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1. Introduction

Let p be a prime number and let Qp denote the p-adic number field. The
main aim of this article is to describe the associated orders of relative
extensions of Lubin-Tate division fields over Qp. Let L/K be a Galois
extension of number fields with Galois group F Gal(L/K). If L is a global
field, let (C)z denote the ring of integers in L. If L is a local field, we denote
the valuation ring of L by (C)z. We recall that the associated order of the
extension L/K is the subset

t,./ {, K[r]I, c_ ,}
of the group ring K[F]. It is indeed an order in K[F], containing (C)r[F].

Currently, the associated order has been calculated in the following gen-
eral situations:

(a)
(b)
(c)
(d)

(e)
(f)

K/k is a tamely ramified extension ([7]),
K is an absolutely abelian extension of k Q [5],
(almost) maximally ramified Kummer extensions [2],
Kummer extensions of cyclotomic extensions of Q and some complex
multiplication analogues [[8]),
’Kummer’ extensions of Lubin-Tate division fields [9].
Relative cyclotomic extensions in both the local and global situations
([11).

Let Q,. be the division field of level n and uniformizer 7r associated to
some Lubin-Tate formal group, and let (C)n denote its valuation ring. The
recent work of (f) above, makes it possible to calculate the associated order

+r/or Here p is any prime, r rn Z andof m+r in the extension Qpm, --p,r"

1 _< r, m if p >_ 3 and 2 _< r, 1 _< rn if p 2. Because of the dependence on
[1], we are restricted to using Qp as base field. However, this represents an
advance on [9] as we are no longer restricted by the ’Kummer’ requirement.
The results in this article and [1] are, as far as the authors are aware of, the
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first which give explicit Galois Module Structure information in non-’Kummer’
situations.
Our main result is stated in the final section. Briefly, by adjoining an

unramified extension to Q,,, we obtain a relative cyclotomic situation. We
may then apply some of the ideas of [1], and with suitable modifications,
obtain the associated order and a Galois generator. By ’descending’ to the
base field Qp, we can then determine the associated order in the relative
Lubin-Tate situation.

This work represents one of the rare situations where the associated order
can be determined independently of finding a Galois generator.

This paper is organised as follows:
1. Introduction
2. Review of Lubin-Tate theory
3. The cyclotomic case
{}4. Definitions and notation
5. The descent lemma
6. The main theorem

2. Review of Lubin-Tate theory

Let k be a local field in characteristic 0, i.e., a p-adic field. Let zr k be a
uniformizer and let q be the cardinality of the residue class field.

Let (C)k denote the valuation ring of k. Let k denote a fixed algebraic
closure of k. Let f be a Lubin-Tate power series associated to the uniform-
izer r, i.e.,

f(X) "rrX (moddeg2),
f(X) Xq (modTr).

The roots of fn will be denoted by Wyn. The division field of level n and
uniformizer r is the field obtained by adjoining Wn to k. It is well known
that this is a totally ramified abelian extension of k, depending only on n
and
We use Ff to denote the unique formal group defined over (C)k which

admits f as an endomorphism. In the case k Q, and zr p, we may take

f(x) + x)’-
in which case

Wf" {’,/.- I II Z}
and Q,,= Q(’,,). It is standard that we have_ an (C) k-module structure on
the maximal ideal of the valuation ring of k. In particular, the W are
3k-SUb-modules.
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Let kur be the completion of the maximal unramified extension of k and
let (C)ur be its valuation ring. Given two Lubin-Tate power series (possibly
associated to different uniformizers) over (C) k, by standard Lubin-Tate theory
there is a unique power series defined over (C)ur, Or, g, which is an isomor-
phism of formal groups

In particular, we have a module isomorphism

Of, g" Wf --) W, --) Of, g() (n >_ 1).

Observe that 0(Tr) is the uniformizer associated with g. For details, the
reader may consult [4] or [6].

3. The Cyclotomic Case

We give a brief review of the local cyclotomic case which motivates much
of what follows. Let p be a rational prime, and let m, r Z with

(i) l <r, mifp>3, while
(ii) 2 < r, 1 < rn if p 2.

Let n rn + r. We denote by sr a primitive pn-th root of unity in an
algebraic closure Qp of Qp.

DEFINITION 3.1. Let

defpn-k

pk= (O < k < n),

so that ’,k is a primitive pk-th root of unity.

Let F denote the Galois group of the extension Qp()/Qp(pr).

DEFINITION 3.2. For r < k < n, let

s(k) d-efmin(k r, r).

For r<k<n, let

t(k) de-fmax(0, k 2r).
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DEFINITION 3.3. For r < k < m, let Tk denote the trace element in
Qp((pr)[I"] of the extension Qp(()/Qp((pk) by

def
Tk TrQp()/Qp(pk).

DEFINITION 3.4.
follows:

We define the idempotents Er,... E,, in Qp(srpr)[F] as

def 1
(a) Er -- Tr.def 1 1
(b) gk pn-kTk pn-k+Tk-1

for r <k <n.

DEFINITION 3.5.
satisfying

For any prime p, let 6 denote the generator of F

5 +pr.

DEFINITION 3.6.
define the square matrix M of order dp(ps(k)) as follows:

def

(a) For p odd, r<k<n, or p=2, r<k<2r, we

1 1 1

21p2s(k) ps(k) bps()2"2(Ps()- 1)

4(()- rl(4(p() ) r(p(-X4(p()- )
s(k) bps(k) bps(k)

def

(b) For p 2 and 2r < k < n we define

--ps(k, (--pS,k,)

(--ps,k,)2 (--ps,k,)21

( ps,k,) ck(ps‘&,,-1 ( ps,k,)
;(dp(ps(k,)- l)

1

(mps(k))ps(k)-I

( ps,k,)(ps’k’--1)(,#(ps,k,)_ 1)

In both (a) and (b), runs over the values between 1 and ps(k)_ 1
inclusive which are co-prime to p.
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DEFINITION 3.7. For each k with r < k _< n, we define the polynomials

1 _<i_< b(pS(*)),

by means of the matrix equation

P ,l(X)

P,..

