |k)&(k) =K?>—-KlogK
k=-K

k+0

+K(1 -y —log2m) + O,(KY/2*). (2.1)
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This result follows from a standard contour integration argument; see the
remarks accompanying Lemma 2.1 below.

Proof of Proposition 1. 'We let r be a positive integer and define

H = =TT (2=5)

pln
(p,2r)=1
Thus we must show that, for x > r,
-1
3 VI [ P ST
plr (P - 1) n<x
p>2
r 2/3
+ O(¢(r) (log x) ) (22)

with an absolute implied constant. Equation (1.13) follows at once from the
case r = 1, since in that case &L, _ H(n) =%, _,,&(n).
We have

1 2(d

H(m =TI (1+p_2)= y )
pin d

(p,2r)=1 (d,2]r’;=

where ¢,(p) = p — 2 and ¢, is extended to square-free d by multiplicativity.
Now,

LH(n) = Y

Y 1

n<x d<x ¢2(d) n<x
(d,2r)=1 n=0(d)
- p(d) _ 1 p(d) _ w(d) , ( )
dee déa(d) 2 i ¢2(d) dex  $2(d)
(d,2r)=1 d,2r)= (d,2r)=1
(2.3)

where P(¢) = {t} — 1/2. For the first sum we have

¥ w(d) _ {Z: w(d) ¥ w(d)

dzw d¢2(d) is1 d¢a(d) dse  4d2(d)

(d,2r)=1 (d,2r)=1 d,2r)=1
—) + (5]
- 1+ ———|+o[=]. 2.4
pl:gr( p(p - 2) X ( )
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For the second sum in (2.3) we use:

Lemma 2.1. We have, forx > r,

p(d) _ o(2r) 1
dgx ¢(d)  2r ,,1:;,(1 TR )l(’g x+0(1), (25)
(d,2r)=1

where the implied constant is absolute.
For the third sum we shall prove:

LeEmMMA 2.2. We have

L S < oo
@an-1

Inserting (2.4), (2.5) and (2.6) we at once have (2.2) and so Proposition 1 is
proven, subject to Lemmata 2.1 and 2.2.

Lemma 2.1, whose proof we do not give, follows from familiar contour
integration arguments (indeed, in sharper form than stated) since the gener-
ating Dirichlet series

{1+ 2

may be written as /(s + 1)G(s) where G(0) is the multiple of log x in (2.5),
G(s) is analytic for ¢ > —1/2 and satisfies, say for ¢ > —1/4, a bound
G(s) < 7(r), (in order to drop the restriction x > r a more careful bound is
required). In proving Proposition 2 we use a similar argument starting from
the formula

Y (x—n)H(n) = -2—%—1-—]:_::0{(5)5(5 + 1)G(5)s_(i;'s_:—1)ds'

Proof of Lemma 2.2. We take as our point of departure an argument of
Sitaramachandrarao [Si, Lemma 2.2] wherein the estimate (2.6) is deduced in
the case r = 1 for the corresponding sum with ¢,(d) replaced by ¢(d). As
there, the key ingredient is the estimate of Walfisz [W]

T +P(2) < (log x)>” 2.7)

n<x
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which is in turn a consequence of Vinogradov’s estimates for exponential
sums. For n odd we have

b(n) _ L\ K
b2(1) 5}(“1) ) p (28)

so that

ngx ¢z§’rg ( )= Ex %(%P(%)dgnn(d)

(n,2r)=1 (n,2r)=1

= /J*z(d) [1«2(3) X
d£x d(d) ¢,(d) #(5) P(d‘o‘)

d,8)=1
(ds,2r)=1

_#(d) w2(8) ,(x/d

d,2r=1 (8,2dr)=1

(2.9)

The inner sum is essentially the same as the original one but with ¢,
replaced by ¢. We iterate the previous argument. Similarly to (2.8) we have,

n 1
s =1+ 557)= T & el (210)
and so
2(n) H(x) _ (n)
TSR £ ) 2 S
(n,2k)=1 (n,2k)=1
_ p*(d) u(ﬁ)
" L i I, ) e
d,2l)=1 (5,2dk)=1

