APPROXIMATE VERSIONS OF CAUCHY'S FUNCTIONAL EQUATION

J. Ralph Alexander, Charles E. Blair and Lee A. Rubel ${ }^{1}$

1. Introduction

Ulam [U, page 63] raised the general problem of when a mathematical entity which nearly meets certain requirements must be close, in some sense, to one which does meet the requirements. A particular case is a result of Hyers [H]: if

$$
|f(x+y)-f(x)-f(y)|<\varepsilon \quad \text { for all } x, y
$$

then there is a g satisfying Cauchy's equation with $|f(x)-g(x)|<\varepsilon$ for all x. A survey of related results appears in [HR].

In this note, we look at stronger assumptions ([H] did not even assume f was measurable) that imply $f(x)=\gamma x$ almost everywhere (we will use Lebesgue measure, denoted by μ, throughout). Our main results are:

Theorem 1. Let f, a, b be measurable functions and let

$$
\begin{equation*}
\delta(x, y) \equiv f(x+y)-a(x)-b(y) . \tag{1}
\end{equation*}
$$

If there is $a J \in \mathbf{R}$ such that, for every $\varepsilon>0$,

$$
\begin{equation*}
\mu(\{(x, y)||\delta(x, y)-J| \geq \varepsilon\}) \tag{2}
\end{equation*}
$$

is finite, then, for some γ and $\beta, f(x)=\gamma x+\beta$ almost everywhere.

Remarks

1. It is easy to see that, if $f=a=b$ and $J=0$, then $\beta=0$.

The referee points out that the case $f=a=b$ and $J \neq 0$ is related to Pexider's equation $f(x+y)=f(x)+f(y)+K$.
2. For any $p>0, \delta \in L^{p}\left(R^{2}\right)$ implies that δ satisfies (2) with $J=0$.
3. It can also be shown that, for some $\beta^{\prime}, \gamma^{\prime}, a(x)=\gamma^{\prime} x+\beta^{\prime}$ almost everywhere (the same argument applies to $b(x)$ by symmetry): replace f by

Received January 8, 1993.
1991 Mathematics Subject Classification. Primary 39A15; Secondary 39A20.
${ }^{1}$ Partially supported by a grant from the National Science Foundation.
$f^{\prime}(x)=-a(-x)$ and let $a^{\prime}(x)=-f(-x)$, and $b^{\prime}(x)=b(x)$. Then

$$
\begin{equation*}
\delta^{\prime}(x, y) \equiv f^{\prime}(x+y)-a^{\prime}(x)-b^{\prime}(y) \equiv \delta(-x-y, y) \tag{3}
\end{equation*}
$$

satisfies the hypothesis of Theorem 1 if δ does, since the two are related by a measure-preserving transformation (look at the Jacobian), and the conclusion follows. Moreover, $\gamma=\gamma^{\prime}$ (consider what happens with y fixed) and $\delta(x, y)$ $=J$ almost everywhere.

Theorem 2. Let $f \in L^{1}[0, a]$ for all $a>0$. For $x, y \geq 0$, define

$$
\begin{equation*}
\delta(x, y) \equiv f(x+y)-f(x)-f(y) \tag{4}
\end{equation*}
$$

Suppose that for almost all x,

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{1}{u} \int_{0}^{u} \delta(x, y) d y=0 \tag{5}
\end{equation*}
$$

Then for some $\gamma, f(x)=\gamma x$ for almost all $x \geq 0$.
Notice the absence of absolute value signs in (5).
Elliott [E1] has shown that, for any $\alpha>0, f(x)=\gamma x$ almost everywhere if $f \in L^{\alpha}(0, z)$ for all $z>0$ and

$$
\begin{equation*}
\lim _{z \rightarrow \infty} z^{-1} \int_{0}^{z} \int_{0}^{z}|f(x+y)-f(x)-f(y)|^{\alpha} d x d y=0 \tag{6}
\end{equation*}
$$

These results each cover certain cases not included in the others. Theorem 1 only assumes the measurability of f. Theorem 2 could be applied to cases in which $\int \delta$ is small but $\int|\delta|$ is large. For example, Theorem 2 implies that we could not have

$$
\begin{equation*}
\delta(x, y) \equiv \sin \left(\left(x^{2}+y^{2}\right)^{1 / 2}\right) \tag{7}
\end{equation*}
$$

We present proofs of these theorems in the next two sections. In our final section, we take a more elementary approach which, for the case of continuous functions, gives more information.

