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SOME REMARKS ON THE CORONA PROBLEM ON
STRONGLY PSEUDOCONVEX DOMAINS IN C”

STeEVEN G. KrRanTZ! AND SONG-YING LI

1. Introduction

Let Q be a bounded domain in C". Let s#>({)) denote the space of all
bounded holomorphic functions on Q with norm || - ||. It is well known that
() is a Banach algebra. For each 0 < p < », we let #?(Q)) denote the

usual Hardy spaces over Q. Let f,, f5,..., f,, € H(Q) and § > 0 be such
that

(1.1) 82 < f‘, If(2))P <1, zeQq.
k=1

Then we can state the corona problem as follows:

Do there exist functions g4, &5, .., &, € H*(Q) such that

F(2)81(2) + £(2)82(2) + -+ f(2)8n(2) =12

This problem has been solved by L. Carleson [C] when n = 1 and (Q is the
unit disk. Carleson’s corona theorem has been generalized to a large class of
domains in the complex plane. (For example, see Jones [J], Garnett [G] and
related references therein). For the case when n > 1, the corona problem
has been studied by many authors. For examples: In [V1, V2], Varopoulos
proved that the corona problem has #”({}) solutions when Q is the unit
ball or the unit polydisc in C”. His theorem for the polydisc has been
reproved by S-Y A. Chang [Ch] and by K-C Lin [Lin] for n > 3 using
different methods. Let us consider the operation S, associated to corona
data f=(f,...,f,) from the product space H#?(Q), = H?(Q) X
HP(Q) X - X HP(Q) to HP(Q) that is defined by letting S(u) =
fiug + -+ fnu,,. Then we may restate the corona problem as follow: Is S;:
H(Q),, = H~(Q) onto? Some substitute results were obtained by Amar
[A] and Li [L]; they proved that APS HP(Q),, > H#P(Q) is onto when Q is
the unit ball or the unit polydisc for all 1 < p < «, respectively.
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In the general case, counterexamples have been constructed by N. Sibony
[S] and J. Fornaess and N. Sibony [FS1], [FS2] to show that the corona
problem is not solvable for general pseudoconvex domains, even for a domain
in C? that is Runge and is strongly pseudoconvex except at a single point.
The question of whether the corona problem is solvable for the most
standard domains like the unit ball B = B, and the unit polydisc A" in C” is
still open. The main purpose of this paper is to provide some remarks on the
corona problem when () is a strongly pseudoconvex domain in C” with
smooth boundary. For each 0 < p < », we shall use A7(Q) to denote the
Bergman space over (), which is the holomorphic subspace of L?(Q). Let
A_(Q) be the usual Zygmund space over () (see [KL2]). Now we are ready to
state our main theorems formally:

Tueorem 1.1. Let f,, f,, ..., f,, be bounded holomorphic functions in the
unit ball B satisfying (1.1). Let 0 < p < . Then S;: A?(B) — A”(B) is onto.
Moreover, for each h € AP(B), there are functions g,[h], g,[h],..., g,[lh] €
AP(B) so that

m 1/2
figi+  fu8m =h; ( P Ilg,-ll,i») < [C(n, p)/83]InlL0.
j=1

It will be seen that the proof of our Theorem 1.1 actually works for any
strictly convex domain in C" with C3 boundary. Next we note that strictly
pseudoconvex domains are locally strictly convex (up to local biholomor-
phism). By applying a decomposition of unity, and then d theory for smooth
functions, we may derive the following corollary:

THeEOREM 1.2. Let ) be a bounded strictly pseudoconvex domain in C”"
with C* boundary. Let f,, f,,..., f,. be bounded holomorphic functions in ()
satisfying (1.1). Let 1 <p < ». Then S;: AP(Q) — AP(Q) is onto. Moreover,
for each h € AP(Q), there are functions g [h], g,lA),..., g,[h]l € AP(Q) so
that

m 12
flgl + o fmgm h; ( Z ||gj“,24") < [C(n, p)/53]||h||Ap.
i=1

Note here the restriction to 1 < p < oo; this is imposed because we must
use a factorization theorem from [COU] that is only valid for that range of p.
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We shall also generalize the theorem in [A] from 1 < p < « to the full
range 0 < p < o, Notice that the next theorem is formulated in a different
topology from the first two:

THeEOREM 1.3. Let Q be a bounded, strictly pseudoconvex domain in C"
with C* boundary. Let f,, f,,..., f,, be bounded holomorphic functions in Q
satisfying (1.1). Let 0 <p < . Then S;: #P(Q) - HP(Q) is onto. More-
over, for each h € H#P°(Q), there are functions g|hl, g,lh),..., g, lh]l €
HP(Q) so that

m 1/2
figi+ " fu8m =h (Engjlléw) < [C(n, p)/8%]IInll »
j=1

Furthermore, we shall prove the following theorem:

TueoreM 1.4. Let ) be a bounded strongly pseudoconvex domain in C"
with C? boundary. Let fy, f,..., f,, € A (Q) N H(Q) with 0 < y < © sat-
isfy (1.1). Then there are g,, &,, ..., 8,, € A (Q) N H(Q) such that

f1g1+f2g2+'..+fmgm51’ onQ,

and

m
Y liglla, < C(n,m,y)8~+700,
j=1

Remark 1. From the proof of Theorems 1.1-1.4, one can see that the
constants C(n, p) appeared in Theorem 1.1-1.3 and C(n, m, y) appeared in
Theorem 1.4 satisfy the following estimates:

C(n,p) <C(n)(p—1)""p, C(n,m,y) <C(n,m)/y,
for all p > 1 and y > 0. As either p —» © or y — 0" then the estimate for

the constant C blows up. Thus we have not solved the original corona
problem.

We note that results related to the material in the present paper appear in
[An2]. See also [An1], [AnCal].

2. Preliminaries and lemmas

Let Q be a bounded domain in C". We let 9, () denote the space of
all (0, 1) forms whose coeflicients are smooth and have compact support in €.
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We shall use the notation & () to denote the space of all (0,1) forms
whose coefficients lie in C¥(Q), and we let L§ (Q) be the space of
(0, 1)-forms with coefficients in L?(Q)). In order to prove Theorem 1.1, we
need only concentrate our attention on the case when () = B, the unit ball in
C". In this section, we shall introduce some notation and collect some results
from J. Polking [P] to get the appropriate integral kernel for solutions of the
d equation. Moreover, we shall give several lemmas which will be used in
Section 3. Set

r(§) =1- €%, p(z) =1z2I>-1, z,£€B,
and
7(2,€) = | = 2I* + p(2)p(£).

Then we define the following (1, 0)-forms:

b(z,¢) = 2 (&-z)4g,

IE —ZI2

B(z,€) = 211'17(2§ §( ) &

and

1
(z,£) = 2mi(1 = (z,6)) /2 Z§ 4%

Here (z,w) = ¥;z;w; is the usual Hermitian inner product on C". More-

over, we define the following (n, n — 1)-forms:

B(z,€) = b(z,£) A (3b(z,6))" ",
B(z,£) = B(2,€) A (3B(2,£))"

and

n—1

S(z,€) = a A (da)
Let

n—1
A(z,w) = [a(z,w) AB(z,w)] A kgl(ga)k-l A (5B)n-k_1 .
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Then we set
E(z,w) =B(z,w) — 8$(z,&) + dA(z,w).

It has been shown in [P] that E(z,w) is a fundamental solution for the F)
operator. Moreover, if p > 1 and f € L ,(B) is d-closed, then

(2.1) E(f)(2) = [ E(z,w) A f(w)
satisfies the d equation:

(2.2) IE(f)(z) =f(z), z€B

in the sense of distributions. _
In order to write down E(z, ¢) explicitly, we need to calculate 9, A(z, &).
For simplicity, we shall write down the details only for the case n = 2.

Lemma 2.1 [Pl. If n = 2 then we have
0A(z,€) = 8(2,€) = B(2,€) + (B(2,€) — a(2,§))
A(da(z,w) + 3B(z,£)).

Lemma 22 [Pl Let a(z, £), B(z, &), B(z, &) and B(z, &) be defined as
above. Then we have

(B(z,¢) —a(z,€)) A {5a(z,w) + 5B(z,§)}
= r(f)El(z’g) +E2(Z7§) A f 'd§_+E3(Z,§) A f dé,

where

1 1
2 — + T
E(z,¢) = (2371') (1(1 —fz<,z§,>§>)7'((lz,’;;))

1 r()(/0 =Lz ) + (1/7(2,€) =
(2mi)® (1-<z,6)7(z,¢) dg - d¢

A€ - dE,

~ 1 \2 1 z .
E)z,¢) = (2771') (1- <Z,§>)2r(z,§)§

(1 r(lE—2l
Ey(z,¢) = (Zwi) (1-Az,8)1(z,¢)

df-d¢ A (E-2) - dé

dé A (€-2) - dé,

(E-de A (E-7) - dg;
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here we have used the notation
n n
wedz =) wydz,, dw-dz= Y dw, A dz,.
k=1 k=1

Combining Lemmas 2.1 and 2.2, we have the following:

LemMma 2.3.  With notation as above, we have

E(z,£) = B(2,§) = B(z,£) + r(£)E((2,£)
+(Ey(2,€) + Ex(2,€)) A€ dé.

