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THE RIESZ TRANSFORMS OF THE GAUSSIAN

E. KOCHNEFV

1. Introduction

It was shown recently ([1]) that the Hilbert transform of the Gaussian

1 2/2 X e R,e

is a well-known special function:

1
HG( x) S( x) -e-x2/2 f0

c
e /2ds. (1)

For some results about the function S(x) see, for example, [2].
The Riesz transform is the natural generalization of the Hilbert transform

to Rn. We show that the Riesz transforms of the Gaussian

1 _1xl2/2 Rna(x) (27r)n/2
e x

are confluent hypergeometric functions having the integral representation:

2xje-lXl2/2 fIxlesZ /2 (lx 2 $2)
(n-l)/2

ds, j 1 nR.iG(x) ixln(2,n.)(n +1)/2 J0
(2)

For n, j 1, equation (2) coincides with equation (1). On the other hand,
the method in [1] does not generalize into Rn, so our method is different.

2. The Riesz transforms of the Gaussian

For f L (q Z2(Rn), define the Fourier transform of f by

1 f.f --ix’t.f(x) (2rr)n/2 (t)e dt.
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By the Fourier inversion theorem,

f(x) (27r)n/2 t) eix’’ dt"

The Gaussian satisfies ((x) G(x).
The Riesz transforms are defined by

x. -y.Rjf( x) CnP.V. IX y[-I f(Y) dy, j= 1,2,...,n,

where Cn F((n + 1)/2)7r-(n+l)/2. Moreover,

-/xj
(Rif) (x) c-i f(x)’

Letting

-/xj
F.(x) (RiG) (x) fci G(x), ] 1,...,n, (3)

we have by the Fourier inversion theorem RjG(-x)=/.(x). For j
1, 2,..., n, F. L n L2(Rn) is the product of a radial function and the first
degree solid spherical harmonic x.. Thus,/.(x) x.f(Ixl) where

F(r) (2rrr)n/2
e /2L/2(rs)sn/2ds (4)

and Jn/2 is a Bessel function. See [4].
From the representation of the confluent hypergeometric function

2r(v + 1)z2 f: =s1fl(;/ -F 1; --A2/4Z 2) r()(a/2) e Jv(as)s2r-v-1 ds,

Re(g) > 0, Re(z 2) > 0 with h r, Z 2 1/2, v n/2 and r (n + 1)/2,
we have

rn/2
e /2Jn/2(rs) Sn/2 as r( n+l )2 (n+lvr(n+2) 1F1 2

.n+2. r2 )2 2
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See [3]. Therefore,

RiG(x )
xr(+ 1)2 (n+lV(2r)/2F ( n+2)2 1F1 2 (5)

In particular, since (see [3])

r(c)1Fl(a;c;z) F(c a) (-z) Re(z) -m,

we have

xiF ( n + 12)
RiG(x) ixln /lr(n/1)/2,

Ixl . (6)

Finally, since

r(c) folezssa ds,1Fl(a,c; z) r(a)r(c a) (1 s) -1

Re(c) > Re(a) > 0,

(see [3]), we obtain

RiG(x )
Xj fo _lxl2S/2S(n 1/2

(27r)(n+1)/2
e -1)/2(] s) ds

2xje-lxl2/2 [IXle/2(lxl 2 $2)
(n-l)/2

ds.
ixln(27r)(n+ 1)/2

"0
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