TANGENTIAL HARMONIC APPROXIMATION ON RELATIVELY CLOSED SETS

STEPHEN J. GARDINER

1. Introduction

Let Ω be an open set in Euclidean space \mathbb{R}^n $(n \ge 2)$ and E be a relatively closed subset of Ω . A subset A of Ω will be called Ω -bounded if its closure \overline{A} is a compact subset of Ω . We use \hat{E} to denote the union of E with all Ω -bounded (connected) components of $\Omega \setminus E$. As usual, A° and ∂A will denote respectively the interior and boundary of a set A. Also, C(A) will denote the collection of all real-valued continuous functions on A, and $\mathcal{H}(A)$ (resp. $\mathcal{I}^+(A)$) will denote the collection of functions which are harmonic (resp. positive and superharmonic) on some open set containing A. We will say that the pair (Ω, E) satisfies the (K, L)-condition if, for each compact subset K of Ω , there is a compact subset L of Ω which contains every Ω -bounded component of $\Omega \setminus (E \cup K)$ whose closure intersects K. The Alexandroff compactification of Ω will be denoted by Ω^* . We note that $\Omega^* \setminus E$ is connected if and only if $\hat{E} = E$ and that, if this is the case, then $\Omega^* \setminus E$ is locally connected if and only if (Ω, E) satisfies the (K, L)condition. The following result was recently established by Armitage and Goldstein [3, Theorem 1.1].

THEOREM A. Let Ω be a connected open set in \mathbb{R}^n which possesses a Green function $G(\cdot, \cdot)$, let E be a relatively closed subset of Ω and let $P \in \Omega$. If $\Omega^* \setminus E$ is connected and locally connected, then for each h in $\mathcal{H}(E)$ and for each positive number ε there exists H in $\mathcal{H}(\Omega)$ such that

 $|H(X) - h(X)| < \varepsilon \min\{1, G(P, X)\} \quad (X \in E).$

Using Theorem A and material from [9] we will prove the following. The reader is referred to Helms [12] or Doob [7] for an account of thin sets and the fine topology.

THEOREM 1. Let Ω be a connected open set in \mathbb{R}^n and E a relatively closed proper subset of Ω . The following are equivalent.

(a) For each h in $\mathcal{H}(E)$ and each positive number ε , there exists H in $\mathcal{H}(\Omega)$ such that $|H - h| < \varepsilon$ on E.

© 1995 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received October 30, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 31B05.

(b) For each h in $\mathscr{H}(E)$ and each s in $\mathscr{I}^+(\hat{E})$, there exists H in $\mathscr{H}(\Omega)$ such that 0 < H - h < s on E.

(c) $\Omega \setminus \hat{E}$ and $\Omega \setminus E$ are thin at the same points of E, and (Ω, E) satisfies the (K, L)-condition.

The equivalence of (a) and (c) above is due to the author [9, Theorem 4]; condition (b) is new. Clearly Theorem 1 includes Theorem A, and it permits faster approximation if we impose restrictions on the set E. A simple example is given below to illustrate this comment and also the sharpness of the speed of approximation in (b).

Example 1. Let
$$\Omega = \mathbb{R}^n$$
, let $a_m > 0$ $(m = 1, ..., n - 1)$ and define
 $\omega = (-a_1, a_1) \times \cdots \times (-a_{n-1}, a_{n-1}) \times \mathbb{R}$ and $\alpha = (\pi/2) \left(\sum_{m=1}^{n-1} a_m^{-2}\right)^{1/2}$

Then:

(i) Given any pair (\mathbb{R}^n, E) such that condition (c) of Theorem 1 holds and $E \subset \omega$, any h in $\mathscr{H}(E)$ and any positive number ε , there exists H in $\mathscr{H}(\mathbb{R}^n)$ such that

$$0 \le H(X) - h(X) < \varepsilon \exp(-\alpha |x_n|) \quad (X = (x_1, \dots, x_n) \in E);$$

(ii) The above statement becomes false if α is replaced by any larger number.

The exponential decay of the error in (i) above compares favourably with Theorem A, where the maximum error is $\varepsilon \log(1/(1 + |X|))$ when n = 2, or $\varepsilon(1 + |X|)^{2-n}$ when $n \ge 3$, and also with Theorem 1.1 of [2] where the maximum error is of the form $\varepsilon(1 + |X|)^{-a}$ for any predetermined choice of the number a.

Further applications of Theorem 1 are given in Theorems 2, 3 and 5 below.

THEOREM 2. Let Ω be a connected open set in \mathbb{R}^n and E a relatively closed proper subset of Ω . The following are equivalent.

(a) For each h in $C(E) \cap \mathscr{H}(E^{\circ})$ and each positive number ε , there exists H in $\mathscr{H}(\Omega)$ such that $|H - h| < \varepsilon$ on E.

(b) For each h in $C(E) \cap \mathscr{H}(E^\circ)$ and each s in $\mathscr{I}^+(\hat{E})$, there exists H in $\mathscr{H}(\Omega)$ such that 0 < H - h < s on E.