_ Now let us compute B(z, £) — B(z, £). From the definitions of B(z, £) and
B(z, £), one can easily verify that

2

B(z,¢) — B(z,¢) = (2%”)2 (&-2)

j=1

><( 20(2)r(§)  r(2)’r(£)

dé, N dE - dé.
& — zI*7(2,£)° |& — z|*r? & nde-dg

First let us give an upper bound for these kernels:
LeMmMaA 2.4.  With the notation above, we have
(IB(z,€) = B(z,6)| + r(O)| E(z, &) )r(&) ™

r(z) 4 1 )
—zP’r(z,€) |1 —<z,8 (2,67

< C(n)(|§

Proof. Observing that
7(2,€) < C|1 = (z,8&)|, r(2)r(¢) <7(z,¢), and ¢ —z|* < 7(z,¢),
one can easily see that the lemma holds. W

We need to estimate all of the terms that arise in the above calculations.
First we show:

Lemma 2.5. For 0 < & < 1, we have

r(z) +r(¢) , e
fBr(g)ﬂg e D) dv(¢) < Cr(z) "
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Proof. We use local coordinates as before. We have

[y

r(€)1¢ - z°1(z, €)
1,1 r(z) +t dA(A) dsdt —e
<C '/;)'[()'[Ihlslte(r( s +r(z) )

z) + Al -l—s)3 (r(z) +t+s+ Al

1
=C fo.[ r(z)+s)r(z)+t+

dsdt +r(z) °

<C at +r(z)"°

/ (r(z) +1) z) +1)
<Cr(z) °
Therefore the proof of Lemma 2.5 is complete. W

The following lemma for controlling non-isotropic integrals will be needed
in Section 3. For each 0 < & < 1, and a, B = 0, we define

_ SO
e = ) T Py O

Now we have:

Lemma 2.6. (a) If B > 1, then there are three cases:
@D If a +2B +¢& >4, then

4—a—-2B—¢
Ia,B,E(Z) < Ce,a,Br(Z) ? 5
() If @ + 2B + & < 4, then

Ia,ﬂ,e(z) =< Ctx,ﬂ,e;

(iii) If @ + 2B + & = 4, then

I, 5.(2) <C, g, (log (2 )

(b) If B = 1/2, then we have the following two cases:
@D Ifa+e—1/2>2, then

I p..(2) <Cr(z)”*7°7%
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() If a +&—1/2 =2, then

I, 5.(2) < C(log r_(IET)

Proof. Let us consider case (i) in part (a) first. Using the usual local
coordinates, we have

_ r€) "
fa.p.o(2) /3211 “ oo ®
(e dA(A) dsdt
C
= f [ [AI<1 r(z) +t+s+ |A| ) (r(z) ti+s+ lAl)zﬂ
1,1 t~°¢
< Cfo fo (r(z) + ¢ + s)a+2(ﬂ—1) ds dt
< Ce’ayﬁr(z)“_a_zﬁ_s.

Applying the same argument as above, we can prove (ii) and (iii) in part (a),
and we omit the details here.
Next we consider part (b). We shall prove (i) in (b). We see that

_ r(¢) "
farp.e(2) = fan — (2,6 r(z,6)" v
t° dA(A) dsdt
scf'[]

W<t (r(z) + ¢ +5 + A7) (7(2) + 145+ 2D

<c[f[ - d|A| dsdt

r(z)+t+s+ IAI)

dxdsdt

1,1 (® t~°
= ‘/;J /;) '/(‘) (r(z) +t+ s)a_l/z(l +x2)a

< Cs,a,ﬂr(z)s/z_“ﬁ.

Similar arguments show that (i) holds. Therefore the proof of Lemma 2.6 is
complete. W
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3. Proof of Theorem 1.1
In this section, we shall prove Theorem 1.1. In order to avoid unnecessary
complications, we restrict our argument to the case when » = m = 2. From
our proof, it will be clear that the methods work for general n. Then we may

apply Koszul complex theory (see [K1]) to extend to general m.
Let f,, f, € #*(B) and § > 0 be such that

31 2<|f() =|f(2)| +|f(2) <1 forall z €B.