1
X

Xd(ps(k)) 1

THEOREM 3.1. If 92 denotes the order in Qp(srpr)[F] generated over
Zp[pr][r] by the elements

r<k<n
l<j <4(ps(k))

then Zp[srp.] is 92-free of rank one with Galois generator 13 given by

ps(k)_

fl br, + _, _, bk,llpk,
r<k<n 1=1

(/,p)=l

where bk, Zp[’pr] x for all k, 1.

Remark. A result similar to Theorem 3.1 holds in the global situation.

4. Definitions and notation

Let M Qm+r and L Qrp, p, 7r"

By local class field theory, we can choose an unramified extension F of Qp
such that

(i) LF contains the pr-th roots of unity.
(ii) FM contains the pm+r-th roots of unity and
(iii) FM is generated over FL by a primitive pm +r_th root of unity (which

we denote by if).

Let L’ Qp(’p) and M’= Qp(’p,). We will continue to use the definitions
of the previous section. In what follows, we will frequently identify
Gal(FM/FL) with both Gal(M/L) and Gal(M’/L’).
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Let F GaI(FM/FL) and, by abuse of notation, we will also use Tk to
denote the trace element in LF[F] of the extension FM/FL((pk):

Tk TrFM/FL(i;pk).

So Tk is ’lifted’ from L’F.

DEFINITION 4.2. Similarly, we ’lift’ the idempotents from L’[F] to FL[F].
We define Er,..., Era+r, as follows:

1 1
Ek Tk pm+r-k+l Tk-1pm+r-k

wherer<k<m +r, and

where the Tk now represent the trace elements in FL[F].

Henceforth, we fix a uniformizer 7r of Q,, and a Lubin-Tate power series f
associated to

DEFINITION 4.3. Let k denote the valuation ring in the division field,
Q,,, of level k associated to .
We define the polynomials Pk, in the same way as Definition 3.7.

PROPOSITION 4.1.
FL[F] by

The associated order of FM/FL is generated over

Er} I,.) (ek,j(tpt(k)) Ek) r<k<n
<j Adp(ps(k))

Proof This follows from the fact that FM
Noether’s Theorem, FM/FL F Zp M’/L’" I’-]

(C)’ (R) zp(C)t’ and, by

5. The Descent Lemma

Throughout this section, let F denote a finite non-ramified extension of
Q,, M be a finite totally ramified abelian extension of K, and let L be a
subfield of M. Let (C)F, etc. denote the valuation ring of F, etc.
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LEMMA 5.1. There is a root of unity rl of order prime to p such that

F z[,],
(C), ,[] (C)(C),,

FM )M[T]] F M"

Proof The first equali follows directly from the general theoff of local
fields.

Let denote a prime element of L. Since FL/F is a totally ramified
extension, we may choose a set of representatives for FL modulo FL
consisting of powers of . Denoting the prime ideal of by , we have

FL L[] + FL"
By Nakayama’s Lemma, it follows that

FL L[] FL
The third equali can be proved similarly.

Let 9/ and denote the associated orders of the extensions FM/FL and
M/L respectively.

LEMMA 5.2. We have
(a) 2[ n L[F] ,
(b) 9.1-- FLL

In fact,

J

where the sum is taken over powers of rl which collectively form an (C) L-basis of
(C)[].

Proof
show that

Let

by in 9/, and write

Part (a) is trivially true. In view of (a), to prove (b), it suffices to

= EAr (A FL)

A EA.’v (A." L)
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where the sum is taken over only those powers of r/which collectively form
an (C) z-basis of (C) L[ r/]. Then we have

j

Applying th to an integral element p in (C)(C)m, we see that

/F

for each j. Hence

for an arbitrary p (C) L" It follows that

E

6. The main theorem

We maintain the notation of 4.

DEFINITION 6.1. We define the polynomials ai, k,j through the identity:

ek,j( S) E rl Qi, k,j( X)"

The sum is over a Zp-basis of (C)F (see Lemma 5.1 for the definition of the
i) and the ai, k,j are polynomials belonging to L[X].

Then we have the main result of this article"

THEOREM 6.1.
over (C)[F] by

The associated order ofM/L is the order in L[F] generated

{Er}
j <dp(ps(k))

where runs over the set of indices so that {,qi} is a Zp-basis for F"

Proof Let ’ denote the subring of L[F] generated over (C)L[F] by

{Er} LJ (Qi, k,j(pt(k)) Ek)
l<-jdp(Ps(k))
r<kn
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From the fact that (C) FM F @ Zp M, and Proposition 4.1, we have that
Qi, k,j(tPtk))Ek sends (C) to (C). Hence

(1) ’ c,
where denotes the associated order of M/L.

However, from the way the polynomials Qi, k,j are defined, we have

where 92 denotes the associated order in FM/FL.
By Lemma 5.1 and the facts that Qp[r/] and L are linearly disjoint, and

’ c L[F],

(2) (C)FL @, ’= E(r/j @ ’)
J

(3) I) (r/J@ ’),
J

as abelian groups. By Lemma 5.2,

(4) 2l () (r/J@ ’).

Combining equations 1, 2, and 4, we obtain the inclusion

_
’ and

hence we have the desired equality: ’. rq
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