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APPROXIMATE VERSIONS OF CAUCHY’S
FUNCTIONAL EQUATION

J. RALPH ALEXANDER, CHARLES E. BLAIR AND LEE A. RUBEL

1. Introduction

Ulam [U, page 63] raised the general problem of when a mathematical
entity which nearly meets certain requirements must be close, in some sense,
to one which does meet the requirements. A particular case is a result of
Hyers [H]: if

[f(x + y) -f(x) -f(y)[ < e for all x,y,

then there is a g satisfying Cauchy’s equation with If(x) g(x)[ < e for all
x. A survey of related results appears in [HR].

In this note, we look at stronger assumptions ([H] did not even assume f
was measurable) that imply f(x)= yx almost everywhere (we will use
Lebesgue measure, denoted by/, throughout). Our main results are:

THEOREM 1. Let f, a, b be measurable functions and let

(1) 8(x,y) =f(x+y)-a(x) -b(y).

If there is a J R such that, for every e > O,

(2) /x({(x, y)l [/5(x, y) JI >-

is finite, then, for some y and , f(x) yx + almost everywhere.

Remarks
1. It is easy to see that, if f a b and J 0, then/3 0.
The referee points out that the case f a b and J 4:0 is related to

Pexider’s equation f(x + y) f(x) + f(y) + K.
2. For any p > 0, 6 LP(R2) implies that 6 satisfies (2)with J 0.
3. It can also be shown that, for some /3’, y’, a(x)= y’x + 13’ almost

everywhere (the same argument applies to b(x) by symmetry): replace f by
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f’(x) -a(-x) and let a’(x) -f(-x), and b’(x) b(x). Then

(3) 6’(x,y) =f’(x+y) -a’(x) -b’(y) -6(-x-y,y)

satisfies the hypothesis of Theorem 1 if 6 does, since the two are related by a
measure-preserving transformation (look at the Jacobian), and the conclusion
follows. Moreover, y y’ (consider what happens with y fixed)and 6(x, y)

J almost everywhere.

THEOREM 2. Let f LI[0, a] for all a > O. For x, y > 0, define

(4) 3(x, y) f(x + y) f(x) f(y).

Suppose that for almost all x,

lim -1 6(x, y) dy 0
u U

Then for some y, f(x) yx for almost all x > O.

Notice the absence of absolute value signs in (5).
Elliott [El] has shown that, for any a > 0, f(x) yx almost everywhere if

f L(0, z) for all z > 0 and

(6) limz -1 [f(x +y) -f(x) -f(y)l’ dxdy =0.
Z

These results each cover certain cases not included in the others. Theorem 1
only assumes the measurability of f. Theorem 2 could be applied to cases in
which f is small but fl,l is large. For example, Theorem 2 implies that we
could not have

(7) 3(x, y) -= sin((x 2 + y2)1/2).
We present proofs of these theorems in the next two sections. In our final

section, we take a more elementary approach which, for the case of continu-
ous functions, gives more information.
We thank Richard Rochberg for suggesting a related question to one of us

(LAR).

2. Proof of Theorem 1

LEMMA 3. /f D, E
__
R and each set has finite measure, then for any

L R, there isKRwithKDandK+L fE.
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Pro@ Let N =/x(D) +/x(E). Let K be any member of [0, N + 1] which
is not a member of D u (E L), where the minus sign denotes translation.

LEMMA 4.
define

Assume 6 satisfies the assumptions of Theorem 1. For e, 0 > 0

(8) Ax, {Yl 15(x, y) -JI > e} andB, o {xllx(Ax,) > 0}.

Then Be, o has finite measure for each e, O.

Proof. If the measure were not finite, Fubini’s theorem would imply

I(x,y) JI
on a set of infinite measure.

LEMMA 5. Define

(9) h(y,K,L) 6(K + L, y) 6(K, y)

[f(y + K + L) -f(y + K)] [a(K + L) a(K)].

For any e, 0 > 0 and L R, there is a K R such that

(10) /x({yl Ih(y, K, L)I >- e}) _< 0.

Proof Since Be/2, o/2 has finite measure, Lemma 3 implies that there is a
K such that both K and K + L are not members. Thus

(11) tZ(AK, e/2 L)AK+L,e/2) N 0

and, if y is not in the union, 16(K + L, y) 6(K, y)l < e. m

LEMMA 6. For any L, there is a number ML such that

(12) f( y + L) f( y) ML

for almost all y.