Let

i £29f1
il

where |f]* =_(|f1(z)|2 + If (DD For each h € AP(B), it is easy to show
that AF is a d-closed (0, 1)-form, and dE(hF) = hF. Now we set

g.[h] = o1h — fLE(hF), g)[h]=¢,h + fiE(hF),
where

fi(2)

32 (z) = 2L
G2 AT

j=1,2.

Then one can verify that
5gj =0,j=1,2; and f,g,[h]+f,8,[h]=nh.

To prove Theorem 1.1, we therefore need only study the regularity of the
solution E(hF). We start with the following lemma.

LemmMmA 3.1. Let F be as above. Then we have

fiTuf, — foTufi
If1*

(£-dE) NEj(z,6) ANF = NE(z,€) Ndé AdE,,

where Ty, = £,(3/3¢,) — £,(3/3¢,) and j = 2,3.
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Proof.  Since
E-dENE(2,) N\F=¢-dEANF ANE(z,€)
fof, = £,91,

=§-d§/\ T /\Ej(Z,f)
T f>— foTf1
_hTnf, lfflci 121(2) A E(z,€),
The proof of Lemma 3.1 is complete. W
Now we are ready to prove Theorem 1.1.
Since f; € #*(B) and (3.1) holds, we have
C(n)
(3.3) |VA(E) | +|Vfa(8)] < r(€)’
and
o
(3.4) T fi(E)] +[Tif8)] < r—(—g(—)nr)/z

for all ¢ € B. Applying Lemmas 2.4 and 3.1, we have
|E(hF)(2)|
< [{[(B(z,6) = B(z,6)) A F(&)] +[r(&) Ex(z,€) A F(&)[} (&)
H [ (Ba(2.) + Ex©)) A £ dE A F(OM(O)
< [{[(B(z.6) = B(z,0)) (&) +7(&)E(z, )Ir(&) )
x|h(&)|dV(§)
H| [ (Bz.6) 1 6 dE RO
+UE3(2,§) /\f-dé/\Fh)‘
B

=Ji(h)(2) +Jo(h)(2) + J5(h)(2)
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Applying Lemmas 2.4, 2.5 and 2.6 with a = 1, 8 =3/2and 0 <& < 1 and
Schur’s lemma [Z], we have

C(n,p
[ 7:(A) [|rey < (83 ) 1Rl 47.

We study J,(h) first. Since

5§E3(Z’ f)
=(1 f«z—fydé+adadnw—zv
2 (1 _ (z,§>)27(2,§)3
NE-dEN(E~2) d¢E
( 1)%&—§rd5+dn§wawdw~zﬁ
2mi (1 -<z,6)7(z,¢)"

NE-dEA(E~2)-dE

1\ r(z2)(z—¢&) -dE
+(%ﬁ)u—<L§»ﬂz§f

1 r(z)l§ -z
+(2m’) (1= (z, (2, )

x(dE-dg A (E-z2)-dt — E-dt A dE A dg),

/\g—-dg/\(g'—z)-dg

we see that

|r(£)0,Es(2,€) AF(£)|

C r(z) r(z)(r(¢)"? + £ - z1)
<3 3 + 2 2
7\ |1 = <z,86]| (2, ¢) 11—z, 6 | 7(z,6)
r(z) r(2)’r(€)¢ - 2
dVv
i |1—<Z,§>|T(Z,§)2 " |1_<Z,§>|T(Z,§)3 (§)
C r(z) r(z)r(€)"¢ - z|
< - av
<${n—<z0hu@f+|r—ujnﬁu@f ©
cs3

dv (£).

7(z,£)°
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LemMma 3.2.  Recall that the dimension n is 2. Let

T(u)(z) = [Bu(g)f(z,g)‘de(g)

Then T: L?(B) — L?(B) is bounded for all 1 <p < o,

Proof. This follows from Lemma 2.6 with a =0, B=2and 0 <e <1
and from Schur’s lemma. W

By using integration by parts, we find that

| Es(Fh)(2)| =

Lr(§)5§E3(z,§) A F(§)h(€)
<5 (2O 1r(©) V(&)
=T(hl)(2).

