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A NOTE ABOUT THE VERONESE CONE

GARY R. LAWLOR AND TIMOTHY A. MURDOCH

1. Introduction

The area-minimizing property of the cone on the Veronese surface is still
unproven. In this note we offer further evidence in support of the conjecture
that the cone is indeed area-minimizing. The techniques used here present a
combination of twist-calibrations (see [Mh]) and vanishing calibrations
(see [Lr].

The result from [Mh] is that the cone is area-minimizing in a class of
surfaces which has two restrictions, namely that the comparison surfaces
cannot cannot cross a certain subset of space, and that they satisfy an
orientability condition called ‘“L-orientability;” see below for details. The
main result of this paper is to remove the first restriction. We show that if S
is any surface (integral current mod 2) with the same boundary as the cone,
and if the portion of S lying near the cone is L-orientable, then S has more
area than the cone.

Lawlor would like to thank the National Science Foundation for its
support while he was at Princeton University, during which time much of this
research was done.

2. Twist-calibrating the Veronese cone

The subsections within this section recall relevant material from the
articles [Lr] and [Mh].

L-orientability.

To extend the techniques of calibrated geometry to non-orientable sub-
manifolds, it is necessary to define an alternate “orientation.” This objective
can sometimes be accomplished using lines bundles on a submanifold other
than the orientation bundle. For our purposes, we state the following:

DeriniTION.  Let L be a smooth Euclidean line bundle (that is, a smooth
line bundle with a smooth choice of inner-product on the fibers) on a smooth
manifold M™ of dimension m. Suppose N” is a smooth (embedded)
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n-dimensional submanifold of M. If the orientation bundle of N is isomor-
phic (as a Euclidean bundle) to the restriction of L to N, then N is said to
be an L-orientable submanifold, or L-manifold. An L-orientation of N is a
choice of isomorphism between the restriction of L to N and the orientation
bundle of N.

The above definition allows one to prove a version of Stokes’s theorem for
L-valued forms on L-orientable submanifolds (with boundary). The key idea
in the proof of the L-valued Stokes’s Theorem is that the L-orientability of
an L-manifold N allows one to identify the L-valued forms on N with forms
of odd type on the orientation double cover of N; see [Mh] for details.
Stokes’s theorem is the key ingredient in the one-line proof that calibrated
submanifolds minimize mass in homology. See Section 4 below.

The Veronese surface.

The Veronese surface is a minimimally embedded real projective plane in
the standard 4-sphere. An elementary description is the set of 3 by 3
matrices, thought of as points of R®, of the form

1

Wt - —
V3

I,

where V' ranges over all unit length column vectors with 3 entries. This
actually sits in a round 4-sphere in a 5-dimensional subspace of R’ given as a
degenerate orbit of the adjoint action of SO(3) on the real vector space of
3 by 3 real symmetric matrices of trace zero. Note that if this vector space is
equipped with the inner product

{m,, m,) = 3 Trace(m;m,),
then the Veronese surface is the SO(3)-orbit of the matrix
diag(1/vV3,1/V3, =2/V3).

The Veronese cone is the set of rays from the origin through points on the
Veronese surface. We let 1} denote the set of line segments from the origin
to points on the Veronese surface, and also call this set the Veronese cone,
relying on context to determine whether we are referring to the infinite cone
or the compact cone.

The Veronese cone is a minimal cone with a singularity at the origin. The
image of this cone under the antipodal map is called the opposite Veronese
cone.
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The twist-calibration.

The 3-manifold C3 obtained from cone over the Veronese surface by
deleting the origin is twist-calibrated. More precisely, the complement of the
opposite Veronese cone in R’ is an open 5-manifold M?> that supports a
Riemannian double-cover that induces the orientation double-covering on
C3. In [Mh] a twist-calibration on the double-cover of the complement of the
opposite Veronese cone is constructed. That is, there exists on the double
cover of M> a closed 3-form of unit comass that calibrates the orientation
double cover of C3. Moreover, this 3-form pulls-back to its negative by the
sheet-interchange involution.

The twist-calibration described above is constructed as a parallel 3-form on
the space SO(3) X W, where

W= {diag(/\l, Ay, Ag)

3
i=1

is the cross-section of the SO(3)-action on the complement of the opposite
cone. The Euclidean metric, when pulled back to SO(3) X W via the adjoint
map, is a sum of squares of 1-forms:

n' = %du, nt=dv, ’=(u—-v)o', n*=(u+v)o?, 7’=2ve’

where
u=3(A +14;), v=73(1—1,)
and
0 w3 —w?
w=|—-w 0 !
w? —o! 0

is the matrix of left-invariant Maurer-Cartan forms for the standard repre-
sentation of SO(3). Note that w satisfies the structure equation deo =
—w A .

The twist-calibration of C3 corresponds to the 3-form
Q=”Il/\(772/\775_773/\”’74)

on SO(3) X W. For further details of the construction outlined here, the
reader is referred to [Mh], especially pp. 247-255.
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The method of vanishing calibrations.

As pointed out in the introduction, a drawback of this twist-calibration is
that surfaces to which it applies must not cross the opposite Veronese cone.
We will resolve this problem by making ) into a “vanishing calibration.”

A vanishing calibration is a calibration which is identically zero on part of
the space in which it is defined. For example, there is a calibration of a unit
disk in R® whose support is contained in a ball of radius V2. Such a
calibration proves that if S is any surface whose boundary is the unit circle,
then the area of the portion of S lying within the ball of radius v2 is at least
the area of the disk. From this we can deduce that any union of disks in
space is area-minimizing if the distance between the centers of any two of
them is at least V2 times the sum of their radii.