Here the inner sum is, apart from the coprimality condition, one estimated in
[Si] but for completeness we give the argument. Since u?(n) = L 2,m(d) we
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have
2
wi(n) (x u(d) ( X )
P{=|= Pl —=—
ngx n (n) 423295 25 " \d%
(n,K)=1 (ds,K)=1
wn(d) ¥ 1 (x/dz)
= <P . (2.12)
d<x1/? d’ d<x/d? 8 J
d,K)=1 5,K)=1
Finally, for the inner sum here we use
1 (x
L 2(2)= T 1p(E) T ua)
n<x n<x din
(n,K)=1 diK
-ypud ¢ 1 (—gﬁ). (2.13)
dlK d<x/d
Since
2(d 1 j
L -1 5) < 55
dlj plj
inserting the Walfisz estimate (2.7) in (2.13) we have
1 (x 23
—P log x
Ex n ( ) ¢(K)( e x)
(n,K)=1
Using this estimate in (2.12) yields
l‘( ) 2/3
X T P(x) = ¢(K)(l°gx)
(n,K)=1
Inserting this in (2.11) we have
2
w(n x
Y ﬁn))”(ﬁ) < (k) (log x)*°, (2.14)
n<x

(n,2k)=1
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from the multiplicativity of ¢ and the convergence of the series

o pd)
i1 97(d)

S

Finally, inserting (2.14) in (2.9) the estimate (2.6), that is Lemma 2.2, follows
from the convergence of the series

= 2(d)d
§1= Fd) o)

5>

Remark. 1t is a simple matter to extend the Walfisz estimate to the bound

L L p(%) < tog

n
n<x

for the divisor functions 7;, j = 2,3,... . Using this and iterations of the
above argument one can treat sums X, _  H, ,(n) where [ > 0 and

H, ((n) = H(B;liJr—l)

pln p—k

3. Two mean value statements

As indicated in the introduction we have chosen to state our results in
terms of the error terms E, E,, given in (1.9), which seem to us the more
natural, whereas the proofs lend themselves to the error terms E’, Ej, given
in (1.5) and (1.8). In this section we prove a result, Proposition 3, that allows
us to reduce the first problem to the second.

We require the following lemma which strengthens (and corrects a minor
obscurity in) Lemma 1.1.7 of [L,]; the ideas in the proof are the same.

Lemma 3.1, Let A > 0. There exists ¢’ = ¢'(A) such that for all n > 3 we
have

r T% < (logn) ™, (3.1)
52k,

where Ay = (L(n))°.
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Proof. We split the interval [A, n] into < log n subintervals of the type
[N, N] where N’ > N/2 and seek to bound the contribution to the sum
from each subinterval. This contribution is majorized by

12 1/2
NY T(&)«N—I(ZTZ(a)) (21) . (32)

N'<8<N 8<N 8<N
dln dln

by Cauchy’s inequality. The first sum on the right is bounded by N(log N)3.
Elementary considerations show that the second sum on the right can only be
increased if the prime divisors of n, say » in number, are replaced by the first
v primes and in that case (since, for large n, we have v < 2log »n) that sum is
bounded by the well known function (N, 2log n). Since, for suitable ¢’ we
have

logn < Ac(';logloglogn/loglogn < Nc’logloglogn/loglogn — Nl/u

the lemma follows from well known bounds for ¢; cf. [HT). Indeed, it suffices
to use the rather crude bound

N~ ' (N,N/*) < exp(—(1 — ¢)ulogu),

valid for all N in (A, n) for this choice of u.

Remarks. We shall actually use Lemma 3.1 in a slightly different form
namely: If » is an integer satisfying 0 < n < x then (3.1) still holds if L(n) is
replaced by L(x) and log n is replaced by log x. To see this version we note
that the new sum on the left in (3.1) can only be increased on replacing n by
a multiple of n and so, by multiplying if necessary by a power of 2, we are
able to assume that x/2 < n < x so that logn = log x + O(1). The proof
now follows as before.

The function L in (1.6) which provided the limitation to the range of Q in
(1.5) in the method of [FGHM] also provides the limitation to the above
lemma and thereby to the range in the statement of the theorem. In fact, by
exerting a little more care in the above lemma and using Holder’s inequality
in place of Cauchy’s, we can take c¢’(4) in the lemma (and for 4 > A (), c(A4)
in the theorem) to be (1 + £) A4 in comparison to the (1 — £)4 in (1.6). It’s a
little difficult to believe that this is a coincidence.
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ProrosiTioN 3. (a) Let A > 0 be fixed. There exists a constant ¢ = c(A)
such that, uniformly for all a, Q with 0 < la| <x, Q < x(L(x))~° we have

Ala g=<Q m=<x slA
q=0(A (m,q)=A

r L ¢>(q1/A) L Ag(m) —x X p(8)| <x(logx)™, (33)
)

and the same result holds with A in place of A,.
(b) If the range of a is restricted to 0 < |a| < (log x)* then the conclusions
hold in the wider range Q < x(log x)~24~1,

Proof. The fact that (3.3) holds (and indeed, in much stronger form than
stated) when A, is replaced by A is an easy consequence of the prime
number theorem with error term and the fact that the support of A is very
small on the non-reduced residue classes.