Thus Lemma 3.2 implies that

C(n,p
1200 e = S

forall 1 <p < =,
Next we show that [J,(FR)|| ey < C/83IA | 40.
Since

5§E2(z,§)

=( 1 )22(2—§)~d.§+2§-dg'

ANE-dEN(E-Z)-d
(1—(z,§>)3'r(z,§) e '(f z) ¢

+( 1 )2—(§—z)-d§—+r(z)§°d§_

2

NE-dEN(E-2)-déE

2] (1 =z, 8))1(z, €)*
1 )2 1 - -
i df - d -z)-d
+(27Tl) (1 _ (Z,f))zT(Z,f) f f A (§ Z) f
1 \? 1 _ -
- _ -d dé - d¢,
(2171) (1- (z,§>)27(2,6)§ Ende-d
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we have
|r(€)0,Ey(2,£) AF(§)|

C 1
<= av
= 83 ( |1 _ <Z §>I5/2T(Z 5)1/2 (g)

{F(E) A(E=2) dé
(1 - <z,8)’7(2,¢)°
1
+ 2
(1-4z,86)7(z,¢)

< C(§G(Z,§) + GI(Z,f));

+ Cr(¢)

NE-dEN(E-Z)-dé

F(f)/\«f'dff\d-?'df}

Now let us consider G first; we prove the following lemma.

Lemma 3.3.  Let G(z, £) be defined as above. Set

G(u)(z) = fB u(£)G(z,¢)

Then G: LP(B) — L?(B) is bounded for all 1 <p < .

Proof. Use Lemma 2.6 with « = 5/2,8 = 1/2and 0 < € < 1 and Schur’s
lemma. =

In order to estimate G(z, £), let us do the following calculations:
G(£) AE-dE A dE- dg
=0f(£) NE-dE N dE A dE +If(E) N E-dE AdENdE,
- LB 4k, ndey 1 B nag, + JLE 0E n e a0 e,
= Rf(E)dé, A dE, N dE, A dE,
= Zf(§)dv(§)

where

Rf(§) = aaf :gf £, du(§) = dE| N dE| A dEy A déy;
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and
(E) N (E—2) " dENE-dEN (E~2) - dE
=3f(é) A (€ —2) - dE
(§_1 d'f (522 _22) d§2+ 52 dfz (E -z ) §1)
=3(&) A (£ —2) -dE A (E(E - 5,) — (£, - 2))§,) de, A dg,
- (F ez atindt - e -2 a8 Adf‘)
agl 2 2 1 2 agz 1 1 1 2
(51(52 - 22) - (5_1 - 21)5—2) d‘fl A d§2
(-2 - e -=)
x(E(& - 22) = (& - 21)&;) do(®)

(glaz;|§2 22|2 3§f§2|§1 Z1|2)dv(§)

II

+ (55_251(‘51 - 21)(52 - 22) + %52(52 - 22)(51 - zl) dv(§)
= N(z,§) dé, AdE, A dE, A dé,.

Thus
€ = zI°RF(€) + N(z,¢)
= 516(? €& — z,1% + 'f—zaa_z;fz -z,
- - af - -
+3__§72‘51(§1 - 21)(§ -z ) + a_;flfz(fz - 22)(51 - 21)
= 5-15%7_1|§1 —z* + fzag €, — z,)°
d = - =9
azz( £1(61— 271) +§2(§2”‘22))(52—22) _52%|§2_22|2

(fz(fz z2y) + €y(é - 21))(51 - 71) - El%lﬁ - z?
7 (fl(fl zy) + szz(fz - zz))(f—z - 22)

+(‘9§_1(szz(§2 —2;) + &€ 21))(5_1 "21)
=04(z,8) + 0:(z, ).
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Since
|‘§1(§1 ~z)) + &(4, _22)| <Cl1 -<z,8],
we have
r($) 1
(=) (1= (z,8) 11—z, r(z, )
forj=1,2.
Therefore
|G1(Z’f)| (lQl(Z §)|+lQ2(Z §)|+ (2 f) dv(§)
C 1
<= d .
= 33 ll _ <Z,§>|T(Z,f)3/2 U(f)

Applying Lemma 2.6 and Schur’s lemma, we have the following:
Lemma 34. Let
G(u)(z) = fBu(g)Gl(z,f) dv
Then G,: L?(B) — L”(B) is bounded for all 1 <p < .