We thank Richard Rochberg for suggesting a related question to one of us (LAR).

2. Proof of Theorem 1

Lemma 3. If $D, E \subseteq \mathbf{R}$ and each set has finite measure, then for any $L \in \mathbf{R}$, there is $K \in \mathbf{R}$ with $K \notin D$ and $K+L \notin E$.

Proof. Let $N=\mu(D)+\mu(E)$. Let K be any member of $[0, N+1]$ which is not a member of $D \cup(E-L)$, where the minus sign denotes translation.

Lemma 4. Assume δ satisfies the assumptions of Theorem 1. For $\varepsilon, \theta>0$ define

$$
\begin{equation*}
A_{x, \varepsilon}=\{y| | \delta(x, y)-J \mid>\varepsilon\} \text { and } B_{\varepsilon, \theta}=\left\{x \mid \mu\left(A_{x, \varepsilon}\right)>\theta\right\} \tag{8}
\end{equation*}
$$

Then $B_{\varepsilon, \theta}$ has finite measure for each ε, θ.
Proof. If the measure were not finite, Fubini's theorem would imply

$$
|\delta(x, y)-J| \geq \varepsilon
$$

on a set of infinite measure.
Lemma 5. Define

$$
\begin{align*}
h(y, K, L) & \equiv \delta(K+L, y)-\delta(K, y) \tag{9}\\
& \equiv[f(y+K+L)-f(y+K)]-[a(K+L)-a(K)]
\end{align*}
$$

For any $\varepsilon, \theta>0$ and $L \in \mathbf{R}$, there is a $K \in \mathbf{R}$ such that

$$
\begin{equation*}
\mu(\{y||h(y, K, L)| \geq \varepsilon\}) \leq \theta \tag{10}
\end{equation*}
$$

Proof. Since $B_{\varepsilon / 2, \theta / 2}$ has finite measure, Lemma 3 implies that there is a K such that both K and $K+L$ are not members. Thus

$$
\begin{equation*}
\mu\left(A_{K, \varepsilon / 2} \cup A_{K+L, \varepsilon / 2}\right) \leq \theta \tag{11}
\end{equation*}
$$

and, if y is not in the union, $|\delta(K+L, y)-\delta(K, y)| \leq \varepsilon$.
Lemma 6. For any L, there is a number M_{L} such that

$$
\begin{equation*}
f(y+L)-f(y)=M_{L} \tag{12}
\end{equation*}
$$

for almost all y.
Proof. For $n=1,2, \ldots$, let K_{n} be given by Lemma 5 with $\varepsilon=\theta=2^{-n}$, and let

$$
\begin{align*}
s_{n} & =a\left(K_{n}+L\right)-a\left(K_{n}\right) \tag{13}\\
C_{n} & =\left\{y| | h\left(y, K_{n}, L\right) \mid<2^{-n}\right\} \tag{14}
\end{align*}
$$

C_{n} is the complement of the set in (10), so we may apply Lemma 3 with D and E the complements of C_{n} and C_{n+1} to conclude that there is $y \in C_{n}$ such that $y^{\prime}=y+\left(K_{n}-K_{n+1}\right) \in C_{n+1}$, which implies that

$$
\begin{equation*}
\left|s_{n}-s_{n+1}\right|=\left|h\left(y, K_{n}, L\right)-h\left(y^{\prime}, K_{n+1}, L\right)\right| \leq 2^{-n+1} \tag{15}
\end{equation*}
$$

so s_{n} is a Cauchy sequence. We let M_{L} be its limit. The set of y for which (12) holds contains

$$
\begin{equation*}
\bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty}\left(C_{n}+K_{n}\right) \tag{16}
\end{equation*}
$$

where the plus sign denotes translation. Since the complement of $C_{n}+K_{n}$ has measure $\leq 2^{-n}$, the complement of the set in (16) has measure 0 .