(c) $\Omega \setminus \hat{E}$ and $\Omega \setminus E^{\circ}$ are thin at the same points of E, and (Ω, E) satisfies the (K, L)-condition.

Again the equivalence of (a) and (c) above is known (see [9, Theorem 5]), the new feature being condition (b). Theorem 2 improves Theorem 1.2 in [3] in the same way that Theorem 1 improves Theorem A. We note that

Shaginyan [15] has announced a result related to Theorem 2, but no proof has yet appeared.

In the next three results we investigate which pairs (Ω, E) permit approximation with an error function which decays arbitrarily quickly.

THEOREM 3. Let Ω be a connected open set in \mathbb{R}^n and E a relatively closed proper subset of Ω . The following are equivalent.

(a) For each h in $\mathscr{H}(E)$ and each continuous function $\varepsilon: E \to (0, 1]$, there exists H in $\mathscr{H}(\Omega)$ such that $0 < H - h < \varepsilon$ on E.

- (b) The pair (Ω, E) satisfies:
- (i) $\Omega \setminus \hat{E}$ and $\Omega \setminus E$ are thin at the same points of E, and
- (ii) for each compact subset K of Ω there is a compact subset L of Ω which contains every Ω -bounded component of $\Omega \setminus (E \cup K)$ whose closure intersects K and also every fine component of the fine interior of E that intersects K.

The following result solves a problem posed by Boivin and Gauthier [5].

THEOREM 4. Let Ω be a connected open set in \mathbb{R}^n and E a relatively closed proper subset of Ω . The following are equivalent.

- (a) For each h in $C(E) \cap \mathscr{H}(E^{\circ})$ and each continuous function $\varepsilon: E \to (0, 1]$, there exists H in $\mathscr{H}(E)$ such that $|H h| < \varepsilon$ on E.
- (b) For each h in $C(E) \cap \mathscr{H}(E^{\circ})$ and each continuous function $\varepsilon: E \to (0,1]$, there exists H in $\mathscr{H}(E)$ such that $0 < H h < \varepsilon$ on E.
 - (c) The pair (Ω, E) satisfies:
 - (i) $\Omega \setminus E$ and $\Omega \setminus E^{\circ}$ are thin at the same points of E, and
 - (ii) for each compact subset K of Ω there is a compact subset L of Ω which contains every component of E° that intersects K.

Finally, the above results can be combined to obtain the following slight refinement (the new feature is the introduction of condition (b)) of a recent result of Goldstein and the author [10]. The proof given in that paper is more direct, and independent of [3].

THEOREM 5. Let Ω be a connected open set in \mathbb{R}^n and E a relatively closed proper subset of Ω . The following are equivalent.

(a) For each h in $C(E) \cap \mathscr{H}(E^{\circ})$ and each continuous function $\varepsilon: E \to (0, 1]$, there exists H in $\mathscr{H}(\Omega)$ such that $|H - h| < \varepsilon$ on E.

(b) For each h in $C(E) \cap \mathscr{H}(E^{\circ})$ and each continuous function $\varepsilon: E \to (0, 1]$, there exists H in $\mathscr{H}(\Omega)$ such that $0 < H - h < \varepsilon$ on E.

- (c) The pair (Ω, E) satisfies:
- (i) $\Omega \setminus \hat{E}$ and $\Omega \setminus E^{\circ}$ are thin at the same points of E, and
- (ii) for each compact subset K of Ω there is a compact subset L of Ω which contains every Ω -bounded component of $\Omega \setminus (E \cup K)$ whose closure intersects K and also every component of E° that intersects K.

The proofs of Theorem 1-5 are given in \$2-6, and the details of Example 1 can be found in \$7. In \$8, we discuss the possibility of adding a third equivalent condition to Theorem 3 corresponding to condition (a) of Theorem 5.

2. Proof of Theorem 1

2.1. We will require the following lemmas.

LEMMA 1. Suppose that condition (c) of Theorem 1 holds. Then, for each h in $\mathscr{H}(E)$ and for each s in $\mathscr{I}^+(\hat{E})$ there exists H in $\mathscr{H}(\hat{E})$ such that |H - h| < s.

LEMMA 2. Let Ω be an open set in \mathbb{R}^n , let E be a relatively closed subset of Ω , and suppose that $\Omega^* \setminus E$ is connected and locally connected. Then there is a sequence (K_m) of compact subsets of Ω such that $\bigcup_m K_m = \Omega$ and such that, for each m, we have $K_m \subset K_{m+1}^\circ$ and the set $\Omega^* \setminus (E \cup K_m)$ is connected.

LEMMA 3. Let Ω be an open set in \mathbb{R}^n , let E be a relatively closed subset of Ω , and suppose that $\Omega^* \setminus E$ is connected and locally connected. Then, for each h in $\mathscr{H}(E)$ and each s in $\mathscr{I}^+(\Omega)$, there exists H in $\mathscr{H}(\Omega)$ such that |H - h| < s on E.

