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SOME REMARKS ON THE CORONA PROBLEM ON
STRONGLY PSEUDOCONVEX DOMAINS IN Cn

STEVEN G. KRANTZ AND SONG-YING LI

1. Introduction

Let f be a bounded domain in Cn. Let =() denote the space of all
bounded holomorphic functions on f with norm [[=. It is well known that
=(1)) is a Banach algebra. For each 0 < p < , we let oP(lq) denote the
usual Hardy spaces over 1). Let fl, f2,..., fm H=(f) and 6 > 0 be such
that

m

(1.1) a2 E If (z)l 2
1, z f.

k=l

Then we can state the corona problem as follows:

Do there exist functions gl, g2,..., gm H(1) such that

f,(z)g,(z) + f2(z)g2(z) + fm(Z)gm(Z) =- 17

This problem has been solved by L. Carleson [C] when n 1 and f is the
unit disk. Carleson’s corona theorem has been generalized to a large class of
domains in the complex plane. (For example, see Jones [J], Garnett [G] and
related references therein). For the case when n > 1, the corona problem
has been studied by many authors. For examples: In [V1, V2], Varopoulos
proved that the corona problem has P(12) solutions when is the unit
ball or the unit polydisc in Cn. His theorem for the polydisc has been
reproved by S-Y A. Chang [Ch] and by K-C Lin [Lin] for n > 3 using
different methods. Let us consider the operation Sf associated to corona
data f= (fa,...,fm) from the product space P()m "-’-"P(’)X
aeeav(O) "" -eP(f) to a*’(II) that is defined by letting Sf(u)=
flUl -k fmUm Then we may restate the corona problem as follow: Is Sf:
(O)m --+ e(f) onto? Some substitute results were obtained by Amar
[A] and Li [L]; they proved that Sf: ov(f)m - av(f) is onto when f is
the unit ball or the unit polydisc for all 1 < p < m, respectively.
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In the general case, counterexamples have been constructed by N. Sibony
IS] and J. Fornaess and N. Sibony [FS1], [FS2] to show that the corona
problem is not solvable for general pseudoconvex domains, even for a domain
in C2 that is Runge and is strongly pseudoconvex except at a single point.
The question of whether the corona problem is solvable for the most
standard domains like the unit ball B B and the unit polydisc A in C is
still open. The main purpose of this paper is to provide some remarks on the
corona problem when f is a strongly pseudoconvex domain in C with
smooth boundary. For each 0 < p < , we shall use AP(f) to denote the
Bergman space over f, which is the holomorphic subspace of LP(’). Let
At(O) be the usual Zygmund space over 12 (see [KL2]). Now we are ready to
state our main theorems formally:

THEOREM 1.1. Let fl, f2,..., fm be bounded holomorphic functions in the
unit ball B satisfying (1.1). Let 0 < p < . Then Sf: AP(B) AP(B) is onto.
Moreover, for each h AP(B), there are functions ga[h], gz[h],..., gm[h]
AP(B) so that

t m

f g + f gm = h; E II&ll
j=l

1/2

< [C(n, p)/63][lh[lA,,.

It will be seen that the proof of our Theorem 1.1 actually works for any
strictly convex domain in C with C3 boundary. Next we note that strictly
pseudoconvex domains are locally strictly convex (up to local biholomor-
phism). By applying a decomposition of unity, and then theory for smooth
functions, we may derive the following corollary:

THEOREM 1.2. Let 1 be a bounded strictly pseudoconvex domain in C
with C3 boundary. Let fl, f2,..., fm be bounded holomorphic functions in f
satisfying (1.1). Let 1 < p < . Then Sf: AP(I) AP()) is onto. Moreover,
for each h AP(f), there are functions gl[h], g2[h],..., gin[h] AP(I) so
that

flgl + fmgm = h;
m )j=l

1/2

N [C(n,

Note here the restriction to 1 < p < ; this is imposed because we must
use a factorization theorem from [COU] that is only valid for that range of p.
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We shall also generalize the theorem in [A] from 1 < p < to the full
range 0 < p < . Notice that the next theorem is formulated in a different
topology from the first two:

THEOREM 1.3. Let be a bounded, strictly pseudoconvex domain in C
with Ca boundary. Let fl, f2,..., fm be bounded holomorphic functions in
satisfying (1.1). Let 0 < p < . Then Sf: oP(O) -0 oP(l) is onto. More-
over, for each h oP(l), there are functions gl[h],g2[h],...,gm[h]
oP(l) so that

flgl "+" fmgm h; (mj=l
1/2

< [C(n, p)/63]l[hllore,,,

Furthermore, we shall prove the following theorem:

THEOREM 1.4. Let 1 be a bounded strongly pseudoconvex domain in C
with Ca boundary. Let fl, f2,..., fm Av(l) t oT(l) with 0 < y < sat-
isfy (1.1). Then there are gl, g2,..., gm Av(I) N (1) such that

flgl q- f2g2 k- +fmgm 1, on ,
and

m

IIg.llA C(n, m, y)t -4-[/].
J’=l

Remark 1. From the proof of Theorems 1.1-1.4, one can see that the
constants C(n, p) appeared in Theorem 1.1-1.3 and C(n, m, y) appeared in
Theorem 1.4 satisfy the following estimates:

C(n,p) < C(n)(p- 1)-a/pp, C(n,m,’y) < C(n,m)/y,

for all p > 1 and y > 0. As either p or y 0 + then the estimate for
the constant C blows up. Thus we have not solved the original corona
problem.

We note that results related to the material in the present paper appear in
[An2]. See also [Anl], [AnCa].

2. Preliminaries and lemmas

Let 12 be a bounded domain in Cn. We let ..(0,1)(") denote the space of
all (0, 1) forms whose coefficients are smooth and have compact support in fl.
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We shall use the notation .,k(0,1)() to denote the space of all (0, 1) forms
whose coefficients lie in ck(), and we let LP(o, 1)(1) be the space of
(0, 1)-forms with coefficients in LP(’). In order to prove Theorem 1.1, we
need only concentrate our attention on the case when 1 B, the unit ball in
Cn. In this section, we shall introduce some notation and collect some results
from J. Polking [P] to get the appropriate integral kernel for solutions of the

equation. Moreover, we shall give several lemmas which will be used in
Section 3. Set

r()=-I1 p(z)=lzl- z n
and

-(z, ) I zl + p(z)p(g).

Then we define the following (1, 0)-forms:

b(z,)
2ilsc-z[ 2 -. d:.,

j=l

/3(z,) 2riz(z,) j=

and

n

a(z,:) 2-i(1 (z,)) j=l

Here (z, w) 52.zj. is the usual Hermitian inner product on Cn. More-
over, we define the following (n, n 1)-forms:

B(z,) b(z,) A (b(z,))n-l,

/(Z,) /(Z,) /k ((Z,:))n-1

and

S( Z, ) 01. /k (Ol)n-1.
Let

A(Z.W)--[.(Z.W) /k (Z.W)] /k E (0)k-1

k=l
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Then we set

E(z,w) B(z,w) S(z, :) + OA(z,w).

It has been shown in [P] that E(z, w) is a fundamental solution for the
operator. Moreover, if p > 1 and f Lo,a)(B) is -closed, then

(2.1) E(f)(z) faE(z,w) A f(w)

satisfies the 0 equation:

(2.2) aE(f)(z) =f(z), z B

in the sense of distributions.
In order to write down E(z, s) explicitly, we need to calculate OeA(z, ).

For simplicity, we shall write down the details only for the case n 2.

LEMMA 2.1 [P]. If n 2 then we have

A(z, ) S(z,) (z, ) + ((z, ) .(z, ))
/(a.(z,w) + t(z,)).

