THE FACTORIZATION OF $A(z)+B(w)$ UNDER COMPOSITION

Lee A. Rubel ${ }^{1}$ and Chung-Chun Yang

Dedicated to the memory of R.P. Boas, Jr.

1. Introduction

Theorem. Let A and B be non-constant entire functions of one complex variable and suppose that

$$
\begin{equation*}
f(g(z, w))=A(z)+B(w) \tag{1}
\end{equation*}
$$

for all $z, w \in \mathbb{C}$, where f is an entire function of one variable and g is an entire function of two variables. Then f must be affine: $\mathrm{f}(\zeta)=\alpha \zeta+\beta$, $\alpha, \beta \in \mathbb{C}$ and g must have the form

$$
g(z, w)=a(z)+b(w)
$$

for some entire functions $\mathrm{a}(\mathrm{z})$ and $\mathrm{b}(\mathrm{w})$ of one variable.
This theorem says that the only entire factorizations (under composition of functions) of $A(z)+B(w)$ are the obvious ones. Note that the theorem is a global result dealing with entire functions. There is no corresponding local result-witness

$$
A(z)+B(w)=\log (\exp (A(z)+B(w))
$$

or indeed

$$
A(z)+B(w)=\Phi^{-1}(\Phi(A(z)+(B(w))
$$

where Φ and Φ^{-1} are analytic functions suitably defined on regions in \mathbb{C}.
Besides some algebraic and analytic manipulating of an elementary kind, the main tool in the proof is Nevanlinna theory based on exhaustions of \mathbb{C}^{2} by polydiscs. In particular, we use a version of the lemma of the logarithmic

[^0]derivative (LLD) for this context, the proof of which is given in our text. We thank Wilhelm Stoll for his valuable suggestion of how to prove our LLD by using a result in this paper [STO]. An appendix states and proves a severalvariables version we need of a theorem of Clunie (see [HAY]) on the growth of the composition of entire functions. At the end of the paper we discuss some open problems, and also discuss a possible alternative approach to proving our theorem, which brings in some interesting considerations on ordinary factorization.

2. Proof of the theorem

Changing notation slightly from

$$
\begin{equation*}
f\left(g\left(z_{1}, z_{2}\right)\right)=A_{1}\left(z_{1}\right)+A_{2}\left(z_{2}\right) \tag{1}
\end{equation*}
$$

we get

$$
\begin{gather*}
f^{\prime}\left(g\left(z_{1}, z_{2}\right)\right) g_{1}\left(z_{1}, z_{2}\right)=A_{1}^{\prime}\left(z_{1}\right) \tag{2}\\
f^{\prime}\left(g\left(z_{1}, z_{2}\right)\right) g_{2}\left(z_{1}, z_{2}\right)=A_{2}^{\prime}\left(z_{2}\right) \tag{3}\\
f^{\prime \prime}\left(g\left(z_{1}, z_{2}\right)\right) g_{1}\left(z_{1}, z_{2}\right) g_{2}\left(z_{1}, z_{2}\right)+f^{\prime}\left(g\left(z_{1}, z_{2}\right)\right) g_{12}\left(z_{1}, z_{2}\right)=0 \tag{4}\\
\frac{f^{\prime \prime}\left(g\left(z_{1}, z_{2}\right)\right)}{f^{\prime}\left(g\left(z_{1}, z_{2}\right)\right)}=-\frac{g_{12}\left(z_{1}, z_{2}\right)}{g_{1}\left(z_{1}, z_{2}\right) g_{2}\left(z_{1}, z_{2}\right)}, \tag{5}
\end{gather*}
$$

where the subscripts on the g 's denote partial differentiation.
At this point we must make a detour into Nevanlinna theory for entire (and meromorphic) functions of n variables using a polydisc exhaustion of \mathbb{C}^{n}, based on the work of Stoll (see [STO]).