To prove Lemma 1 we follow the argument of [9, §§7.1, 7.2], replacing each occurrence of ε by s(X).

Lemma 2 is elementary and so its proof is left to the reader.

In proving Lemma 3 we may, be considering each component of Ω separately, assume that Ω is connected. If Ω does not have a Green function, then n = 2 and s is constant by Myrberg's theorem [12, Theorem 8.33]. The conclusion of the lemma then follows from a result of Gauthier, Goldstein and Ow [11, Theorem 3] (which is a special case of the known equivalence of (a) and (c) in Theorem 1). If Ω possesses a Green function $G(\cdot, \cdot)$, then let B be a closed ball in Ω with centre P and choose a number a in the interval $[1, \infty)$ such that

$$a > \sup\{G(P, X) \colon X \in \Omega \setminus B\}.$$

Given s in $\mathscr{I}^+(\Omega)$ we define

$$b = \inf\{s(X)/\min\{a, G(P, X)\} \colon X \in B\}.$$

It follows that

$$s(X) \ge b \min\{a, G(P, X)\} \ge b \min\{1, G(P, X)\} \quad (X \in \Omega).$$

Hence Lemma 3 follows in this case from Theorem A.

2.2. Theorem 1 will now be proved. Clearly (b) implies (a), and we know from [9, Theorem 4] that (a) implies (c), so it remains to prove that (c) implies (b).

Suppose that (c) holds, let h be a harmonic function on an open set ω_1 which contains E and let s be a positive superharmonic function on an open set ω_2 which contains \hat{E} . If $\hat{E} = \Omega$, then $E = \Omega$ by the thinness assumption in (c), which yields a contradiction. So $\hat{E} \neq \Omega$. Replacing s by its reduced function (réduite) relative to a closed ball contained in $W \setminus \hat{E}$, for each component W of ω_2 , we can assume s to be harmonic on ω_2 . Also, we can assume that $\inf_E s = 0$, for otherwise the desired inequality in (b) is a consequence of the known equivalence of (a) and (c). It will be enough to show that there exists H in $\mathscr{H}(\Omega)$ such that |H - h| < s on E. For, if this can be done, then (since h + s/2 is in $\mathscr{H}(E)$) we can find H in $\mathscr{H}(\Omega)$ such that

$$|H - (h + s/2)| < s/2$$
 on E,

and deduce that 0 < H - h < s on E. In view of Lemma 1 we can assume that $\hat{E} = E$. Thus $\Omega^* \setminus E$ is connected and (by (c)) locally connected.

Let ω be an open set such that

$$E \subset \omega \subset \overline{\omega} \subset \omega_1 \cap \omega_2,$$

let (K_m) be a sequence of compact subsets of Ω as in Lemma 2, and let

$$a = \inf\{s(X) \colon X \in \overline{\omega} \cap K_1\}.$$

For each k in \mathbb{N} we define the sets

$$D_k = \{X \in \omega_2 : s(X) \le 2^{-k}a\} \text{ and } \Omega_k = \Omega \setminus (\partial \omega \cap D_k),$$

and the integer

$$m(k) = \sup\{m \in \mathbb{N} \colon K_m \cap \overline{\omega} \cap D_k = \emptyset\}.$$

We observe that, for a fixed choice of m, the set $K_m \cap \overline{\omega} \cap D_k$ is void for all sufficiently large values of k. Hence $m(k) \to \infty$ as $k \to \infty$.

Since $\Omega^* \setminus (E \cup K_{m(k)})$ is connected (see Lemma 2), so too is the set $\Omega^*_{k+1} \setminus (E \cup K_{m(k)})$. The latter set is also locally connected. For, if this were

not the case, then there would be a compact subset L of Ω_{k+1} (and hence of Ω) for which the Ω_{k+1} -bounded components $\{V_j\}$ of $\Omega_{k+1} \setminus (E \cup K_{m(k)} \cup L)$ do not have Ω_{k+1} -bounded union. Thus there is a sequence of points (X_l) such that each X_l belongs to some V_j , and such that (X_l) converges to the Alexandroff point for Ω_{k+1} . However, in view of the fact that $\Omega^* \setminus E$ is locally connected, we know that $\bigcup_j V_j$ is Ω -bounded, and so there is a subsequence of (X_l) which converges to some point of E. Since $E \cap \partial \Omega_{k+1} \subseteq E \cap \partial \omega = \emptyset$, we obtain a contradiction. Thus $\Omega^*_{k+1} \setminus (E \cup K_{m(k)})$ is locally connected, as claimed.

Next we define a function on Ω_k by

$$s_k(X) = \begin{cases} s(X) & \text{if } X \in \omega \cap D_k, \\ 2^{-k}a & \text{elsewhere in } \Omega_k. \end{cases}$$

Clearly s_k is positive and superharmonic on Ω_k , and satisfies $s_k = \min\{s, 2^{-k}a\}$ on ω . Further, $s_{k+1} \leq s_k$ on Ω_k .