Finally, we show that, if f satisfies the conclusion of Lemma 6, then, for some $\beta, f(x)=M_{1} x+\beta$ almost everywhere. We will assume $M_{1} \geq 0$ in the proof. The case $M_{1}<0$ follows by considering $-f(x)$. Let

$$
\begin{align*}
E_{r} & =f^{-1}(-\infty, r) \cap[-1,1] \tag{17}\\
\beta & =\sup \left\{r \mid \mu\left(E_{r}\right)<1\right\} \tag{18}\\
g(x) & =M_{1} x+\beta \tag{19}
\end{align*}
$$

Note that $\mu\left(E_{\beta}\right) \leq 1$.
If $f \neq g$ almost everywhere, then there is $\varepsilon>0$ with $|f(x)-g(x)|>\varepsilon$ on a set of positive measure. We will show that both $f>g$ and $f<g$ lead to contradictions. The idea of the argument in both cases is that we begin by locating a small interval with f bounded away from g in most of the interval. Then we use (12) to conclude that f must be bounded away from g for most of $[-1,1]$, and show that this leads to contradictions with the definition of β.

Case 1 (f too big). Define

$$
\begin{equation*}
T=\{x \mid f(x)>g(x)+\varepsilon\} . \tag{20}
\end{equation*}
$$

If $\mu(T)>0$, we can find, for any $\tau>0$, a sequence I_{t} of intervals with rational endpoints with $T \subset \cup_{t} I_{t}$ and $\Sigma_{t} \mu\left(I_{t}\right)<(1+\tau) \mu(T)$. For at least one $t,(1+\tau) \mu\left(I_{t} \cap T\right)>\mu\left(I_{t}\right)$. Since I_{t} can be written as a union of subintervals (disjoint except for endpoints), we can find arbitrarily small intervals I with

$$
\begin{equation*}
\frac{\mu(T \cap I)}{\mu(I)} \tag{21}
\end{equation*}
$$

arbitrarily close to 1 . In particular, there is a natural number m and an integer k such that

$$
\begin{equation*}
\mu\left(T \cap\left[\frac{k}{m}, \frac{k+1}{m}\right]\right)>\left(\frac{M_{1}+\varepsilon}{M_{1}+2 \varepsilon}\right) \frac{1}{m} . \tag{22}
\end{equation*}
$$

We require m to be so large that there is a natural number $j \leq m$ such that

$$
\begin{gather*}
M_{1}\left(\frac{j}{m}\right)<\varepsilon \tag{23}\\
\left(1-\frac{j}{m}\right)+\frac{\varepsilon}{M_{1}+2 \varepsilon}\left(1+\frac{j}{m}\right) \leq 1 \tag{24}
\end{gather*}
$$

(The expression on the left in (24) is monotone decreasing in j / m, and ≤ 1 if $j / m=\varepsilon / M_{1}$. If $M_{1}=0$, then $j=m$.)

Let $\alpha=g(-j / m)+\varepsilon$. We will show that $\mu\left(E_{\alpha}\right)<1$. Since (23) implies $\alpha>\beta$, this will contradict (18).

If $x \geq-j / m, f(x)>g(x)+\varepsilon$ implies $f(x)>\alpha$, so

$$
\begin{equation*}
\left\{x \mid f(x)>\alpha \text { and } x \geq-\frac{j}{m}\right\} \supseteq T \cap\left[-\frac{j}{m}, \infty\right) \tag{25}
\end{equation*}
$$

It is easy to show that, for any natural number $m, M_{(1 / m)}=(1 / m) M_{1}$. Hence, by Lemma 6 with $L=1 / m$,

$$
\begin{equation*}
x \in T \quad \text { if and only if } x+1 / m \in T \tag{26}
\end{equation*}
$$

for almost every x. This implies that (22) holds for any integer k. If $k \geq-j$, (22) and (25) imply

$$
\begin{align*}
& \mu\left(\left\{x \mid f(x) \leq \alpha \text { and } x \in\left[\frac{k}{m}, \frac{k+1}{m}\right]\right\}\right) \tag{27}\\
& \quad<\left(1-\frac{M_{1}+\varepsilon}{M_{1}+2 \varepsilon}\right) \frac{1}{m}=\frac{\varepsilon}{\left(M_{1}+2 \varepsilon\right) m}
\end{align*}
$$