The Euclidean space \mathbb{R}^{n} is partially ordered by its coordinates. Denote by $\|\mathfrak{r}\|$ the length of \mathfrak{r} in \mathbb{R}^{n}. For $3=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, define $|3|=$ $\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right)$. For $0<\mathfrak{b} \in \mathbb{R}^{n}$, define

$$
\begin{align*}
\mathbb{R}^{n}(\mathfrak{b}) & =\left\{\mathfrak{r} \in \mathbb{R}^{n}: 0<\mathfrak{r}<\mathfrak{b}\right\} \tag{6}\\
\mathbb{D}(\mathfrak{b}) & =\left\{3 \in \mathbb{C}^{n}:|3|<\mathfrak{b}\right\} \tag{7}\\
\mathbb{D}\langle\mathfrak{b}\rangle & =\left\{3 \in \mathbb{C}^{n}:|3|=\mathfrak{b}\right\} \tag{8}
\end{align*}
$$

Let Ω_{n} be the rotation-invariant measure on the torus $\mathbb{D}\langle\mathfrak{r}\rangle$ for $\mathfrak{r} \in \mathbb{R}^{n}(\mathfrak{b})$ such that $\mathbb{D}\langle\mathfrak{r}\rangle$ has total volume 1 . In familiar notation,

$$
\begin{equation*}
\Omega_{n}=\frac{d \theta_{1} d \theta_{2} \ldots d \theta_{n}}{(2 \pi)^{n}} \tag{9}
\end{equation*}
$$

Denote by

$$
\begin{equation*}
\|z, a\|=\frac{|z-a|}{\sqrt{1+|a|^{2}} \sqrt{1+|z|^{2}}} \tag{10}
\end{equation*}
$$

the chordal metric on \mathbb{C}. A meromorphic function f on \mathbb{C}^{n} is the quotient of two entire functions g and $h \not \equiv 0$, such that $h f=g$ and

$$
\begin{equation*}
u=(g, h): \mathbb{C}^{n} \rightarrow \mathbb{C}^{2} \tag{11}
\end{equation*}
$$

defines a meromorphic map from \mathbb{C}^{n} into \mathbb{P}_{1} which is identified with f. The representation u is reduced if and only if g and h are coprime at every point of \mathbb{C}^{2}. Finally, the value-distribution functions are defined by

$$
\begin{align*}
T_{f}(\mathfrak{r}, \mathfrak{q}) & =\int_{\mathbb{D}\langle\mathfrak{r}\rangle} \log \sqrt{|g|^{2}+|h|^{2}} \Omega_{n}-\int_{\mathbb{D}\langle\mathfrak{q}\rangle} \log \sqrt{|g|^{2}+|h|^{2}} \Omega_{n} \tag{12}\\
m_{f}(\mathfrak{r}, a) & =\int_{\mathbb{D}\langle\mathfrak{r}\rangle} \log \frac{\sqrt{1+|a|^{2}} \sqrt{1+|f|^{2}}}{|f-a|} \Omega_{n} \tag{13}\\
m_{f}(\mathrm{r}, \infty) & =\int_{\mathbb{D}\langle\mathfrak{r}\rangle} \log \sqrt{1+|f|^{2}} \Omega_{n} \tag{14}
\end{align*}
$$

For fixed \mathfrak{q},

$$
\begin{equation*}
T_{f}(\mathfrak{r}, \mathfrak{q})=T_{f}^{\#}(\mathfrak{r})+O(1) \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{f}^{\#}(\mathfrak{r})=m_{f}^{\#}(\mathfrak{r})+N_{f}^{\#}(\mathfrak{r}) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{f}^{\#}(\mathfrak{r})=\int_{\mathbb{D}\langle\mathfrak{r}\rangle} \log ^{+}|f| \Omega_{n} \tag{17}
\end{equation*}
$$

and where $N_{f}^{\#}(\mathfrak{r})$ is a certain monotone-increasing function of the pole-set of f (that is, of the zero-set of h in a reduced representation $f=g / h$). This notation is more in line with the analyst's usual notation.