Combining all the above estimates, we have completed the proof of
Theorem 1.1 for 1 < p < oo,

CoROLLARY 3.5. Let F be as above. Then
|EF)(2)] < 55 1o 755 )
and for any y > 0, if f € A (Q), then
C
IECE) |- < il
For the case when 0 < p < 1 we cannot prove Theorem 1.1 directly. We
need the aid of the following decomposition theorem for Bergman spaces

due to R. R. Coifman and R. Rochberg [CR] for 0 < p < 2:

THEOREM 3.6. Let h € AP(B). Then we can write

h(z) = T Meag(2) e 2).
k=1
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with u, € AP%(B) and v, € A?7(B) such that
X I = Nk, lugllpgllogll,y < 1
k=1

where q > 1, q and q' are conjugate exponents.

Let 0 <p <1 and h € A?(B). Then we choose g > 1 so that pq = 2 and

00
h= Y Au,, u, € A%, v, € A?1
k=1

as in Theorem 3.5.
Applying the conclusion of Theorem 1.1 for the case 1 <p < » to u,, we
see that there exist g[u,] so that

M

figilul=u,, k=1,2,...
1

J

and

” gi[uk]”qu = %“uk“A"q-

Now we let

o

gj[h] = Akgj[uk]uk
k=1

Then we have g[h] € AP(B) and

I g;Ln] IIL"(B) = “ kX_:IAkgi[uk]Uk

AP
1/p

=< (C(n’ p)/63)(kil|/\k|p" gj[uk]vk ";:

C(n,
e L
for all j = 1,2,...,m. This completes the proof of the case 0 < p < 1.

Therefore, the proof of Theorem 1.1 is complete.

The proof of Theorem 1.2 follows similar lines, and has been described in
the introduction. We omit the details.
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Now we prove Theorem 1.3.

With the help of Theorem 2.2 in [KL1] on Carleson measures and
BMOA(Q) functions, and the decomposition or factorization theorem (Theo-
rem 1.2 in [KL2]) for Hardy spaces in a strongly pseudoconvex domain in C"
with smooth boundary, we may generalize a theorem in [A] from the unit ball
to a strongly pseudoconvex domain with smooth boundary. Thus we have that
Ss: HP(Q) —> HP(Q) is bounded and onto for all 1 < p < o

Now we consider the case 0 < p < 1. Foreach0 < p < 1 and h € #P(Q),
we apply the factorization theorem for #7(Q)) (Theorem 1.2 in [KL2])
several times (indeed, k, times) with 1 < 2k,p < 2. For simplicity, we write
down the case k, = 2; from the proof, one can see how the argument works
for any k as above.

Thus, with k, = 2, we have

oo 0
h(z) = Z Al Z AL Uy kUr k-
k=1 =1

Here u, € #*°(Q), u;,, v, € #*7(Q) and

fee
XAl = 11kl e,
k=1

“ul,k”d?“””U[,k”%“” <1,

1/2
el oo ( E12,177) " < €

Then we apply the previous result to the functions v, , € # Zkor(()). We
conclude that there are functions glv, ,] € #?*P(Q) such that

u[\/]s

f(Z)g,[Ul K1(z) = Uy, K(2)s

m 1/2
( Z ||g[vl,k]”§k0p) =< C(n’ZkOP)HUl,k”d’l’z"o”'
j=1
Thus if we let

gj[h] = Z Ay Z ul,kgj[vl,k]’
k=1 I=1
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then g;[4] is in #7(Q)) and satisfies

L A lhI() = h(z),

and

m 1/2
C(n,
(Z||gj|léfp) < %nhnm
j=1

Therefore
Sf: HP(Q) > HP(Q)

is bounded and onto for all 0 <p < . This completes the proof of
Theorem 1.3. m

4. Proof of Theorem 1.4
In this section, we shall prove Theorem 1.4. For simplicity, we only
consider the case when n = m = 2 and  is the unit ball.

By the argument at the beginning of Section 3, we see that it suffices to

prove that E(F) € A,(B). We shall separate our argument into several
cases.

