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1. Introduction

THEOREM. Let A and B be non-constant entire functions of one complex
variable and suppose that

f(g(z,w)) =A(z) + B(w)

for all z, w C, where f is an entire function of one variable and g is an
entire function of two variables. Then f must be affine: f(sr) ag" +/3,
a,/3 C and g must have the form

g(z,w) a(z) + b(w)

for some entire functions a(z) and b(w) of one variable.

This theorem says that the only entire factorizations (under composition of
functions) of A(z) + B(w) are the obvious ones. Note that the theorem is a
global result dealing with entire functions. There is no corresponding local
result--witness

A( z) + B(w) log(exp(A(z) + B(w)),

or indeed

A(z) + B(w) (I)-I({I)(A(z) + (B(.w))

where and -1 are analytic functions suitably defined on regions in C.
Besides some algebraic and analytic manipulating of an elementary kind,

the main tool in the proof is Nevanlinna theory based on exhaustions of C2
by polydiscs. In particular, we use a version of the lemma of the logarithmic
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derivative (LLD) for this context, the proof of which is given in our text. We
thank Wilhelm Stoll for his valuable suggestion of how to prove our LLD by
using a result in this paper [STO]. An appendix states and proves a several-
variables version we need of a theorem of Clunie (see [HAY]) on the growth
of the composition of entire functions. At the end of the paper we discuss
some open problems, and also discuss a possible alternative approach to
proving our theorem, which brings in some interesting considerations on
ordinary factorization.

2. Proof of the theorem

Changing notation slightly from

f(g( z1, z2)) "-AI(Z1)-I- A2(z2) (1)

we get

f’(g( z1, Z2))gl( Z1, Z2) Zl(z1) (2)

f’(g( z1, z2))g2( z1, z2) Z2(z2) (3)
f"(g(z1, Z2))gl(Z1, z2)g2(z1, Z2) -F f’(g(z1, Z2))gl2(Z1, Z2) 0 (4)

f"(g( Zl, Z2)) g12( ZI, Z2)
(5)f’(g(Zl, Z2)) gl(Z1, Z2)g2(z1, z2)

where the subscripts on the g’s denote partial differentiation.
At this point we must make a detour into Nevanlinna theory for entire

(and meromorphic) functions of n variables using a polydisc exhaustion of
Cn, based on the work of Stoll (see [STO]).
The Euclidean space n is partially ordered by its coordinates. Denote by

I111 the length of r in Rn. For =(Zl,...,zn) Cn, define I1-
(Izll,..., [Zn[). For 0 < b n, define

+
(6)

(7)

(8)

Let fn be the rotation-invariant measure on the torus
such that )(r) has total volume 1. In familiar notation,

+
) for r [n(b)

dO dO2.., dO

(2"rr)
(9)
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Denote by

Ilz, all ffl + lal 2/i + Izl 2
(10)

the chordal metric on C. A meromorphic function f on C is the quotient of
two entire functions g and h 0, such that hf g and

u (g,h):C --* C 2 (11)

defines a meromorphic map from C into Pl which is identified with f. The
representation u is reduced if and only if g and h are coprime at every point
of C2. Finally, the value-distribution functions are defined by

Tf( r, ) f<r>logv/Igl 2 + Ih 12 gn f<o>logv/Igl z + Ih z -n (12)

log
v/1 + la12 ffl + Ill 2 anmf(r, a) f(,:) If al (13)

m[(r, ) f logl + ]f12 ’n" (14)

For fixed q,

T(r, q) T(r) + O(1) (15)

where

Tf#(r) m(r) + Nf#(r) (16)

where

log+ Illnm(r) (17)

and where Nf(r) is a certain monotone-increasing function of the pole-set of
f (that is, of the zero-set of h in a reduced representation f g/h). This
notation is more in line with the analyst’s usual notation.
Now in the context of this paper, we take 0 < r < , take n 2, and take

r (r, 2r) and take b (4r, 4r), say. Take cl (s, 2s) for s fixed, 0 < s < r.
Now take0 <qNand 0> lsothat

0 <q.b < q <r <Or <b.
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Let us take s 1, q (s/Sr) (1/8r) so that 4qr < s. Hence

q b= (q4r, q4r) < q= (s,2s) (8)

We now state Theorem (6.3) from [STO]:

THEOREM S. Take b +. Take r "(b) and q n(b) with 0 < q <_

r < fi. Take 1< 0 ff and O < q ff so that O < q b <_ q <_ r < Or < b.
Let F 0 be a meromorphic function on (b). Take r (1, 2,..., n) and
define F’ OF/Oz,. Then

lg+ ’n -< 81g+ TF(Or, q) + 4log + mF(q,0)

2O
+ 4 log+ mF(q, m) + 9 log..o_ 1

+ 2 log +
1

+ 24 log 2 (19)

We now apply Stoll’s LLD (Theorem S above) to get, for F" C2

entire function,
-Can

1
log+

(2rr) 2 f <r> 1 OF
dO dO2 <_ sum of six terms

(1) + (2) + (3) + (4) + (5) + (6)
(20)

where

(6) 241og2 O(1)
1 1

(5) =21og+11 =21g+
1
--4r8r

(21)

2 log + 2 O(i) (22)

(3) log + mF(q, m) const O(1)

(2) 4log + mF(q,0) const O(1)

(1) Slog + TF(Or, q) < Slog + TF#(Or)
2O

(4) =9log0_ 1

(23)

(24)

(25)

(26)
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Thus, we have

1 f log+
(27r) 2

(r)

1 OF 2O
dO dO2 < 8log+ TFe(0r) + 9log 0 1 +C,

(27)

where C is a finite constant, independent of 0. We now apply Borel’s lemma
that, for/z a positive increasing function,

( 1)/x r + < 2/z ) (28)/x(r) (r

off an exceptional set of r of finite length. We take

/x(r) TF(r) (29)

and

1
r + r----Wtz(

Or (30)

so that

1
0 1 q

rlx(r) (31)

In other words, this is our choice of 0.
Finally, we have, for any entire function F’C2 C, with the above

choices,

1 f_’ f_log+(27r’) 2 r

1 OF
dO dO2 < 17log+TFe(r) +logr+C’ (32)

off a set of finite length, where C’ is a finite constant. This is the version of
LLD we apply in this paper. A similar result holds for OF/Oz2.

In abbreviated notation, we have in the usual way,

(F’)T#(r, F’) m(r, F’) m r,-ff-F

_<m r,- +m(r,F)

(1 + o(1) )T( r, F) (33)

off an exceptional set of finite length. Here, F’ denotes either OF/Oz or
OF/Oz2.
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We are freely using here such elementary results as

and

T#(c,F + G) < T#(c,F) + T#(,G) + O(1)
T#(r,FG) < T#(c,F) + T#(r.,G) + O(1)

(34)

(35)

1)=T#T* r, (r,F) + O(1) (36)

Now going way back to (5), we have

f"(g) ) < (3 + o(1))T*(r g) (37)T r,
f,(g)

with the usual allowance for an exception set. This is a key step, and uses
(33), (35), and (36). By Clunie’s result (see our appendix) f"/f’ must be a
rational function, so that we have

f= fPea (38)

where P and Q are polynomials, because f is entire.
Along a second line of reasoning from (2) and (3) and Clunie’s result and

LLD, supposing that f’ is transcendental, we get

T#(r,A’I(Zl)) T#(r,A’2(z2)) (39)

off a set E of finite length, where r (r, 2r), r , and A’(z1) is meant as
a function of both z and z2 and similarly for A’2(z2), and T is the polydisc
characteristic. Consequently, off E,

T(r, A’l(Zl) ) T(2r, A’l(Zl) ) (40)

where the characteristic T is now of functions of one variable.
This is because

T(r, A’I), (41)



264 LEE A. RUBEL AND CHUNG-CHUN YANG

and T#(r, A2(z2)) T(2r, A’2). Thus

T(r,A’I) (1 + o(1))T(2r, A’2).

By symmetry, we get

T(r, A’2) (1 + o(1))T(2r, A’),

so that T(r,A’)= (1 + o(1))T(4r, A’) and (40) follows, on replacing 4r
above by 2r.
From (40), as we will show in a minute, A’(za) must have order zero.

(Similarly, A’2(z2) must have order 0.) Recall from (2) that

f’(g(Z1, Z2))gl(Zl, Z2) Atl(Zl).

Hold z2 fixed, say z2 0. By Theorem C of the Appendix, if f is transcen-
dental, then, using LLD (in one variable)we would have T(r, f’(g(za, 0))
O(r) for each a > 0, off a set E of finite length, and thus by a familiar
elementary argument, with no exceptions. (For if E is a set of finite length,
then for all sufficiently large r E, the interval [r, 2r] is not contained
entirely in E. And if T(p) < Ap and p > r > p/2 then T(r) < A2r, etc.)
Hence f’(g(z, 0)) must be of order zero. Another approach to this fact is via
Lemma 2 on pp. 751-752 of [HEL]. See also [SOY]. We now quote Theorem
2.9 of [HAY], p. 53 (reversing the notation).