We now define a sequence (h_k) of harmonic functions inductively as follows. By Lemma 3 there exists h_1 in $\mathcal{H}(\Omega_1)$ such that $|h_1 - h| < 2^{-1}s_1$ on *E*. Given h_k in $\mathcal{H}(\Omega_k)$, we use Lemma 3 to obtain h_{k+1} in $\mathcal{H}(\Omega_{k+1})$ such that

$$|h_{k+1} - h_k| < 2^{-k-1} s_{k+1}$$
 on $E \cup K_{m(k)}$.

On $K_{m(k)}$ we have

$$|h_{l} - h_{k}| \leq \sum_{j=k}^{l-1} |h_{j+1} - h_{j}| < \sum_{j=k}^{l-1} 2^{-j-1} s_{j+1} < 2^{-k} s_{k+1} \leq 2^{-2k-1} a$$

when l > k. Hence the sequence (h_k) converges locally uniformly on Ω to a harmonic function H. On E we have

$$|h_k - h| \le \sum_{j=2}^k |h_j - h_{j-1}| + |h_1 - h| < \sum_{j=1}^k 2^{-j} s_j < s,$$

and hence $|H - h| \le s$. This completes the proof of Theorem 1.

3. Proof of Theorem 2

The following lemma may be deduced from [3, Theorem 1.2] in the same way that Lemma 3 was deduced from Theorem A.

LEMMA 4. Let ω be an open set in \mathbb{R}^n and let E be a relatively closed subset of ω such that $\omega \setminus E$ and $\omega \setminus E^\circ$ are thin at the same points of E. Then, for each h in $C(E) \cap \mathscr{H}(E^\circ)$ and each s in $\mathscr{I}^+(\omega)$, there exists H in $\mathscr{H}(E)$ such that |H - h| < s on E.

Theorem 2 will now be deduced from Theorem 1 and Lemma 4. Clearly (b) implies (a), and we know from [9, Theorem 5] that (a) implies (c). Suppose now that (c) holds, let h be in $C(E) \cap \mathscr{H}(E^\circ)$ and let s be a positive superharmonic function on some open set ω which contains \hat{E} . We note that E is relatively closed in ω . Also, since $E^\circ \subseteq E \subseteq \hat{E}$, we know that $\Omega \setminus \hat{E}$, $\Omega \setminus E$ and $\Omega \setminus E^\circ$ (and, of course, $\omega \setminus E$ and $\omega \setminus E^\circ$) are all thin at the same points of E. Thus we can apply Lemma 4 to obtain h_1 in $\mathscr{H}(E)$ such that $|h_1 - h| < s/2$ on E. Next we apply Theorem 1 to obtain h_2 in $\mathscr{H}(\Omega)$ such that $|h_2 - h_1| < s/2$ on E, and hence $|h_2 - h| < s$ on E. In view of what was said in the second paragraph of §2.2, this is enough to show that there exists H in $\mathscr{H}(\Omega)$ such that 0 < H - h < s. Thus (b) is established.

4. Proof of Theorem 3

4.1. We will assume throughout Sections 4–6 that Ω is a connected open set in \mathbb{R}^n and that *E* is a relatively closed proper subset of Ω .

LEMMA 5. If the pair (Ω, E) satisfies condition (b) of Theorem 3, then so does the pair (Ω, \hat{E}) .

To prove Lemma 5, suppose that (Ω, E) satisfies condition (b) of Theorem 3 and let $F = \hat{E}$. Then $\hat{F} = F$ and so (Ω, F) trivially satisfies condition (b)(i). We now define a function f on the fine interior of F by assigning it the value 0 at points which also belong to E, and the value k on the kth Ω -bounded component of $\Omega \setminus E$. To see that f is finely continuous, we need only check that $f^{-1}(\{0\})$ is finely open. In fact, if $Y \in f^{-1}(\{0\})$, then $Y \in E$. Since $\Omega \setminus F$ is thin at Y, so also is $\Omega \setminus E$ by hypothesis, and hence $f^{-1}(\{0\})$ is a fine neighbourhood of Y, as required. It follows that each fine component of the fine interior of \hat{E} is either a fine component of the fine interior of E or an Ω -bounded component of $\Omega \setminus E$. Since (Ω, E) satisfies condition (b)(ii) it is now clear that (Ω, F) satisfies this condition also.

4.2. One implication in Theorem 3 will be deduced from Theorem 1 using the following lemma.

LEMMA 6. Suppose that the pair (Ω, E) has the following property.

(*) For each compact subset K of Ω there is a compact subset L of Ω which contains every fine component of the fine interior of E that intersects K.

Then, for each continuous function $\varepsilon: E \to (0, 1]$, there exists s in $\mathscr{I}^+(E)$ such that $s < \varepsilon$ on E.

In proving Lemma 6 we can assume, by deleting a closed ball contained in $\Omega \setminus E$, if necessary, that Ω possesses a Green function. Using condition (*) we can construct a sequence (K_m) of compact subsets of Ω such that $K_1^{\circ} \neq \emptyset$ and $\bigcup_m K_m = \overline{\Omega}$, and such that, for each m, (I) $K_m \subset K_{m+1}^{\circ}$, and

(II) every fine component V of the fine interior of E which satisfies $\overline{V} \cap K_m \neq \emptyset$ also satisfies $\overline{V} \subset K_{m+1}^{\circ}$.