LEMMA 2.2 [P]. Let a( z, ), /3(z, s), B( z, ) and (z, ) be defined as
above. Then we have

((z, ) (z,)) {a(z,w) + (z, )}
r()El(Z, ) + E2(z,) A ’d + E3(z, ) A sC.d:,

where

(1)El(Z, )
( i i )2 1 < z, so> + (z,)

(1 <z,>)r(z,)

(2rri)
2
r(z)(1/(1 (z,:>)) + (1/r(z,s)) d(. dsc(1 (z,>)r(z,)

(1)2E2(Z’)

(1)2E3(z’sC)

(1 <Z, :>)2(z,:)
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here we have used the notation

n

w" dz wdz,
k=l

._Ln
dw dz , dwk A dzk.

k=l

Combining Lemmas 2.1 and 2.2, we have the following:

LEMMA 2.3. With notation as above, we have

E(z,) B(z,) J(z,) + r()El(Z,)

+(E(z,) + E(z,)) / . d$.

Now let us compute B(z, sc) -/(z, so). From the definitions of B(z, :) and
/(z, so), one can easily verify that

1)
2

z:B(z,) (z,)
j=l

2r(z)r() r(z r(sc) dsCiAd$.ds

First let us give an upper bound for these kernels:

LEMMA 2.4. With the notation above, we have

([B(z,) -t(z,) + r()lEl(Z,)l)r() -1

r(z) +< C(n)
Isc-zlar(z,sc) [1- (z,)l’(z,)3/2

Proof. Observing that

-(z, sC) <CI1- (z,) I, r(z)r() <’(z,), and [sC-zl 2<-(z,:),
one can easily see that the lemma holds.

We need to estimate all of the terms that arise in the above calculations.
First we show:

LEMMA 2.5. For 0 < e < 1, we have

fB r(z) + r()
r(:)l z 13"r( z, sc)

dr() < Cr(z)
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Proof We use local coordinates as before. We have

r(z) + r(:)
r()l: zl3(z, ) dV()

r(z) + dA(A) dsdt

)3 ):2t(r(z) + IAI / s (r(z) / / s / I,1

(f01f01 1
ds dt + r ( z ) )< C

(r(z) + s) r(z) + + s

< C
(r( z) + t)

dt + r(z)

< Cr(z) -.

+r(z) )

Therefore the proof of Lemma 2.5 is complete.

The following lemma for controlling non-isotropic integrals will be needed
in Section 3. For each 0 < e < 1, and a,/3 > 0, we define

fB r()-
dV(),,(z)= ll-(z,>lr(z,)

Now we have:

LEMMA 2.6. (a) If > 1, then there are three cases"

(i) Ira + 2 + e > 4, then

I,#,( z) < C,,13r ( Z)4-a-2/3-e"

(ii) If a + 2 + e <4, then

(iii) If a + 2 + e 4, then

I,t,(z) < C,t, log
r(z)

(b) If/3 1/2, then we have the following two cases"

(i) Ira+e- 1/2>2, then

)5/2-aI t,(z) < Cr(z
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(ii) If a + e 1/2 2, then

(1)I,,,(z) < C log r(z)

Proof Let us consider case (i) in part (a) first. Using the usual local
coordinates, we have

f, r()l dV()Ia,,(Z) =11 <Z,> (Z,)

I_<1 (r(z) + + s + IAI 2) (r(z) + + s + IAI)2

--< Cfolfol t-e

(r(z) + + s)+2(/3-1)
ds dt

<- C,,t3r( Z)4-c-2/3-e.

Applying the same argument as above, we can prove (ii) and (iii) in part (a),
and we omit the details here.
Next we consider part (b). We shall prove (i) in (b). We see that

fB r()-
dV()I,t3,(z )

211 (z,)lZT(z,) 1/2

I<_1 (r(z) + + s + Ixl 2) (r(z) + + s + I1)

< C
(r(z) + + s + I12)

dll asat

ff f= t-
dx ds at

jO jO jO a-l/2 2(r(z) +t+s) (1 +x )

< C,,t3r(z)5/2--.