We can write $[-j / m, 1]$ as a union of $j+m$ intervals of length $1 / m$ and use (27) on each one to obtain

$$
\begin{equation*}
\mu\left(\left\{x \mid f(x) \leq \alpha \text { and } x \in\left[-\frac{j}{m}, 1\right]\right\}\right)<\frac{\varepsilon(j+m)}{\left(M_{1}+2 \varepsilon\right) m} \tag{28}
\end{equation*}
$$

Now, (28) and (24) together yield

$$
\begin{equation*}
\mu\left(f^{-1}(-\infty, \alpha) \cap[-1,1]\right)<\mu\left(\left[-1,-\frac{j}{m}\right]\right)+\frac{\varepsilon(j+m)}{\left(M_{1}+2 \varepsilon\right) m} \leq 1 \tag{29}
\end{equation*}
$$

In other words, $\mu\left(E_{\alpha}\right)<1$. As previously indicated, $\alpha>\beta$, so this contradicts (18).

Case 2 (f too small). The essential ideas are the same as in case 1 . This time, we define

$$
\begin{equation*}
T=\{x \mid f(x)<g(x)-\varepsilon\} \tag{30}
\end{equation*}
$$

k, m, j are chosen so that they satisfy (22), (23), and

$$
\begin{equation*}
\frac{M_{1}+\varepsilon}{M_{1}+2 \varepsilon}\left(1+\frac{j}{m}\right) \geq 1 \tag{31}
\end{equation*}
$$

Define $\alpha=g(j / m)-\varepsilon$. By (23), $\alpha<\beta$. We will show that $\mu\left(E_{\alpha}\right)>1$, which implies $\mu\left(E_{\beta}\right)>1$, which is inconsistent with the construction of β.

For $x \leq j / m, f(x)<g(x)-\varepsilon$ implies $f(x)<\alpha$, so

$$
\begin{equation*}
\left\{x \mid f(x)<\alpha \text { and } x \leq \frac{j}{m}\right\} \supseteq T \cap\left(-\infty, \frac{j}{m}\right] . \tag{32}
\end{equation*}
$$

Just as in case 1, (26) implies (22) holds for any integer k. Hence, if $k+1 \leq j$, (32) and (22) yield

$$
\begin{equation*}
\mu\left(\left\{x \mid f(x)<\alpha \text { and } x \in\left[\frac{k}{m}, \frac{k+1}{m}\right]\right\}\right)>\left(\frac{M_{1}+\varepsilon}{M_{1}+2 \varepsilon}\right) \frac{1}{m} \tag{33}
\end{equation*}
$$

Write $[-1, j / m$] as a union of $m+j$ intervals of length $1 / m$, use (33) on each one, and apply (31) to obtain

$$
\begin{equation*}
\mu\left(\left\{x \mid f(x)<\alpha \text { and } x \in\left[-1, \frac{j}{m}\right]\right\}\right)>\left(\frac{M_{1}+\varepsilon}{M_{1}+2 \varepsilon}\right) \frac{m+j}{m} \geq 1 \tag{34}
\end{equation*}
$$

This establishes that $\mu\left(E_{\alpha}\right)>1$, which leads to the desired contradiction.

3. Proof of Theorem 2

Iterating the equation (4) gives

$$
\begin{equation*}
f(y+n x)=n f(x)+f(y)+\sum_{k=0}^{n-1} \delta(x, y+k x) \tag{35}
\end{equation*}
$$

Integrate equation (35) with respect to y to get
(36) $\frac{1}{n x} \int_{0}^{x} f(y+n x) d y=f(x)+\frac{1}{n x} \int_{0}^{x} f(y) d y+\frac{1}{n x} \int_{0}^{n x} \delta(x, y) d y$.

If x satisfies (5), then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n x} \int_{0}^{x} f(y+n x) d y=f(x) \tag{37}
\end{equation*}
$$

To complete the proof, we first show that (37) implies, for any natural number r, that

$$
\begin{equation*}
f(r w)=r f(w) \quad \text { for almost all } w . \tag{38}
\end{equation*}
$$

Next we show this implies $f(x)=\gamma x$, for some γ and almost all x.
Let S be the set of x for which (37) holds. We have seen that (5) implies almost every real number is in S. Hence, almost every x is in

$$
\begin{equation*}
\bigcap_{r=1}^{\infty} \frac{1}{r} S . \tag{39}
\end{equation*}
$$

Hence, for almost every w, (37) holds for all $x \in\{w, 2 w, 3 w, \ldots\}$. For such w,

$$
\begin{align*}
f(r w) & =\lim _{n \rightarrow \infty} \frac{1}{n w r} \int_{0}^{r w} f(y+n r x) d y \tag{40}\\
& =\lim _{n \rightarrow \infty} \frac{1}{n w r} \sum_{k=0}^{r-1} \int_{k w}^{(k+1) w} f(y+n r w) d y=r f(w)
\end{align*}
$$

This completes the proof of (38) for natural numbers r. It follows immediately that (38) holds for all rational $r>0$.