Next we define $A(l, m) = K_m \setminus K_l^{\circ}$ whenever l < m, and also

$$F(m;k) = \{ X \in A(m,m+3) : \text{dist}(X,E) \ge 1/k \} \quad (m,k \in \mathbb{N})$$

and

$$\delta_m = \inf \{ \varepsilon(X) \colon X \in E \cap A(m, m+1) \} \quad (m \in \mathbb{N}).$$

Now let $P \in K_1^{\circ}$, let g denote the Green function for Ω with pole at P, and let R_g^C denote the reduced function of g relative to a set C in Ω . We observe (see [7, 1.VI.3(e)]) that

$$R_g^{F(m;k)}(X) \uparrow R_g^{A(m,m+3)\setminus E}(X) \quad (k \to \infty; X \in \Omega).$$

If u is a positive superharmonic function on Ω which satisfies $u(X) \ge g(X)$ when $X \in A(m, m + 3) \setminus E$, then the same inequality holds for points X of the set

$$\{X \in E: A(m, m+3) \setminus E \text{ is not thin at } X\}.$$
 (1)

In view of (II) above and the fine minimum principle (see [7, 1.XI.19] or [8, Chapter III]), it follows that $u \ge g$ on A(m + 1, m + 2) and hence

$$R_{g}^{F(m;k)}(X) \uparrow g(X) \quad (k \to \infty; X \in E \cap A(m+1, m+2)).$$

Dini's theorem implies that this convergence is uniform, so there exists k_m in \mathbb{N} such that

$$g(X) \ge R_g^{F(m;k_m)}(X) > g(X) - \delta_{m+1} \quad (X \in E \cap A(m+1,m+2)).$$
(2)

We now define the set

$$F_1 = \bigcup_{m=1}^{\infty} F(m; k_m).$$

Clearly F_1 is a relatively closed subset of Ω such that $K_1^{\circ} \cap F_1 = \emptyset$ and $E \subset \Omega \setminus F_1$. We also define the positive number

$$\delta_0 = \inf \{ \varepsilon(X) \colon X \in E \cap K_2 \}$$

and the function

$$s_1(X) = 2^{-1} \min \{ g(X) - R_g^{F_1}(X), 2^{-1} \delta_0 \} \quad (X \in \Omega \setminus F_1).$$
(3)

We observe that s_1 is non-negative and superharmonic on $\Omega \setminus F_1$, and positive on the component of K_1° which contains *P*. Also, since

$$R_{\varrho}^{F_1}(X) \ge R_{\varrho}^{F(m; k_m)}(X) \quad (X \in \Omega; m \in \mathbb{N}),$$

it follows from (2) and (3) that $s_1(X) < 2^{-1}\varepsilon(X)$ on E.

The above argument can be repeated, with $(K_m)_{m \ge l}$ in place of $(K_m)_{m \ge 1}$, to obtain a relatively closed subset F_l of Ω satisfying $K_l^\circ \cap F_l = \emptyset$ and $E \subset \Omega \setminus F_l$, and also a non-negative superharmonic function s_l on $\Omega \setminus F_l$ which is positive on the component of K_l° which contains P and which satisfies $s_l < 2^{-l}\varepsilon$ on E. If we define $F = \bigcup_l F_l$, and $s = \sum_l s_l$ on $\Omega \setminus F$, then F is a relatively closed subset of Ω satisfying $E \subset \Omega \setminus F$, and s is a positive superharmonic function on $\Omega \setminus F$ satisfying $s < \varepsilon$ on E as required.

4.3. To prove Theorem 3 we recall from Lemma 5 that, if the pair (Ω, E) satisfies condition (b), then so does the pair (Ω, \hat{E}) . Further, any continuous function ε : $E \to (0, 1]$ has a continuous extension to \hat{E} which also takes values in (0, 1]. Thus Lemma 6, applied to the pair (Ω, \hat{E}) , shows that there exists s in $\mathscr{I}^+(\hat{E})$ such that $s < \varepsilon$ on E. It now follows from Theorem 1 that (a) holds. Conversely, if (a) holds, then Theorem 1 shows that (Ω, E) satisfies (b)(i) and the (K, L)-condition. It remains to show that condition (*) of Lemma 6 also holds.

We establish this by contradiction. Suppose that condition (*) fails to hold. Then there is a compact subset K of Ω , a sequence (V_k) of fine components (not necessarily distinct) of the fine interior of E which satisfy $V_k \cap K \neq \emptyset$, and a sequence (X_k) of points such that $X_k \in V_k$ for each k and such that (X_k) converges to the Alexandroff point for Ω . Now let U be an Ω -bounded connected open set which contains K, and define $\omega = U \cup (\bigcup_k V_k)$. Then ω is a finely connected finely open set. Let u be the fine regularized reduced function of the constant function 1 relative to U in the finely open set ω (see [8, §11]), and let $\delta_k = 2^{-k} u(X_k)$. Since ω is finely connected, we know (see [8, Theorem 12.6]) that $\delta_k > 0$ for each k, and so we can choose a continuous function ε : $E \to (0, 1]$ such that $\varepsilon(X_k) = \delta_k$ for each k.