Similar arguments show that (ii) holds. Therefore the proof of Lemma 2.6 is
complete, m
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3. Proof of Theorem I.I

In this section, we shall prove Theorem 1.1. In order to avoid unnecessary
complications, we restrict our argument to the case when n m 2. From
our proof, it will be clear that the methods work for general n. Then we may
apply Koszul complex theory (see [K1]) to extend to general m.

Let fl, f2 =(B) and 6 > 0 be such that

(3.1) 8 <lf(z)l =lf(z)[2 +lf(z)l _< 1 for allzB.

Let

where Ill 4 (Ifl(z)l 2 + If2(z)12)2. For each h AP(B), it is easy to show
that hF is a 0--closed (0, 1)-form, and gE(hF) hF. Now we set

where

gl[ h] qlh feE( hF), g2[h] p2h + flE(hF),

(3.2) If(z)12’
j 1,2.

Then one can verify that

0g. O, j 1,2; and flgl[h] +f2ge[h] =- h.

To prove Theorem 1.1, we therefore need only study the regularity of the
solution E(hF). We start with the following lemma.

LEMMA 3.1. Let F be as above. Then we have

(’d) AEj(z ) AF= f1T12f2-f2T12f1

where T12-- l(tg/tg2)- 2(9/t91) and j 2,3.

A E(z, s) A dsl A d:2,
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Proof Since

.dCAEj(z,) AF=.dAFAEj(z,)

" d A 710-2 --L--I

flrl2f2 LT12fl(z)
Ifl 4

The proof of Lemma 3.1 is complete.

Now we are ready to prove Theorem 1.1.
Since f o(’=(B) and (3.1) holds, we have

(3.3) IVfl() + vy(e) _<

and

(3.4) T12f,( sc)l + T12f2( sc)l < C(n)
r(sC) ’/2

for all B. Applying Lemmas 2.4 and 3.1, we have

[E(hF)(z)l

(E2(z, sc) + E3(sc)) A d A F()h()

-< e>- e))lr() -’ +[r(e)gl(z,e)]r(e) -1}
xlh()ldV(e)

+ E2(z, sc) A sc" dsc A F()h()

+ fBE3(z,) A " d AFh)

Jl(h)(z) + J2(h)(z) + J3(h)(z)
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Applying Lemmas 2.4, 2.5 and 2.6 with a 1,/3 3/2 and 0 < e < 1 and
Schur’s lemma [Z], we have

C(p) IIh IIA,.

We study J3(h) first. Since

we see that

Ir()E3(z,) A F()[
c { r.(z)-< II-<z,>l2

(z,)
r(z)(r() ’/2 + I

+
[1 (z, :)[2r(z,:) 2

r(z)
I1 <z,>lr(z,@)2

2 1/2r(z) r() I:-Z[

l1 i7i
C { r(z)

)2-<
I1- <z,>lr(z ’5

r(z)r()l/El zl } dV()
Ct -3

T(Z, )2 dV().
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LEMMA 3.2. Recall that the dimension n is 2. Let

T(u)(z) fBu()r(Z,) -2 dV()

Then T" LP(B) LP(B) is bounded for all 1 < p < .
Proof This follows from Lemma 2.6 with a=0, /3=2 and 0<e< 1

and from Schur’s lemma, m

By using integration by parts, we find that

lE(Fh)(z)l fr()E3(z,) A F()h()

CfB -2<_ - r(z,#) )h(#)ldV( )

r(Ihl)(z).

Thus Lemma 3.2 implies that

for alll <p <.
Next we show that IIJ2(Fh)IIL,(B) < C/631[hllA,.
Since

E(z, )

(I- <z,sc>)3(I})
+ - (1 <Z,>)27"(Z,)2

+(1
2

(1 <Z, >)2(z,:)

_(1
2

(a <z, >)(z, )
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we have

C(--G(z,) "+- GI(Z,))
Now let us consider G first; we prove the following lemma.