Proof.
and let

For n 1, 2,..., let K be given by Lemma 5 with e 0 2 -n,

(13) S

(14) C

a(K + L) a(Kn)
={YIIh(y, Kn, L)[<2-"}.
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C is the complement of the set in (10), so we may apply Lemma 3 with D
and E the complements of C and Cn+ to conclude that there is y C
such that y’ y + (K Kn+l) Cn+ 1, which implies that

(15) Is Sn+ll =Ih(y, Kn, L) h(y’,Kn+l,L)[ < 2-n+l,

SO S is a Cauchy sequence. We let M/ be its limit. The set of y for which
(12) holds contains

(16) U n (Cn -t- Kn)
m=l

where the plus sign denotes translation. Since the complement of C --[- K
has measure < 2 -n, the complement of the set in (16) has measure 0. I

Finally, we show that, if f satisfies the conclusion of Lemma 6, then, for
some/3, f(x) Mix + almost everywhere. We will assume M1 > 0 in the
proof. The case M < 0 follows by considering -f(x). Let

(17) E =f-l(-o,r) O [-1,11,

(18) /3 sup{rl/z(Er) < 1},
(19) g( x) Mix -k .
Note that/z(E) _< 1.

If f 4: g almost everywhere, then there is e > 0 with If(x) g(x)l > e on
a set of positive measure. We will show that both f > g and f < g lead to
contradictions. The idea of the argument in both cases is that we begin by
locating a small interval with f bounded away from g in most of the interval.
Then we use (12) to conclude that f must be bounded away from g for most
of [- 1, 1], and show that this leads to contradictions with the definition of/3.

Case 1 (f too big). Define

(20) r={xlf(x) >g(x) +

If z(T)> 0, we can find, for any r > 0, a sequence I of intervals with
rational endpoints with T tit and Ettz(It) < (1 + r)/z(T). For at least
one t, (1 + r)tz(I T)> tz(It). Since I can be written as a union of
subintervals (disjoint except for endpoints), we can find arbitrarily small
intervals I with

(21)
/x(T n I)

/x(I)
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arbitrarily close to 1. In particular, there is a natural number m and an
integer k such that

[k k+l
(22) /x T , m ) (M,+e)l> M1+2e -"
We require m to be so large that there is a natural number j < m such that

(23)

(24)

M --1-- + M+2e - <1.

(The expression on the left in (24) is monotone decreasing in j/m, and < 1
if j/m elM1. If M 0, then j m.)

Let a g(-j/m) + e. We will show that /x(E) < 1. Since (23) implies
a >/3, this will contradict (18).

If x > -j/m, f(x) > g(x) + e implies f(x) > a, so

(25) (xlf(x) > aand x > J ) z T
j )

It is easy to show that, for any natural number m, m(1/m
Hence, by Lemma 6 with L l/m,

(1/m)M1.

(26) x T if and only if x+ 1/m T

for almost every x. This implies that (22) holds for any integer k. If k > -j,
(22) and (25) imply

(27) x lf(x) < a x m’ m

( Ml+e)l e
< 1- M + 2e (M + 2e)m

We can write [-j/m, 1] as a union of j" + m intervals of length 1/m and use
(27) on each one to obtain

(28) xlf(x) <aandx --,1 <
(M + 2e)m

Now, (28) and (24) together yield

([ J(29) /z(f-l(-,o) CI [-1,1]) </z -1,--
e(j +m)+ (M + 2e)m



CAUCHY’S FUNCTIONAL EQUATION 283

In other words, /z(E) < 1. As previously indicated, a >/3, so this contra-
dicts (18).

Case 2 (f too small).
time, we define

The essential ideas are the same as in case 1. This

(3o) T {xlf(x) < g(x) e}.

k, m, j are chosen so that they satisfy (22), (23), and

MI+e ( J)(31) M + 2e 1 + - >_ 1.

Define a g(j/m) e. By (23), a </3. We will show that/x(E) > 1, which
implies/x(Et) > 1, which is inconsistent with the construction of/3.
For x < j/m, f(x) < g(x) e implies f(x) < a, so

(32) xlf(x) <aandx< - _Tfq -,-
Just as in case 1, (26) implies (22) holds for any integer k. Hence, if

k + 1 < j, (32) and (22) yield

(33) p, xlf(x) < a and x , m > Ml+2e "
Write [- 1, j/m] as a union of m + j intervals of length l/m, use (33) on

each one, and apply (31) to obtain

(34) xlf(x) < a and x MI+e)m+j> M + 2e m

This establishes that /x(E,) > 1, which leads to the desired contradiction.

3. Proof of Theorem 2

Iterating the equation (4) gives

n-1

(35) f(y + nx) =nf(x) + f(y) + _, 6(x,y +kx).
k=0

Integrate equation (35)with respect to y to get

(36)
1 fff 1 ff 1 f?6(x,y) dy"(y + nx)dy =f(x) + f(Y) dr +
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If x satisfies (5), then

(37) lim
1 -j0-- f(y + nx)dy =f(x).

To complete the proof, we first show that (37) implies, for any natural
number r, that

(38) f(rw) rf(w) for almost all w.