Case 1. 0 <y < 1. As usual, we shall prove that
|V.E(F)(2)| < (C(n)/8%)r(2)""".
Since dE(F) = F and f € A (B), we have

C(n)
63

|F(2)| < r(z)""

(Here f denotes the m-tuples (f;, ..., f,,); see also the beginning of Section
3.) Thus we need only show that

C(m)liflla,

IazE(F)(z)IS 63

r(z)”"', zeB.
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Since f € A (B), we have

|T,f(2)] < Cliflla,g,(2),

where
1 ify>1/2
803 =\, ()2 o<y <12
Let
fi(2)
T
Then

IaE(F)< )\ [ 2B 6) AF(6)|

| [ =Bz ) A - F2)E)
_(F2(§) - Fz(z))a_f](f))
HR(2) [ B OT78) = Fi(2) [ 52 E(2, 07F(6)

E(z £€) N

Iflla, 1€ — 21 /8%

+|F2(Z)l 19 £1(2)| +]Fi(2)[9:£2(2)]
= Cliflla,87%1(z) + ClIflla,r(2)""".

By the form of the expression for E; in Section 2, we have

|0,(r(€)Ey(2,€) AF(£))]

Y 'f _Z'
<C
< Cliflla,r(£) (Il Lz, & 7(z,¢)

1
dv
e <z,§>lzf(z,§)3/2) ©

S 1
<C av(é§).
< CWlia,r(®) (|1 - (z,§>|27(z,§)3/2) ©
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By Lemma 3.1,
|0.(Ex(2,€) A & dE ATF(8))]
< Cg,(£)]0.Ey(2,¢)]
|¢ — z| 4 1
1=z, OF (z,6) 1 =<2, r(z,)

1
dv(§).
11—z, &) r(z, )" ©

< Cg,(§)

av(¢)

< Cg,(¢)

and

|0.(Ex(z2,€) A & dE ATF(8))]
< Cg,(£)|9,E5(z,¢)]
1 1
< (G
= g*“)( = o6 (26

1
1 - (z,§>|7(z,§)3/2) W

)dV(f)

< ng(ﬁ)(

Since
B(Z, f) —]§(z,§)

(1 2 2 : - 2r(z)r(¢)
B (Zﬂi) i=1 & Zj)|§—z|27(z’§)

5 dé; A dE - déE
+(___1_.)2 f (f — Z)M dé¢; A dg' dé¢
S e (2,8 ’
we find that

o((B(z,6) = B(2,6)) ATF(0))|

1 1
+
€ —2zl7(z,€)° 1€ - 2l*r(2,6)

& —z|~*
+1-(z,§)1/2

oo

< cuqu,r(g)’(

av(¢)

1
£ —z|%(z, &)V

< cnanyr(f)V(|
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Combining the above estimates with Lemma 2.6, we have

1) = | Euf)AWHE—ﬂ”WG)
sawMﬁuang_fgéifﬂ
s, £i0) g - 2P

B|1 — (,z,§)|37'(z,§)1/2
< Cllflla,r(2)"™" + Cliflla,r(2)"™
< Cliflla,r(z)""

Therefore we have

<amA(”ka

E(F)(Z)

and the proof of the case 0 < y < 1 is complete.

Case 2. 1 <y < 2. We calculate that
52 E(F)(2) = [ 5Bz &) (FOTE) = F(ET(6)

= [ 3B O((F(&) — F(2)R(8)
—(Fy(¢) — F(2))3fi(£))
+[F(o) [ 2B 1) - Fu2) [ 3Bz 076

=Ii(z) + I,(z)
=1(z) + I15,(z) + I,(z).

2

Pi(Fy)(z,¢) = (Fl(z) - F(§) - )y (akFl(f)(Zk - &)

k=1

—5kF1(§)(zk - ‘f_k)) .
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Then

%E(z,f) NIFA€)(Fi(z) = Fi(€))

_a_zj A Of(€) Pi(Fy)(z,¢)

d 9E(z,¢)
,/1; dz;

- [ @(&)Z(akﬂ(g)(zk £)

0 F(€)(Z, — &))

- Ba fz(z,zg) AN (€)Pi(F1)(z,€)

A éfz(f)a—"z-;Pl(Fl)(z, £)

2 2
A fzfé;f) NTE) £ (3RO~ €)

B

+5kF1(§)(zk - f_k))

2
S AT B (e 6

+5kF(§)(2k - gk))
=I(2) + I11p(2) + L115(2) + 1114(2).-

Now it is easy to see that
C - _
|P(F))(z,€)| < 3‘5‘“f”A7(r(§) 2 4 r(z) 2+y)|§ —z|%.