LEMMA 3.3. Let G(z, ) be defined as above. Set

6(u)(z) f ,u(e)6(z,g)
Then G" LP(B) --, LP(B) is bounded for all 1 < p < o.

Proof
lemma.

Use Lemma 2.6 with a 5/2,/3 1/2 and 0 < e < 1 and Schur’s

In order to estimate Ga(z, :), let us do the following calculations"

A A

=-ff() A . d A dl A d + Of() A " d A d A d2
Of Of
0:2:2 d:2 A d:2 A dx A d: + -1: d: A d: A d2 A d:2

..@f()dl A dl A d2 A d2

.f() dv()

where

dv() d: A d: A d:2 A d:2;
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and

Thus

Is zl2,.@f(sc) + N(z,)
of of

1"1[1 Z112 q- 2"2[2 Z2 [2

Of Of"[-2el(e1- z1)((2- .2) "-’[- 2(2- z2)(,l- .-1)

el --l[el Z1 [2 ..[_ ga2i:2 z2

of of+ b2 (Sl(Sl Zl) + si(e2 z2))(2 2) s22Is2 z2 [2

& 07 2+ b- (si(sc2 z2) + el(el l))(g 1) giaI:1 z,i

of

of"["" "71 (&(2 Z2) -[- ’1(1 Z1))(’I 1)
Ol(Z,s) + Oz(z,s:).
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Since

we have

Qj(z,)
r()

(1 <Z, ))2 2(Z, :)
<C

for j= 1,2.
Therefore

C 1
63 I1 <z,#>lr(z,#)3/2 dv(#).

Applying Lemma 2.6 and Schur’s lemma, we have the following:

LEMMA 3.4. Let

GI(U)(Z ) fBU()GI(Z,) du

Then G1" LP(B) - LP(B) is bounded for all 1 < p < .
Combining all the above estimates, we have completed the proof of

Theorem 1.1 for 1 < p < m.

COROLLARY 3.5. Let F be as above. Then

and for any y > O, iff Av(12), then

Cv

For the case when 0 < p < 1 we cannot prove Theorem 1.1 directly. We
need the aid of the following decomposition theorem for Bergman spaces
due to R. R. Coifman and R. Rochberg [CR] for 0 < p < 2:

THEOREM 3.6. Let h AP(B). Then we can write

h( z) E AUk( Z)Vk( Z)"
k=l
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with uk APq(B) and vk APq’(B) such that

where q > 1, q and q’ are conjugate exponents.

Let 0 <p < 1 and h AP(B). Then we choose q > 1 so that pq 2 and

h kUkUk,
k=l

Uk Apq,t3k APq’

as in Theorem 3.5.
Applying the conclusion of Theorem 1.1 for the case 1 < p < to ue, we

see that there exist gj[ul., so that

m

.,fj&[ue] u, k 1,2,...
j=l

and

Now we let

k=l

Then we have &[hi AP(B) and

k=l Ap

(oo )alp< (C(n p)/83) E I,
k=l

C(n,p)

for all j 1, 2,..., m. This completes the proof of the case 0 < p < 1.
Therefore, the proof of Theorem 1.1 is complete.
The proof of Theorem 1.2 follows similar lines, and has been described in

the introduction. We omit the details.
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Now we prove Theorem 1.3.
With the help of Theorem 2.2 in [KL1] on Carleson measures and

BMOA(O) functions, and the decomposition or factorization theorem (Theo-
rem 1.2 in [KL2]) for Hardy spaces in a strongly pseudoconvex domain in C
with smooth boundary, we may generalize a theorem in [A] from the unit ball
to a strongly pseudoconvex domain with smooth boundary. Thus we have that

Sf: e,p()
_
p() is bounded and onto for all 1 < p < .

Now we consider the case 0 < p < 1. For each 0 < p < 1 and h e,p(f),
we apply the factorization theorem for TP(f) (Theorem 1.2 in [KL2])
several times (indeed, k0 times)with 1 < 2kop < 2. For simplicity, we write
down the case k0 2; from the proof, one can see how the argument works
for any k0 as above.