One method of finding a vanishing calibration is to take an existing exact
form « and modify it. If w is exact, then there is a family of forms whose
exterior derivative is w; the idea is to choose an advantageous representative
¢ from this family, multiply ¢ by a real-valued function g which vanishes
outside some neighborhood, and let ¢ = d(gy). Then ¢ is a vanishing form
which is automatically closed. In order for ¢ to be a calibration, we need
ll¢|l < 1. This translates to a differential inequality for g. If we can solve the
inequality in such a way that g reaches zero, then we have succeeded in
finding a vanishing calibration. We can allow ¢ to be discontinuous; a
sufficient condition for ¢ to serve as calibration is to require gi¢ to be
Lipschitz (see [Lr, Lemma A8 in appendix]). For examples of vanishing
calibrations, see [Lr].

This idea applies well to the Veronese cone because the twist-calibration
in [Mh] is an exact form. (Any twist-calibration is closed, but may or may not
be exact). The twist-calibration applies only to comparison surfaces which do
not cross the opposite cone. We can remove this restriction if we can modify
the form in the manner described above, in such a way that it vanishes
around the negative cone.

3. The vanishing calibration for the Veronese cone

The main result of this note is to prove that the 3-form () described in the
previous section gives rise to a vanishing calibration. To this end we choOse
the d~! representative of € to be

1 2 s Uy 2
= —=|-v°du ANw’ — = Aw).
V=7 ( e}
Letting g = g(¢) with ¢ = u /v, one computes that

_ (18 _ 125 g 134 _ g 234
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The differential inequalities.

To find the conditions that assure d(gy) has comass at most one, we first
rotate n' and 12 so as to combine the last two terms. That is, we find a pair
of 1-forms n' and n? which are orthonormal and are linear combinations of
n' and 5?2, such that

n' A% =nq' A n?

and
d(gy) = (% - g)n”'s + A",
where
" 2 , 2\ 1/2
=[xy ) + (i) |
Then

d(gd) =n" A ((% —g)n” +An3")-

The comass of this form equals the comass of its second factor; since the
four superscripts 2', 5, 3, and 4 are all different (and the corresponding
1-forms are orthonormal), the second cousin principle tells us that the
comass is the larger of the two coefficients #g'/2 — g and A. Hence we
obtain the two differential inequalities

E

and

(3(1t§’t2) " g)2 * (3\/3(5— 2 )2 =t

The initial condition is g(0) = 1 (which forces g'(0) = 0), and the hope is
that some solution reaches g = 0 at some positive ¢.

A solution to the inequalities.

The function g(¢) =1 — 18¢2 + 27¢t> for t €[0,1/3] and g(¢) = 0 for
t > 1/3 satisfies these conditions. All of the conditions are easily verifiable
for this function except the second differential inequality, which takes a bit
more work.



276 GARY R. LAWLOR AND TIMOTHY A. MURDOCH

We outline below the process we used to find the polynomial g and to
prove that it satisfies the differential inequality. We used an interplay of
analysis and computer assistance to get the proof.

(1) Solve the o.d.e. for g’(¢). Use a simple numerical method (Euler’s
method) to find an approximate solution. Near ¢ = 0, Euler’s method isn’t
good enough; use g = 1 — 22.5¢2 for very small ¢. The result of this com-
puter analysis is a tentative value of ¢t = 0.2685 at which g = 0. This gives an
idea of what the best solution looks like, but is not a proof without error
analysis.

(2) Rather than prove error bounds on the numerical analysis, we chose to
look for a polynomial which satisfied both differential inequalities. Something
of the form 1 — at? for some positive a might work. But the initial computer
solution had an inflection point before g reached zero. To accommodate the
gradually increasing second derivative, we tried 1 — at? + bt>.

(3) We set up a range of integer values of a and rational values of b, and
had the computer step through each one with a small increment for ¢,
checking the differential inequality at each ¢t. Among the polynomials which
were reported to satisfy the inequality, we chose g(t) =1 — 18¢2 + 27¢3.
This reaches zero at ¢t = 1/3.

(4) The simpler differential inequality is satisfied by this polynomial. The
more complex one reduces (with the help of symbolic computation) to a tenth
degree polynomial f(¢) which needs to be less than zero for 0 < ¢ < 1/3.

(5) A simple estimate showed that f(¢) <0 for 0 <¢ < 1/10. The com-
puter then reported that f(¢) < —0.1 for 1/10 < ¢ < 1/3. A crude upper
bound on f'(¢) (namely, 300) showed that if f(#) < —0.1 at a set of points
separated by a distance of 1,/3000, then f < 0 in between as well. This we
checked by computer. The roundoff error is provably negligible, and thus the
proof is complete.

4. Summary

The support of the vanishing twist-calibration ¢ = d(g) is the cone of
points (vectors) which make an angle less than or equal to tan™'(1/3) with
the (nearest ray of the) Veronese cone. If we accept the computer evidence
of a solution g(¢) vanishing at ¢ = 0.2685 then this angular radius decreases
to tan~1(0.2685) = 15°. (Note that the opposite cone makes an angle of 60°
with the Veronese cone.)

The twist-calibration ¢ applies to surfaces (integral currents mod 2) S such
that the part of § within the support of ¢ is L-orientable. If S is such a
surface, and has the same boundary modulo 2 as the Veronese cone V,, then
S (in fact, even the part of S within the support of ¢) has at least as much
area as V|, by the standard one-line calibration proof

Area(V,) = /V¢ = fs¢ < Area(S).
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This leaves open the possibility that some integral current mod 2 has the
same boundary mod 2 as V, and has some local unorientability near the cone
(such as a small cross-cap), and has less area.
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