THEOREM H. Suppose that f(z), g(z) are entire functions and that q(z)
f(g(z)) has finite order. Then either g(z) is a polynomial or f(z) has zero
order.

We want to conclude that the f(z) of (1) has zero order. So suppose by
way of contradiction, (using Theorem H) that g(z) is a polynomial of degree
N. Here, we write g(z)= g(z, 0). Then, given large z, say Izl > R, there
exists a w C with g(w) z and [wl < 21zl 1/u. For fixed a > 0 we have

so that

If’(g(w))l < A exp(BIw[ ’)

If’(z)[ <_Z exp(lzl=/N) Izl > R,

where B 2B, and thus we see that f’(z) has order zero in any event. But
since by (38), f’ PeQ, we must have Q const, and f P, say, a polyno-
mial. So in any event, f P.
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Now for the promised proof that A’l(Z 1) must have order zero, go back to
(40).

Let

B {r" T(2r) < (1 + e)T(r)} (42)

where T(r) T(r, A’1). If 2kr B for k 0, 1, 2,..., we have

T(2kr) < (1 + e)’T(r) (43)

T(2kr) (l+e)’T(r)
(44)(2/,r),

<
2 r

and ifl+e <2",wehave

limT(p)
p

Let J be the complement of Be, so that we need 2kr ff Je, k O, 1, 2,
That is, r ff U kJ/2’. But the length of this union is finite, since the length
of J/2 is 2 -g times the length of J. Again, by the familiar elementary
argument, we may dispense with the exceptional set to conclude that A’l(Z 1)
has order zero.
Now from (2) and (3),

gl(Zl, Z2) AI(z1)
g2( z1, z2) A’2( z2)" (45)

(This holds off the zeros of f’(g(zl, 22)) and hence everywhere by continu-
ity, unless f’ 0, which is ruled out.)
From (45), it follows that the zeros of gl(Zl, z2) are exactly (counting

multiplicity) the zeros of A’l(Z) and the zeros of g2(Zl, Z2) are exactly the
zeros of A’2(z2). The argument for this is that from (2), every zero of
ga(zl, z2) is a zero of A’l(Zl). In the other direction, suppose there were a
z e C such that A’l(Z 1) 0 but there were a z2 e C with gl(Zl, z2) 4= 0.
Then for those z2 we would have A’2(z2) -0. Now, for this fixed Zl,
{Z2 gl(Z1, Z2) =/= 0} is an open set in C, and we would have A’2(z2) --0,
contrary to the hypothesis that A 2 4: const.
Thus we have

At1(z1) gl( z1, z2)exp/21( z1, z2)

A’2(z2) g2(zl, z2)exp u2( Z1, Z2)

(46)

(47)
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where u and u2 are entire functions. Going back to (2), we have

f’(g( z1, z2) ) eu(zl’z2), (48)

where u u u2. Remember that we know that f is a polynomial. If
deg f > 3 then deg f’ > 2 and thus f’ has at least two zeros. If they are
distinct zeros, then g cannot omit both of these two values, since g 4: const.
In the case where deg f < 2, deg f’ < 1, so that

y’(w) aw + t, a,/3 e C, (49)

and we have, from (48),

ag(z1, z2) +/3 exp u( Zl, Z2) (50)
1

g(zl, z2) ([exp U(Zl, z2) -/3) (51)

1

OW2

f(w) 2 +w+y (52)

1_eu(zl, zz) + y AI(Z1) + A2(z2).
2

(53)

This is of the form

t(U(Z1, Z2) ) --AI(Z1) d-A2(z2) (54)

where

12a lew(w)=- -d - +t + r. (55)

But what we have proved shows that P(w) must be a polynomial, which it
obviously is not, unless of course a 0, in which case f is affine and the
assertion of the theorem holds. Aside from the untreated case where f’ is
the square of an affine function, we have only the possibility f’(w)= ,
f(w) flw + y, and the assertion of the theorem holds.