Thus, with k0 2, we have

h(z)

_
AkUk

_, ll,k.l,ll, kU,, k.
k=l 1=1

Here uk o2P(), Ul, k, Ul, k o4P(") and

Ilhll pI,x --k=l

Ilu,kll4,,llVl, kl[4,, 1,

Then we apply the previous result to the functions vt, k goP(II). We
conclude that there are functions gj[vl, k] o2kp(’) such that

m_, fj(z)gj[vt,c](z ) v,,.(z),
j=l

m )1/22

j=l

< C(n,2koP)llVl,ll,,o,.

Thus if we let

gj[h] E AkUk , Ut, kgj[Vt, k],
k=l 1=1
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then g[h] is in P(f) and satisfies

m

E L.(z)g[h]() h(z),

and

m )1/2 C(n,p)II&ll, < g Ilhll,.
j=l

Therefore

s- (n) -, (a)

is bounded and onto for all 0 <p < . This completes the proof of
Theorem 1.3. m

4. Proof of Theorem 1.4

In this section, we shall prove Theorem 1.4. For simplicity, we only
consider the case when n m 2 and 12 is the unit ball.
By the argument at the beginning of Section 3, we see that it suffices to

prove that E(F) Av(B). We shall separate our argument into several
cases.

Case 1. 0 < , < 1. As usual, we shall prove that

IVzE(F)(z)I <_ (C(n)/63)r(z) -1.

Since E(F) F and f At(B), we have

C(n) -1[F(z)l _<
3 r(z)

(Here f denotes the m-tuples (fl,..., fro); see also the beginning of Section
3.) Thus we need only show that

C(n)llfllA
zB.iOE(r)(z) <_ r(z)r
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Since f At(B), we have

ITiffk(Z)l CIIfllAgv(z),

where

1 if y> 1/2
gv(z) /2r(z)- if0 < 2’ -< 1/2.

Let

L.(z)
F.(z)

If(z)l4,
z B.

Then

OE(F)
OZ (Z)

By the form of the expression for Ej in Section 2, we have

< CIIfllA,r() ’ ( I z[

]1 <z,>13r(z,:)

i1 <Z, :>[2 3/2r(z,)
dV()

< CIIflIAr()( 1 ) dV()I1 <z,>12 3/2-(z,)
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By Lemma 3.1,

<_ cg()lOzE(z,)]

<_ Cg()
I1- (z,)lr(z,)

4-

1
< Cg3’()

I1 (z,)l3T(Z,)1/2 dV().

dV()

and

laz(E(z, ) A . d A -fk())}
<_

( 1
< Cg,()

}1- (z,)lr(z,)3/

1 ) dV()< Cg()
1- <z,>lz(z,)/

Since

B(z,sc) -(z,:)_, (j j) 2r(z)r()
j=l [: Z’i-i )2 d6/ d. d

2 2

( 1 ) (_2,) r(z)er()e

we find that

<_ ClIflIA,r()’( 1

I- zlr(z,) I zl2r( z, )3/2

< Ciifllar()r( 1 ) dV()I zl4r(z, :)1/2
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Combining the above estimates with Lemma 2.6, we have

2

I(z)= - fBk=l
-E( z, ) / af I zl

+
I1 <z,>[r(z,:)’/21 zl

< CIIfllAr(z) y-1 q" CIIfllAr(Z) T-1

< CllfllAr( Z) y-1.

Therefore we have

O
E(F)(z) < C Ilfll2Ar(

and the proof of the case 0 < y < 1 is complete.

Case 2. 1 < 3’ < 2. We calculate that

0
E(F)( z) -E( z, )(FI()2() F2(:)(:))

e(,e((e(e -el()(e

-(e(el e()(el)

( fE f
O E(z,)l())+ FI(Z ) OZ (Z )2() F2(z)

Ii(z) + I2(z)
Ii1( z ) + I1( ) + I().