If we define $h \equiv 0$, then by hypothesis there exists H in $\mathscr{H}(\Omega)$ such that $0 < H < \varepsilon$ on E. We define the positive number

$$a = \inf\{H(X) \colon X \in \overline{U} \cap E\}$$

and the function

$$v(X) = \begin{cases} \min\{H(X), a/2\} & (X \in \Omega \setminus U) \\ a/2 & (X \in U) \end{cases}$$

so that v is positive and superharmonic on an open set containing ω . Hence $v \ge (a/2)u$ on ω , and so

$$2^{-k}u(X_k) = \delta_k = \varepsilon(X_k) > v(X_k) \ge (a/2)u(X_k) \quad (k \in \mathbb{N}),$$

a contradiction. Thus condition (*) must hold, and the proof of Theorem 3 is complete.

5. Proof of Theorem 4

5.1. We begin by establishing the following analogue of Lemma 6.

LEMMA 7. Suppose the pair (Ω, E) satisfies condition (c) of Theorem 4 and $\varepsilon: E \to (0, 1]$ is continuous. Then there exists s in $\mathscr{I}^+(E)$ such that $s < \varepsilon$ on E.

The proof of Lemma 7 is similar in pattern to that of Lemma 6, so we will refer to §4.2 for some of the argument. As before, we can assume that Ω possesses a Green function. Using condition (c) of Theorem 4 we can construct a sequence (K_m) of compact subsets of Ω such that $K_1^{\circ} \neq \emptyset$ and $\bigcup_m K_m = \Omega$, and such that, for each m,

(I) $K_m \subset K_{m+1}^{\circ}$, and (II) every component V of E° which satisfies $\overline{V} \cap K_m \neq \emptyset$ also satisfies $\overline{V} \subset K_{m+1}^{\circ}$.

Further, let A(l, m), F(m; k), δ_m , P and g be as defined in §4.2, and let \hat{R}_{e}^{C}

denote the regularized reduced function (balayage) of g relative to a set C in Ω . We observe that

$$\hat{R}_{g}^{F(m;\,k)}(X)\uparrow\hat{R}_{g}^{A(m,\,m+3)\setminus E}(X)\quad (k\to\infty;\,X\in\Omega).$$

If u is a positive superharmonic function on Ω which satisfies $u \ge g$ on $A(m, m + 3) \setminus E$, then the same inequality holds on the set described in (1). Since condition (c) of Theorem 4 holds, we know that $\Omega \setminus E$ and $\Omega \setminus E^{\circ}$ are thin at the same points of E. Further, the set of points of ∂E where $\Omega \setminus E^{\circ}$ is thin is a polar set. It follows (see [7, 1.VI.3(c)]) that

$$\hat{R}_{\varrho}^{F(m;\,k)}(X)\uparrow\hat{R}_{\varrho}^{S}(X)\quad (k\to\infty;\,X\in\Omega),$$

where

$$S = [A(m, m+3) \setminus E] \cup [(A(m, m+3))^{\circ} \setminus E^{\circ}].$$

Condition (II) above, the minimum principle and Dini's theorem allow us to conclude that there exists k_m such that

$$g(X) \geq \hat{R}_{g}^{F(m; k_{m})}(X) > g(X) - \delta_{m+1} \quad (X \in E \cap A(m+1, m+2)).$$

The remainder of the proof of Lemma 7 now proceeds exactly as the part of the proof of Lemma 6 which follows (2).

5.2. To prove Theorem 4, we observe from Lemmas 4 and 7 that (c) implies (b). Clearly (b) implies (a). If (a) holds, then (c)(i) follows from work of Keldyš [13], Deny [6] and Labrèche [14] (or see [4, \$8]) on local uniform harmonic approximation. It remains to establish (c)(ii), and we will do this by refining an argument in [10, \$4]. We will require the following result of Armitage, Bagby and Gauthier [1].

THEOREM B. Let ω be an unbounded connected open set in \mathbb{R}^n . Then there exists a continuous function ε_{ω} : $[0, \infty) \to (0, 1]$ with the following property: if $h \in \mathscr{H}(\omega)$ and $|h(X)| \leq \varepsilon_{\omega}(|X|)$ on ω , then $h \equiv 0$.