The rest of the proof depends on theorems of Lebesgue about functions $f \in L^{1}$ and their "indefinite integrals" $F(x) \equiv \int_{0}^{x} f(w) d w$, which may be found, for example, in [KF, pp. 313-324]:

1. $F(r x)=r \int_{0}^{x} f(r w) d w$.
2. F is continuous.
3. $f(x)=F^{\prime}(x)$ almost everywhere.

Let $\gamma / 2=F(1)$. For rational $r>0$, we can use (38) to obtain

$$
\begin{equation*}
F(r)=r \int_{0}^{1} f(r w) d w=r \int_{0}^{1} r f(w) d w=r^{2} \gamma / 2 \tag{41}
\end{equation*}
$$

The continuity of F implies $F(x)=\gamma x^{2} / 2$ for all x, so $f(x)=F^{\prime}(x)=\gamma x$ almost everywhere. This completes the proof.

Theorem 2 can be extended to $f \in L^{1}[-a, a]$ for all $a>0$. Theorem 2 implies that $f(x)=\gamma x$ for almost all $x \geq 0$. If $x<0$ satisfies (5), then

$$
\begin{align*}
0 & =\lim _{u \rightarrow \infty} \frac{1}{u} \int_{0}^{u} \delta(x, y) d y=\lim _{u \rightarrow \infty} \frac{1}{u+x} \int_{-x}^{u} \delta(x, y) d y \tag{42}\\
& =\lim _{u \rightarrow \infty} \frac{1}{u+x} \int_{-x}^{u}\{[f(x+y)-f(y)]-f(x)\} d y=\gamma x-f(x)
\end{align*}
$$

and the conclusion follows.

4. A different analysis

The result we prove in this section is:
Theorem 7. Let f, a, b be continuous function and let

$$
\begin{equation*}
\delta(x, y)=f(x+y)-a(x)-b(y) \tag{43}
\end{equation*}
$$

If $\delta \in L^{p}\left(\mathbf{R}^{2}\right)$ for some $p \geq 1$, then $f(x) \equiv \gamma x+\beta$ for some $\gamma, \beta \in \mathbf{R}$.
This follows from Theorem 1, but the method of proof here is more elementary. When f is not affine, we are able to identify regions in the plane (unions of infinite strips) on which $\int|\delta|$ is infinite.

Reasoning similar to that given in remark 3 following Theorem 1 can be used to conclude that $a(x) \equiv \gamma x+\beta^{\prime}$ and $b(x) \equiv \gamma x+\beta^{\prime \prime}$, with $\delta(x, y) \equiv 0$.

Lemma 8. If we establish Theorem 7 for the case in which $a(x) \equiv b(x)$, this establishes the result in general.

Proof. Make the replacements

$$
\begin{gather*}
\delta^{\prime}(x, y) \equiv \frac{\delta(x, y)+\delta(y, x)}{2}, f^{\prime}(x) \equiv f(x) \tag{44}\\
a^{\prime}(x) \equiv b^{\prime}(x) \equiv \frac{a(x)+b(x)}{2}
\end{gather*}
$$

$\delta^{\prime}, f^{\prime}, a^{\prime}, b^{\prime}$ satisfy the assumptions of the theorem if δ, f, a, b do, so our hypothesis allows us to conclude that $f(x)=\gamma x+\beta$.

From now on, we will assume $a(x) \equiv b(x)$.
Lemma 9. If, for all $c, d, c^{\prime}, d^{\prime} \in \mathbf{R}, c+d=c^{\prime}+d^{\prime}$ implies

$$
\begin{equation*}
a(c)+a(d)=a\left(c^{\prime}\right)+a\left(d^{\prime}\right) \tag{45}
\end{equation*}
$$

then for some $\gamma, \beta, a(x) \equiv \gamma x+\beta$ and either $f(x) \equiv \gamma x+2 \beta$ (i.e., $\delta(x, y) \equiv$ $0)$ or there are $\varepsilon>0$ and numbers $K<L$ with $|\delta(x, y)|>\varepsilon$ if $K<x+y<L$.