We consider A . Let Ay = (L(x))° with ¢ taken to exceed c'(4 + 3) from
the previous lemma and write the sum in (3.3) as £, . 4 Sa + L4 5 4,5, Since
|Ao(m)| < 7(m)log Q we have

Y Ag(m)|< X 7(m)logQ < x(log x)’A"'7(A),
mx<x m<x
(m,q)=A m=0(A)

and thus, by Lemma 3.1 and the remark following its proof,

Y S, <x(logx)’ ¥ T—(AA) < x(log x) 4. (3.4)
A>A, AA](;
>89

We now consider % . By the definition of A,
A<Ag Q

Y Ag(m)= ¥ u(d)log(Q/d) ¥ 1.

m=<x d<Q m<x
(m,q)=A (m,q)=A
m=0(d)

We write m = rdA/(d, A) and the above sum becomes

)y p(d)log(Qrd) Y 1
d<Q r<x(d, A)/dA
d/(d,N),q/0)=1 (r,q/M)=1
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which, by the well-known estimate
m
Y 1= %y + O(7(m)),
i<y,(,m)=1

may be written as
xq '¢(q/A)A, + O(B,), (3.5)

say, where B, = Q7(q/A) and

a4,= £ ED g ayx0/a). (36)
(d/d, Z)S,g/A)=l

We sum the contribution from the error terms B,, first over g and then over
A. Thus

B, ()
EQ W =2 L gy =QUe0)”

=0(4)

and this makes a contribution to ¥, _,, which is

< A Qlog Q < x(log x) ™7, (3.7

since ¢ has been chosen to exceed the constant ¢’ from Lemma 3.1.

Returning to A, defined in (3.6), we write that sum in the form Y;,0;,
where 6 collects the contribution to A, of those d for which (d, A) = 4.
Letting r = d /& one finds, after a little computation,

—u3) ¥ D jo0/5r).
r<Q/é
(r,g)=1

The estimate

h ulr )log(Y/r) = d>( )

(r,q)=1

+ 0((log y) )

which holds for y > ¢¢, follows by a contour integration argument similar to
that mentioned in §2, but using also the standard zero-free region for {(s).
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Inserting this we have (recall § < A < A(),
q 1-d
0; = u(8)—F—— + O((log x .
5 = 1( )¢(Q) (( g ) )

Thus, for A = 1 we have

A :

x Y 2=xY —— +0(x(log x)' ™), (3.8)
q=Q a q<Q (9) ( )

g=0(4)

and if 1 < A < A, we have

A ’
x T Zlsx(oan)™ L g <xb(logn) ™ (39)
4<0 a<0 7
g=0(A) q=0(A)

Choosing A" = A + 2, summing these over A < A, and combining the result
with (3.7) we have LT, _, S, < x(log x)~*. Combining this with (3.4) we
complete the proof of (a).

In the case of (b) we choose A, = (log x)“. The sum estimated by (3.4) is
now empty and, with this smaller value of A, the estimate (3.7) holds even
for the larger Q. Combining these with (3.8) and (3.9) we get the result.

4. A truncated von Mangoldt function

We recall from (1.7) the formula

Ap(n) = X u(d)log(Q/d).
&

For Q > n this is just the von Mangoldt function A(zn). We shall use it rather
for Q < n as an approximation to A(n) in estimating sums over primes. The
remaining sum

Ag(n) = ¥ u(d)log(Q/d) (4.1)
d\n
a>Q

is regarded as an error term so that, obviously, the larger the level Q that we
can choose, the sharper our results. The level Q will be determined by the
quality of the Elliott-Halberstam type estimates (1.5) and (1.8) (or (1.9)) that
we are able to use.
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The starting point is the evident formula, valid for n > 2,

A(n) = Ay(n) + Ay(n). (4.2)
When applied to R(n) = £, _ ,A(j)A(n — j) this gives
R(n) = X (Ao()A(n = j) + A(j)Ag(n = j))
= L Ao(NAg(n =) + L Ap(DAg(n=i). (43)

Note that the first sum on the right is just 2X;_,A,(j))A(n — j). In Lemma
6.1 below we shall give asymptotic formulae for each of the above sums other
than the last one. We are unable to do this for the last sum for individual »n
but are able, also in the final section, to bound an average of this sum for n
in a short interval by relating it to the similar problem for primes in short
intervals.