Suppose now that condition (c)(ii) fails to hold. Then there is a sequence (V_k) of components (not necessarily distinct) of E° and two sequences $(X_k), (Y_k)$ of points such that $X_k, Y_k \in V_k$ for each k, such that (X_k) converges either to a point P in $\partial \Omega$ or to the Alexandroff point * for \mathbb{R}^n , and such that (Y_k) converges to a point Q in $\partial E \cap \Omega$. By using a Kelvin transformation centered at P, if necessary, we can suppose that $X_k \to *$. (The transformed pair (Ω', E') would still satisfy (a) but not (c).) We can also assume that Q is the origin O, and that $|Y_k| < k^{-1}$ for each k. As in the

proof of Lemma 6 we can assume, without loss of generality, that Ω possesses a Green function. Next, let (B_k) be a sequence of pairwise disjoint closed balls in $\Omega \setminus E$ with centers Z_k such that $Z_k \to O$, let v_k be the capacitary potential on Ω valued 1 on B_k , and define

$$h(X) = \sum_{k=1}^{\infty} 2^{-k} v_k(X) \quad (X \in \Omega).$$

It is easy to see that $h \in C(E) \cap \mathscr{H}(E^{\circ})$. For each k, let ω_k be the unbounded connected open set defined by

$$\omega_k = \left(\bigcup_{m=k}^{\infty} V_m\right) \cup \left\{X: 0 < |X| < k^{-1} \text{ and } X \notin \bigcup_m B_m\right\}$$

and let $\varepsilon_{\omega_{k}}$ be as in Theorem B. We define $\delta: [0, \infty) \to (0, 1]$ by

$$\delta(t) = \min \{ \varepsilon_{\omega_1}(t), \ldots, \varepsilon_{\omega_k}(t) \} \quad (t \in [k-1,k); k \in \mathbb{N}),$$

and let $\varepsilon: [0, \infty) \to (0, 1]$ be a continuous function satisfying $\varepsilon \leq \delta$. From our hypothesis that (a) holds, we know that there is a harmonic function H on an open set W which contains E such that $|H - h| < \varepsilon$ on E. There exists k' such that W contains the closed ball B of centre O and radius 1/k'. If we define

$$a = \sup \{ |H(X) - h(X)| / \varepsilon_{\omega_k}(|X|) \colon X \in \overline{\omega}_{k'} \text{ and } |X| \le k' \},\$$

it follows that

$$\left| \left(H(X) - h(X) \right) / (a+1) \right| < \varepsilon_{\omega_{k}}(|X|) \quad (X \in \omega_{k'}).$$

Hence, by Theorem B, $H \equiv h$ on $\omega_{k'}$. This contradicts the mean value property of H on a neighbourhood of any B_k contained in the set $\{X: 0 < |X| < 1/k'\}$. Hence condition (c)(ii) must hold, as required.

6. Proof of Theorem 5

6.1. First we give the following analogue of Lemma 5.

LEMMA 8. If the pair (Ω, E) satisfies condition (c) of Theorem 5, then so does the pair (Ω, \hat{E}) .

To prove Lemma 8, suppose that (Ω, E) satisfies condition (c) of Theorem 5 and let $F = \hat{E}$. Since $E^{\circ} \subset F^{\circ} \subset F$, it is certainly true that $\Omega \setminus \hat{F}$ (which

equals $\Omega \setminus F$) and $\Omega \setminus F^{\circ}$ are thin at the same points of E, and thus clearly also at the same points of F. Hence (Ω, F) satisfies condition (c)(i) of Theorem 5. Secondly, if V is an Ω -bounded component of $\Omega \setminus E$, then condition (c)(i) implies that $\partial V \subseteq \partial \hat{E}$ (see [9, §7.1]), and so V is also a component of F° . It follows that (Ω, F) satisfies condition (c)(ii) of Theorem 5, as required.

6.2. To prove Theorem 5 we suppose that (c) holds and use Lemmas 7 and 8 (extending ε continuously to \hat{E} as in §4.3) to observe that there exists s in $\mathscr{I}^+(\hat{E})$ such that $s < \varepsilon$ on E. It now follows from Theorem 2 that (b) holds. Clearly (b) implies (a). If (a) holds, then it follows from Theorem 2 that (Ω, E) satisfies (c)(i) and the (K, L)-condition. This, together with Theorem 4, shows that (c)(ii) also holds. The proof of Theorem 5 is now complete.

7. Details of Example 1

Let $a_m > 0$ (m = 1, ..., n - 1), and let α be as in Example 1. For each δ in (0, 1] we define the set

$$\omega_{\delta} = (-\delta a_1, \delta a_1) \times \cdots \times (-\delta a_{n-1}, \delta a_{n-1}) \times \mathbb{R}$$

and the functions

$$u_{\delta}(X) = \cos(\pi x_{1}/(2\delta a_{1})) \dots \cos(\pi x_{n-1}/(2\delta a_{n-1}))\exp(\alpha x_{n}/\delta),$$

$$s_{\delta}(X) = \varepsilon \min\{u_{\delta}(x_{1}, \dots, x_{n}), u_{\delta}(x_{1}, \dots, x_{n-1}, -x_{n})\}.$$

Then u_{δ} is positive and harmonic on ω_{δ} , and so $s_1 \in \mathscr{I}^+(\omega_1)$. (In fact, s_{δ} is a potential on ω_{δ} .) Assertion (i) of Example 1 now follows immediately from Theorem 1.