Proof. For any numbers x, y, (45) implies $a(x)+a(y)=a(x+y)+a(0)$. If we define $a^{\prime}(x) \equiv a(x)-a(0)$, then a^{\prime} is a continuous solution to Cauchy's equation. This implies a^{\prime} is linear and $a(x) \equiv \gamma x+a(0)$, for some γ. If

$$
f(x) \not \equiv \gamma x+2 a(0)
$$

continuity implies that there are ε, K, L with

$$
|f(x)-\gamma x-2 a(0)|>\varepsilon
$$

for $K<x<L$.
To complete the proof, the remaining case is treated using
Lemma 10. If there are $c, d, c^{\prime}, d^{\prime}$ with $c+d=c^{\prime}+d^{\prime}$ such that (45) does not hold, then there are $\varepsilon, C>0$ such that if

$$
\begin{equation*}
s(A)=\int_{R_{1} \cup R_{2} \cup R_{3} \cup R_{4}}|\delta(x, y)| \tag{46}
\end{equation*}
$$

the integral over the union of four rectangles, where

$$
\begin{aligned}
& R_{1}=\{(x, y)| | x-c \mid<\varepsilon \text { and }|y|<A\} \\
& R_{2}=\left\{(x, y)| | x-c^{\prime} \mid<\varepsilon \text { and }|y|<A\right\} \\
& R_{3}=\left\{(x, y)| | x-d^{\prime} \mid<\varepsilon \text { and }|y|<A\right\} \\
& R_{4}=\{(x, y)| | x-d \mid<\varepsilon \text { and }|y|<A\},
\end{aligned}
$$

then $s(A)>C A$ for A sufficiently large.
Proof. By continuity, we may assume $c, c^{\prime}, d, d^{\prime}$ are all different. Define

$$
\begin{equation*}
h(t) \equiv a(c+t)+a(d-t)-\left[a\left(c^{\prime}+t\right)+a\left(d^{\prime}-t\right)\right] \tag{47}
\end{equation*}
$$

Choose $\varepsilon>0$ so that, for some $B>0$, if $|t| \leq \varepsilon,|h(t)|>B$, and so that the R_{i} are disjoint.

Let $K=c^{\prime}-c=d-d^{\prime}$. For any $y \in \mathbf{R}$,

$$
\begin{align*}
& -\delta(c+t, y)+\delta\left(c^{\prime}+t, y-K\right) \tag{48}\\
& \quad+\delta\left(d^{\prime}-t, y\right)-\delta(d-t, y-K)=h(t)
\end{align*}
$$

If we take absolute values in (48), apply the triangle inequality, and integrate over $|y|<A$ and $|t|<\varepsilon$, we get

$$
\begin{equation*}
u(A)=\int_{S_{1} \cup S_{2} \cup S_{3} \cup S_{4}}|\delta(x, y)|>4 A B \varepsilon \tag{49}
\end{equation*}
$$

where $S_{1}=R_{1}, S_{3}=R_{3}$, and S_{2}, S_{4} are R_{2}, R_{4} shifted downward by K. Since $s(A+K) \geq u(A)>4 A B \varepsilon$, this gives the desired result for any $C<$ $4 B \varepsilon$.

This establishes Theorem 7 for the case $p=1$. The case $p>1$ may be obtained by Hölder's inequality.

References

[E1] P.D.T.A. Elliott, Cauchy's functional equation in the mean, Advances in Math. 51 (1984), 253-257.
[E2] _, The exponential function characterized by an approximate functional equation, Illinois J. Math. 26 (1982), 503-518.
[H] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[HR] D.H. Hyers and T.M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153.
[KF] A.N. Kolmogorov and S. V. Fomin (translated by R.A. Silverman). Introductory real analysis, Dover, New York, 1975.
[U] S.M. Ulam, A collection of mathematical problems. Wiley/Interscience, New York, 1960.

University of Illinois
Urbana, Illinois