We take this opportunity to stress, in connection with the sums occurring
in (4.3) as well as several occurring in the next two sections, that we have
defined both A(n) and A(n) to be zero for n = 1,0, or a negative integer.

5. Small gaps between primes

In [Go,] the function A, was used to study the problem of primes in short
intervals. There one is concerned with the counting function

Z(N;k) = Y. A(n)A(n + k)

ns<N

and, in analogy to (4.3), one has

Z(N;k) = ¥ (Ap(m)A(n + k) + A(n)Ag(n + k))

n<N
- ZNAQ(n)AQ(n +k) + ZN]\Q(n)]\Q(n +k) (5.1)

The sums on the right of (5.1) apart from the last one are evaluated by
means of the following lemma.

Lemma 5.1. Let € >0, A > 0. For N° < Q < N, we have

Y. Ag(n)A(n) = NlogQ + O(Q) + O(N(log N) ™),  (5.2)

ns<N

Y., A%(n) =Nlog Q + O(N), (5.3)

n<N
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and for some c¢(A) and for all Q,k with N° < Q < N(L(N))™¢, 0 < |k| <
Q4

Y Ag(n)A(n + k) = S(k)N + O(logN Y }E(N;d,k)l)
n<N d<Q

+ O(N(log N) ™), (5.4)

Y Ag(n)Ay(n + k) = S(k)N + 0(logN P IEQ(N;d,k)I)
n<N d<Q

+ O(N(log N) ™). (5.5)

The equations (5.4) and (5.5) also hold with E', Ey, in place of E, E, and, if k

is restricted to satisfy 0 < |k| < (log N)1, they hold in the wider range
N® < Q < N(log N)~ 2471,

Proof. Formula (5.2) is contained in Lemma 1 of [Go,]. Formula (5.3) is
due to S. Graham [Gr]. The statement of (5.4) and (5.5) with E’, E}, in place
of E, E, sharpens Lemmata 1 and 3 of [Go,] and is achieved by replacing
(19) of that paper by the estimate

= %; log(Q/d) = &(k) + O((log @) "),
(d,lf)=1

which is valid for Q > k°, again by a contour integration argument. The fact
that (5.4) and (5.5) follow from the corresponding statements for E’, Ej, is an
immediate consequence of Proposition 3 and the triangle inequality. This
completes the proof of Lemma 5.1.

We substitute equations (5.2)—(5.5) into (5.1) and obtain

Z(N;0) =NlogQ + Y, A%(n) + O(N), (5.6)

n<N

and, in the case k # 0,

Z(N;k) = S(k)N+ ¥ Ap(n)Ag(n + k) + O(N(log N) ™)

n<N

+ O(logN Y (|E(N;d,k)|
d<Q

+|E(N;d, —k)| +|EQ(N;d,k)|)). (5.7)
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Let t(k) = max(K — |k|,0), T(a) = T t(k)e(—ka), and S(a) =
L < mAo(m)e(ma), where M = N + K. We consider

[IS@l 7@ da=Titk) T Ag(migtm)

n,m<M
n—m=k

= Xk:t(k) Y Ag(n)Ay(n +k)

n<N
+ O(K3r2(n)(log Q)?) (5.8)

(using |/~\Q(n)| < 7(n)log Q). By (5.6), (5.7), and the prime number theorem,
this is equal to

KN log(N/Q) + O(KN)

+ ¥ t(k){Z(N;k) — &(k)N} + O(K*N(log N) ™)
k+#0

+ O|K?log Nmax Y, (lE(N;d,a)l+|EQ(N;d,a)|)). (5.9)
4 d<Q

At this point we are able to prove Corollary 2'. Since, as is well-known,
T(a) > 0 for all o the quantity in (5.9) is non-negative. From the bound
©Q2k) = © = 1 and the assumptions of Corollary 2, we deduce that for
suitable ¢, if ¢ log(N/Q) < K < log N, then we have ¥, , ,t(k)Z(N; k) >
K?2N. The contribution to this sum from pairs where one of the integers is a
power of a prime rather than a prime itself may be disregarded since it is
trivially < K2N'/? log N. Similarly the contribution from those pairs less
than say N(log N)~2 may be neglected. This gives Corollary 2'.