In the one remaining case,

f’() (a + b)
1

f() (n + 1)a

g(z1, Z2) e1/2U(Zl, Z2)

(56)

(asc + b) n+l + C (57)

(58)
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and we would have

where

(59)

1 (aew/2 -k- b)n+l + C (60)(w) (n + 1)a

Arguing as above, we know that must be a polynomial, which it
obviously is not. This contradiction disposes of the last case, and the theorem
is proved.

3. Remarks and open problems

Consider the "easier" problem

f(g( Zl, Z2, Z3)) al(Zl) --[- A2(Z2) + A3(z3). (61)

This is easier because setting z3 constant gives (1). By a different result
(see [RST]), the zero-set of the right-hand side of (61) is connected (actually
Zl(Z1) + Z2(z2) + A3(z3), for non-constant entire functions A 1, A 2, A3, is
irreducible as an entire function, in the sense of the usual multiplication of
functions). Also f, or f- a for suitable A C, mut have infinitely many
distinct zeros, and hence at least two, say w and w2. But then the zero-set of
the left-hand side of (61) would have at least two disjoint components, a
contradiction. (Notice that replacing f by f- , does not change the form of
(61).)
To apply this argument to (1), we would need to know that there are at

least two numbers /1, /2 such that AI(Z1) q-A2(z2) -’1, and Ax(Z1)
A2(z2) h2 both have connected zero-sets (which would be implied by these
functions being irreducible, for example.) Perhaps Al(Z 1) + A2(z2) -h is
irreducible (or at least has a connected zero-set for "most" values of h;
perhaps there can be at most one exceptional h. Notice that the zero set of
exp z exp z2

, is disconnected for h 0, but is connected for all other
complex h. Note that it was proved in [ABR] and [RSTv] that if A and A2
are non-constant polynomials, then Al(Z1) -A2(z2) must have connected
zero set. This approach to an alternate proof of our theorem seems promis-
ing but difficult. (See [FRI] for some more information about the polynomial
case.)

Finally, two open problems.

Problem I. How about

f(g( Z1, Z2)) AI( z1)A2( z2)? (62)
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(Notice that the right-hand side of (62) has the product instead of the sum as
in (1).
More generally:

Problem H. How about

n

f(g(z1, Z2)) E Zj(z1)nj(z2)? (63)
j=l

4. Appendix: A theorem of Clunie.

We give a detailed proof of the theorem only outlined in [HAY, p. 54], this
time in the context of functions of several complex variables. (We have
reversed some of the notation in Hayman’s book, interchanging f and g.)

TnORZ C. Let f(z) be a transcendental meromorphic function of one
complex variable, and let g(z1, z2,.. z) be a non-constant entire function of
n complex variables, and let

0( Z1, Z2, Zn) f(g( z,, z2, Zn) ).

Then

Te(r, q)/T#(r, g) oo

as r, r2,... r, +, r (rl, r2,... r,).

Proof We may and do assume that f(w) has infinitely many distinct zeros
at wl, w2,... --. . (Otherwise, we could replace f by f-A for some
constant A.) Then

Nr,- > Nr,
=1

1 ) (64)-w.

because the averaged counting function N is a monotone increasing function
of the pole-set. We also want

m# r,- >_ Em* r -0(1)
=1 g(w) w (65)
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Here, we are using the notation

f0.= m#(r,0)
01=-r 0,=-r

iO1

(66)

and observe that m#

Now fix n and let
m O(1) because logV/1 + X 2 log + x is bounded.

0 < 6 < min{lwi wgl" 4=j,i,j 1,..., n}. (67)

Write

f(w) (W w1)ml... (W wp)mp(W) (68)

where (w) is regular at each wi, and where we also choose so small that
(w) 4= 0 for 0 < [w wi[ < 6 for all 1,2,...,p; say [(w)[ > e > 0.

Now let

P

E .J {(Zl,...,Zn)’lg(zl,...,Z,) Wil < t$}. (69)
i=1

Now for (Z1,... Zn) E, we have

log+
f(g(Zl,...,Zn))

P

> log+
g( Zl, Zn) W,

-M (70)

for a suitable constant M depending on p, , and e. But

g(rleil-Wi,...,rneiOn) --w
don.., dO

(71)

is asymptotic, as r1,... r --+ to

1

g(rleil, rnei")
don.., dO (72)

where

Ei {(01,..., On)’lg(rlei1, Fn eiOn) wil } (73)

because the integral over the remaining part is less than log+(1/6).
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We conclude, using (70), that

(1tT# r,- >_pT#(r,g) + 0(1) (67)

for any integer p, and the result follows. This completes the text of this
paper.
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