Thus with some computations, as we did in Case 1, we have

aE(Z £)

(4.1) fB

‘If— lav(e) < C



SOME REMARKS ON THE CORONA PROBLEM 345
and

2
: ,i(zzf) \lé - 2Pr(§)" 2 dv(§) < Cr(z2)*”

42
“2 [
for all 1 < y < 2. Therefore, we have

: i(gj) A Wz(f)\llfll/\yr@)’—zlf —z|* dv(¢)

|14(2)] < f

2
: fz(,fa;f) /\fz(f)II§ — 212 dv(£)

C y—2
+ gllflIAyr(z) L
C _
< 5sIfIR, ()"

Notice that

e g)l oF,

T () - 20

< ;IIfIIAy(r(E)V_Z +r(2)" )€ -zl
Arguing as we did in Case 1, we have
C _
| L12(2) | < ggllflle,r(Z)y g

Next,

—1115(2)

_ Ba fz(;z&) A TFy(€) Z (0 Fi(€) (2 — &) + 8 F(€)(Z, — &))

- PE e

2
X kgl((akFl(f) — 9 F(2))(2x — &) + 0 Fi(€) (2 — gk))

2 2
+ La HEZ(,;;]g) A If(€) kg«l (3kF1(Z)(Zk - fk))

=I1131(2) + Ij13(2).
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Thus, by (4.2), we have

|11131 (z)|

9%E( z, —
<[ TEED

2
X kg}((akﬂ(f) — 0 F(2))(z — &) + 5kF1(§)(2k - f_k))

’E(z, &)
dz;0z;

< S—C;IlfIIAY/B A ifz(g)‘(r(g)‘“v +r(z)7")
X |E—zIPdV(¢)

+|Cogz [ (2.6 ATAOFF () (7 - &)

C _
< slfIR,r(2)"

2 -— - - -—
+ Cgnraz [AE(2.6) A FAORF(E)(3 - &)
2 2 _ o _
+C X |5 [F( 6 M) 7 a0 (3 - £))
C 2 —2+y 2 82 7 = - -
< §||f||,\yr(z) + Ck§1 sz(z)akﬂ(z)(zk - Z)
2 2 _ _ o B
+C ¥ 7257 LEG O(F6) = 7)) 7 dduF(6)(2 ~ &)
=1 l J
2 32 _ o a
+C L \agaz /22 [ECG )0(3:F(6)(2 — &)
2
< gcgllflliyr(z)"zﬂ +0+ CfB ? fz(lf?z,g) ‘Ilfllﬁ,r(f)y_zlf —z|?

+0+0

C
< Wk r(2)
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and
| I132(2) |
2 2
([ RS nane) & (<o) - )
2 2 _ _
T |5zt [ B2 6) NIB(ORF() (2~ )
2 2 ) _ ~
= ;1 3z?azj fB‘ng(z’f) A F2(€)0 Fi(§)(Zk — &)
2 2 _ o _
Ckz_:l ﬁ?a_z;fBE(z’f) A F(€)0g(9Fi(€)(Ze — &)
2 2 _ _
= k§1 a_z%z;(akFl(Z)(zk - zk)fz(z))
2] 8 ] ]
+C L |50, [EG)(f8) - Fa(2))
Xé&(ékFl(f)(zk - f_k)) +0
2 2
- ¥ [ |5 \nfui,u ~elr(e) R av(e)
k=1 9%
2 aE(Z, §) 2 _ y—2
+Ck§1‘/;3 ——azi——|||f||1\.,|§ zIr(€)7 7 dV(¢)
< Cllflla,r(z)" 2
Now
2
1114(2) =fB E(z ) /\‘Wz(f)a r (akF1(§)(2k = &)

k=1

_5kF(§)(2k - gk))
[B az L A 363 F (6)

IE(z, £)
[ =

/\Wz(f)ﬁ(ajﬂ(f) — §;F\(2))
oE (z &)

+,F\(z )[
=/ (Z £)

A 9fx(€)

A 3f2(§)(3,~F1(§) - ajFl(Z)) + 8;F(2)3,f2(2)
E(Z £)
- [ =

B

A ‘Wz(f)(a Fi(¢) - ajFl(z))
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B0 ap)|ifia Jé - z1avie)

|I114(Z)| = Cf‘
SC“f”Ay

< CIfIR,r(2)" %

Similarly, we have

< CliflI,r(2)" %

7}
a_ZjIIZ(Z)

It is easy to check that

IL(z) =0.

Combining the above estimates, we have completed the proof of the case
1<y<2

If we repeat these arguments, we can prove that Theorem 1.4 holds for all
v > 0. Similar formulations can be found in [K2] and [Siul; we omit the
details here. This completes the proof of Theorem 1.4. H
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