To prove (ii), let $\beta > \alpha$ and choose δ in (0, 1) close enough to 1 so that $\alpha/\delta < \beta$. Let P be the point $(a_1, 0, ..., 0)$ in \mathbb{R}^n and let

$$h(X) = \log(1/|X - P|) (n = 2), \quad h(X) = |X - P|^{2-n} (n \ge 3),$$

so that certainly $h \in \mathscr{H}(\overline{\omega_{(1+\delta)/2}})$. Now suppose that H is a harmonic function on \mathbb{R}^n such that $H - h \ge 0$ on $\overline{\omega_{(1+\delta)/2}}$. We must have H - h > 0 on $\omega_{(1+\delta)/2}$, for otherwise $H \equiv h$ on $\omega_{(1+\delta)/2}$ and hence on $\mathbb{R}^n \setminus \{P\}$, which contradicts the fact that $H \in \mathscr{H}(\mathbb{R}^n)$. If we define

$$c = \inf\{(H(X) - h(X)) / s_{\delta}(X) \colon X = (x_1, \dots, x_{n-1}, 0) \in \omega_{\delta}\},\$$

then $H - h \ge cs_{\delta}$ on ω_{δ} by the Maria-Frostman domination principle [12,

Theorem 8.43], and so

 $H(0,\ldots,0,x_n) - h(0,\ldots,0,x_n) \ge c \exp(-\alpha |x_n|/\delta) \quad (x_n \in \mathbb{R}).$

This establishes (ii).

8. An open problem

In view of Theorem 5 it seems plausible that the assertion below is equivalent to conditions (a) and (b) of Theorem 3.

For each h in $\mathcal{H}(E)$ and each continuous function $\varepsilon: E \to (0, 1]$, there exists H in $\mathcal{H}(\Omega)$ such that $|H - h| < \varepsilon$ on E.

It would be possible to prove this by imitating the reasoning of [10, §4] if the following generalization of Theorem B is valid.

For each unbounded finely connected finely open subset ω of \mathbb{R}^n there is a continuous function ε_{ω} : $[0, \infty) \to (0, 1]$ so that if $h \in \mathscr{H}(\overline{\omega})$ and $|h(X)| \leq \varepsilon_{\omega}(|X|)$ on ω , then $h \equiv 0$ on ω .

We do not know whether this latter assertion is true.

Acknowledgement. This research was carried out while I was on sabbatical at McGill University. I wish to thank the Department of Mathematics and Statistics, and especially Professor K.N. GowriSankaran, for making my visit possible. I am also grateful to Professors David Armitage and Myron Goldstein for showing me a preprint of [3].

References

- 1. D.H. ARMITAGE, T. BAGBY and P.M. GAUTHIER, Note on the decay of solutions of elliptic equations, Bull. London Math. Soc. 17 (1985), 554–556.
- 2. D.H. ARMITAGE and M. GOLDSTEIN, Better than uniform approximation on closed sets by harmonic functions with singularities, Proc. London Math. Soc. (3) 60 (1990), 319-343.
- _____, Tangential harmonic approximation on relatively closed sets, Proc. London Math. Soc. 68 (1994), 112–126.
- T. BAGBY and P. BLANCHET, Uniform harmonic approximation on Riemannian manifolds, J. Analyse Math., 62 (1994), 47–76.
- 5. A. BOIVIN and P.M. GAUTHIER, *Tangential approximation*, Lecture Notes in Mathematics, no. 1043, Springer, New York, 1984, pp. 453–456.
- 6. J. DENY, Systèmes totaux de fonctions harmoniques, Ann. Inst. Fourier (Grenoble) 1 (1949), 103–113.
- 7. J.L. DOOB, Classical potential theory and its probabilistic counterpart, Springer, New York, 1983.

- 8. B. FUGLEDE, *Finely harmonic functions*, Lecture Notes in Mathematics, no. 289, Springer, New York, 1972.
- 9. S.J. GARDINER, Superharmonic extension and harmonic approximation, Ann. Inst. Fourier (Grenoble) 44 (1994), 65–91.
- 10. S.J. GARDINER and M. GOLDSTEIN, Carleman approximation by harmonic functions, Amer. J. Math., to appear.
- 11. P.M. GAUTHIER, M. GOLDSTEIN and W.H. Ow, Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities, Trans. Amer. Math. Soc. 261 (1980), 169–183.
- 12. L.L. HELMS, Introduction to potential theory, Krieger, New York, 1975.
- 13. M.V. KELDYŠ, On the solvability and stability of the Dirichlet problem, Uspehi Mat. Nauk. 8 (1941), 171-231 (Russian); Amer. Math. Soc. Transl. 51 (1966), 1-73.
- 14. M. LABRÈCHE, *De l'approximation harmonique uniforme*, Thèse, Université de Montréal, 1982.
- 15. A.A. SHAGINYAN, On tangential harmonic approximation and some related problems, Lecture Notes in Mathematics, no. 1275, Springer, New York, 1987, pp. 280–286.

McGill University Montreal, Quebec, Canada

University College Dublin, Ireland