We now return to (5.9). By Proposition 2 and by the following formula, a
slight modification of [Go,, (25)],

J(N,K) = KN log N + O(KN) + Y t(k)Z(N, k)
k+#0
— K2N + O(K*N(log N) ™),

we have for some c(A), and for all N® < Q < N(L(N))"¢, K < Q'*4,
1) ~ 2
[ 15(e)['T(a) da
=J(N,K) — KN log(Q/K) + O(KN) + O(K*N(log N) ™)

+0(1<2 log Nmax Y (|E(N;d,a)l +|EQ(N;d,a)|)). (5.10)
2 d<Q
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6. Goldbach numbers in short intervals

The reduction of our problem on Goldbach numbers to the above problem
on primes in short intervals comes from the trivial inequality

’fol(f(oz))ze( ~Na)T(a) da| < [Olls"(a) ’T(a)da,  (6.1)

which follows since T(a) > 0 for all a. The integral on the left hand side is
equal to

Zt(k) Y Ag(i)A(N +k —j),

J<N+k

which by (4.3) is equal to

Zt(k){R(N +k) =2 Y Ag(DA(N+k—))
J<N+k

+ Y Ap(AL(N +k —j)}.

J<N+k

The two inner sums are evaluated by the following lemma which corresponds
to Lemma 5.1 but for the Goldbach sum and is proven in the same fashion. It
is perhaps worthwhile to remark that it is really only for (6.3) that we require
Proposition 3(a); the much simpler (b) version suffices for Lemma 5.1 in the
range where the latter is really required.

LemMma 6.1. Let € > 0, A > 0. We have for some c(A), and for all N, Q, n
satisfying N° < Q < N(L(N))™¢, N/2 <n < 2N,

Y Ap(DA(n —j) = S(n)n + O(IOgN Y |E(n;d,n)|)
j<n d<Q
O(N(log N) ™), (6.2)
and

Y Ap()Ay(n —j) =&(n)n + 0(10gN Z |Ey(n;d, n)|)

j<n

O(N(log N) ™). (6.3)
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On substituting (6.2) and (6.3) we find that the left hand side of (6.1) is
equal to

Y t(k)(R(N + k) — &(N + k)(N + k)) + O(K>N(log N) ™)
k

+ O| K? log N max max ), (IE(N;d,a)|+|EQ(N+k;d,a)|)).
k<K @ g4<0

Here we have used the fact that
|E(N+ H;d,a) — E(N;d,a)\ < (|H|/d + 1)logINH| + |H|/¢(d).

It seems not so easy to prove a similar estimate for E, and this is the reason
for the lack of symmetry between the two in the inequality (1.12). The
Theorem now follows from (5.10) and (6.1).

To prove Corollary 1, we follow the corresponding argument for Corollary
1 of [Go,]. By Propositions 1 and 2 and partial summation we obtain, for
(log N)*? < K < log N,

Y n8(n) = KN + O(N(log N)*”),
N—-K<n<N

and

f‘. (K= lk)(N+k)S(N +k) =K>N + O(KN(log N)2/3),
k=-K

From (1.3), (1.12), and the choice of Q we have

f (K — |kl)R(N + k) = K®N + O(KN(log N)*?).  (6.4)
k=-K

Let K = (log N)***¢ and K, = K(1 — (log N)~*/?). We apply (6.4) with K,
and with K and then subtract the first from the second. Used with the
well-known sieve upper bound for R(n), cf [HR, p 117], this gives

Y. R(n) = KN(1+ O(log N) ™). (6.5)
N—-K<n<N

(Actually, one can derive (6.5) without appealing to the sieve by using the
positivity of R(n) as in [Go,].) The transition from R(n) to r(n) is achieved
by noting first that the contribution to (6.5) from higher powers of primes is
trivially bounded by KN'/2 log N and second that, for N — K <n < N, we
have log n = log N + O(K/N).
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Corollary 2 follows from the lower bound &(2n) > © > 1 which implies

§ (K — |kl)(N + k)&(N + k) > KN,
k=-K

which will dominate the right hand side of (1.12) under the conditions of
Corollary 2. The contribution from the higher powers of primes can be
removed as before.
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