Next we show this implies f(x) yx, for some y and almost all x.
Let S be the set of x for which (37) holds. We have seen that (5) implies

almost every real number is in S. Hence, almost every x is in

(39)
r=l

Hence, for almost every w, (37) holds for all x {w, 2w, 3w,...}. For
such w,

(40) f(rw)= lim
1 f0wf(n-, nwr Y + nrx ) dy

lim
1 rlf(+a,wf(

n nwr Y + nrw) dy rf(w).
k=0 kw

This completes the proof of (38) for natural numbers r. It follows immedi-
ately that (38) holds for all rational r > 0.
The rest of the proof depends on theorems of Lebesgue about functions

f L and their "indefinite integrals" F(x)= ff(w)dw, which may be
found, for example, in [KF, pp. 313-324]:

1. F(rx) rff(rw) dw.
2. F is continuous.
3. f(x) F’(x) almost everywhere.

Let 3,/2 F(1). For rational r > 0, we can use (38) to obtain

fo folrf( w ) dw r 2if(rw) dw r ),/2.(41) F(r) =r

The continuity of F implies F(x) ),x2/2 for all x, so f(x) F’(x) ),x
almost everywhere. This completes the proof.
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Theorem 2 can be extended to f La[-a, a] for all a > 0. Theorem 2
implies that f(x) yx for almost all x > 0. If x < 0 satisfies (5), then

(42) 0 limlf;(xy) dy lim
l fu 6(x,y) dy

uoo U uoo U q-X
-x

lim
1 [u,__,u+x {[f(x+y)-f(y)] -f(x)}dy=yx-f(x)

--X

and the conclusion follows.

4. A different analysis

The result we prove in this section is"

THEOREM 7. Let f, a, b be continuous function and let

(43) 6(x,y) =f(x+y) -a(x) -b(y).

If 6 LP(Re) for some p > 1, then f(x) =- yx + ] for some y, R.

This follows from Theorem 1, but the method of proof here is more
elementary. When f is not affine, we are able to identify regions in the plane
(unions of infinite strips) on which f I1 is infinite.

Reasoning similar to that given in remark 3 following Theorem 1 can be
used to conclude that a(x) yx + fl’ and b(x) =- yx + ", with 6(x, y) =- O.

LEMMA 8. If we establish Theorem 7 for the case in which a(x)=-b(x),
this establishes the result in general.

Proof. Make the replacements

6(x, y) + 6(y,x)
f(44) 3’(x y) 2 (x) f(x)

a’(x) =-b’(x) =- a(x) + b(x)

6’, f’, a’, b’ satisfy the assumptions of the theorem if 6, f, a, b do, so our
hypothesis allows us to conclude that f(x) yx + . 1

From now on, we will assume a(x) b(x).

LEMMA 9. If, for all c, d, c’, d’ R, c + d c’ + d’ implies

(45) a(c) + a(d) a(c’) + a(d’),
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then for some y, fl, a(x) yx + and either f(x) yx + 2 (i.e., 8(x, y)
O) or there are e > 0 and numbers K < L with [6(x, y)[ > e ifK < x + y < L.

Proof For any numbers x, y, (45) implies a(x) + a(y) a(x + y) + a(0).
If we define a’(x) a(x) a(0), then a’ is a continuous solution to Cauchy’s
equation. This implies a’ is linear and a(x) -= 3’x + a(0), for some 3’. If

f(x) 3"x + 2a(O),

continuity implies that there are e, K, L with

If(x) 3’x 2a(0)l > e

forK<x<L, m

To complete the proof, the remaining case is treated using

LEMMA 10. If there are c, d, c’, d’ with c + d c’ + d’ such that (45) does
not hold, then there are e, C > 0 such that if

(46) s(A) fg [6(x, Y)I,
1t3Rzt3R3 t3R4

the integral over the union offour rectangles, where

R {(x, y)[ Ix c[ < e and lY[ < A}
R2-- {(x,y)l Ix-c’[ <eandly[ <Z}
R3 {(x, y)l Ix d’l < e and lyl < A}
R4 {(X, Y)I IX dl < e and lyl < A},

then s(A) > CA for A sufficiently large.

Proof By continuity, we may assume c, c’, d, d’ are all different. Define

(47) h(t) a(c + t) + a(d t) [a(c’ + t) + a(d’- t)].

Choose e > 0 so that, for some B > 0, if It] _< e, Ih(t)] > B, and so that the
R are disjoint.

Let K=c’-c=d-d’.Forany yR,

(48) 6(c + t,y) +6(c’+t,y-K)

+ 6(d’- t, y) 6(d t, y K) h(t).
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If we take absolute values in (48), apply the triangle inequality, and
integrate over lyl < A and ]tl < e, we get

(49) u(A) fs [6(x, y)l > 4ABe,
t"JS2QJS3t"JS4

where S --R1, S3 R3, and S2, S4 are R2, R4 shifted downward by K.
Since s(A + K) > u(A) > 4ABe, this gives the desired result for any C <
4Be. I

This establishes Theorem 7 for the case p 1. The case p > 1 may be
obtained by H61der’s inequality.
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