Let

2

PI(F1)(z,[J) FI(Z) FI() E (OkF,()(Zk k)
k=l

--O-kFl([J)(k- k)))"
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Then

0

OZj II1(Z)

OZ -i

A d---f2()PI(F1)(z, )

2O fBOE(z,) Af2() E (OkFl()(Zk--k)OZj Oz k=

A 2(:) PI(F1) (z, :)

fOE(z,e)Oz
0

A 0---f2(:) jPI( F1)( z, )

OE(z,e)f
)B OZi

2

A O-f2( ) E (OkFl()(Zk
k=l

+kFl()(’k- k))
OE(z,g) 23 E (3kFl()(Zk k)

+F(s)(2 ())
II11(Z) "-t’- II12(Z) -’!- II13(Z) -’1"- II14( Z ).

Now it is easy to see that

IPl(F,)(z,,f)[ < 51[fllA(r() -2+e + r( z) -2+r)lsc zl 2.

Thus with some computations, as we did in Case 1, we have

(4.1)
O(z,:)
-o I z ,tv() <_ c



SOME REMARKS ON THE CORONA PROBLEM 345

and

(4.2) fB OE(z,=) r - )-Ozi--z} I- zl () dV() < Cr(z

for all 1 < 3’ < 2. Therefore, we have

OE( z, )
OziOz

/X f2(:)]llfllAr(:)v-2]: zl 2 dV()

+ -llfllA,r(z) Ozi--zi [s zl 2 dV()

C 2 y-2< -llfllAr(z)
Notice that

0
Pl(F1)(z )

OF OF

< [[f[[,(r(:)"- + r(z)’-)[: -z[.

Arguing as we did in Case 1, we have

11112(Z)[ < llfllr()T--2

Next,

11131(Z) + II132(Z).
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Thus, by (4.2), we have

111131

2

E ((OkFl() OkF(Z))(Zk k) + kFl()(’k k))
k=l

< llflla az,]i /xUf2() (r() -2+T - r(z) -2+T)

x I zl 2 dV()

032

OZioZj fBE(Z,) A &2()OkFl()(.k

C 2 7-2< -711fllr(z)
02

-t C
OziOz, fBE(z, ) A f2()akFl()(.k k)

2

+cE
k=l

02

O.ZiaZ fBE(Z,) /k f2() /k O(kFl()(.k k))

C 2

< _llfll: -2+

s r()
k=l

02

OZiOZjL(Z)kFI(Z)(k k)

2

+cE
k=l

02

O’ZiOZjfBE(Z,:)(f2() --f2(Z)) A kFl(e)(k k)

2

+cE
k=l

02

OZiaZjf2(Z) fBE(Z,e)(kFl()(k k))

c 2_< -gllfllar(z) 2+v + 0 + C
o32E( z, )

ilfll 2 -21 2ar(sc) -zl

+0+0

C
< llfll A,r(z)
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and

O-(akF(e)(2k )) + 0

Now

OE(z, )
Il14(Z) fB

OE(z,g)

2O E (ekFl()(zkA f2()j
k=l

--O-kF()(2k- (k))
A f2( :)6F1(:)

o
f2()j(0jFI() cgjFl(Z))

OE(+ DjFI( Z )f OZ"B

A O-2()(OjFI() OjFI(Z)) + OjF(z)OiL(z )

fB OE( Z’
A f2( )(OjFI() OjFI( z ) )



348 STEVEN G. KRANTZ AND SONG-YING LI

Thus

I1,4( z)l -<
OE(z,g)

< CIIfll 2
A

< CIIfll 2 r(z) r-2

IlfllAl zl dV()

Similarly, we have

0

jI12( Z ) < Ciifll 2 -2

It is easy to check that

o.

Combining the above estimates, we have completed the proof of the case
1<3’<2.

If we repeat these arguments, we can prove that Theorem 1.4 holds for all
3’ > 0. Similar formulations can be found in [K2] and [Siu]; we omit the
details here. This completes the proof of Theorem 1.4. 1
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