Now in the context of this paper, we take $0<r<\infty$, take $n=2$, and take $\mathfrak{r}=(r, 2 r)$ and take $\mathfrak{b}=(4 r, 4 r)$, say. Take $\mathfrak{q}=(s, 2 s)$ for s fixed, $0<s<r$. Now take $0<q \in \mathbb{R}$ and $\theta>1$ so that

$$
0<\boldsymbol{q} \cdot \mathfrak{b} \leq \mathfrak{q} \leq \mathfrak{r}<\theta \mathfrak{r}<\mathfrak{b}
$$

Let us take $s=1, q=(s / 8 r)=(1 / 8 r)$ so that $4 q r<s$. Hence

$$
\begin{equation*}
q \cdot \mathfrak{b}=(q 4 r, q 4 r)<\mathfrak{q}=(s, 2 s) \tag{18}
\end{equation*}
$$

We now state Theorem (6.3) from [STO]:
Theorem S. Take $\mathfrak{b} \in \mathbb{R}_{n}^{+}$. Take $\mathfrak{r} \in \mathbb{R}^{+}(\mathfrak{b})$ and $\mathfrak{q} \in \mathbb{R}^{n}(\mathfrak{b})$ with $0<\mathfrak{q} \leq$ $\mathfrak{r}<\mathfrak{b}$. Take $1<\theta \in \mathbb{R}$ and $0<q \in \mathbb{R}$ so that $0<\boldsymbol{q} \cdot \mathfrak{b} \leq \mathfrak{q} \leq \mathfrak{r}<\theta \mathfrak{r}<\mathfrak{b}$. Let $F \not \equiv 0$ be a meromorphic function on $\mathbb{D}(\mathfrak{b})$. Take $\tau \in(1,2, \ldots, n)$ and define $F_{\tau}^{\prime}=\partial F / \partial z_{\tau}$. Then

$$
\begin{align*}
\int_{\mathbb{D}\langle\mathfrak{r}\rangle} \log ^{+}\left|\frac{F_{\tau}^{\prime}}{F}\right| \Omega_{n} \leq & 8 \log ^{+} T_{F}(\theta \mathfrak{r}, \mathfrak{q})+4 \log ^{+} m_{F}(\mathfrak{q}, 0) \\
& +4 \log ^{+} m_{F}(\mathfrak{q}, \infty)+9 \log \frac{2 \theta}{\theta-1} \\
& +2 \log ^{+} \frac{1}{q b_{\tau}}+24 \log 2 \tag{19}
\end{align*}
$$

We now apply Stoll's LLD (Theorem S above) to get, for $F: \mathbb{C}^{2} \rightarrow \mathbb{C}$ an entire function,

$$
\begin{align*}
\frac{1}{(2 \pi)^{2}} \int_{\mathbb{D}\langle\mathrm{r}\rangle} \log ^{+}\left|\frac{1}{F} \frac{\partial F}{\partial z_{1}}\right| d \theta_{1} d \theta_{2} & \leq \text { sum of six terms } \\
& =(1)+(2)+(3)+(4)+(5)+(6) \tag{20}
\end{align*}
$$

where

$$
\begin{align*}
& (6)=24 \log 2=O(1) \tag{21}\\
& (5)=2 \log ^{+} \frac{1}{q b_{1}}=2 \log ^{+} \frac{1}{\frac{1}{8 r} 4 r}=2 \log ^{+} 2=O(1) \tag{22}\\
& (3)=\log ^{+} m_{F}(\mathfrak{q}, \infty)=\mathrm{const}=O(1) \tag{23}\\
& (2)=4 \log ^{+} m_{F}(\mathfrak{q}, 0)=\mathrm{const}=O(1) \tag{24}\\
& (1)=8 \log ^{+} T_{F}(\theta \mathfrak{r}, \mathfrak{q}) \leq 8 \log ^{+} T_{F}^{\#}(\theta \mathfrak{r}) \tag{25}\\
& (4)=9 \log \frac{2 \theta}{\theta-1} \tag{26}
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
\frac{1}{(2 \pi)^{2}} \int_{\mathbb{D}\langle\mathfrak{r}\rangle} \log ^{+}\left|\frac{1}{F} \frac{\partial F}{\partial z_{1}}\right| d \theta_{1} d \theta_{2} \leq 8 \log ^{+} T_{F}^{\#}(\theta \mathfrak{r})+9 \log \frac{2 \theta}{\theta-1}+C \tag{27}
\end{equation*}
$$

where C is a finite constant, independent of θ. We now apply Borel's lemma that, for μ a positive increasing function,

$$
\begin{equation*}
\mu\left(r+\frac{1}{\mu(r)}\right)<2 \mu(r) \tag{28}
\end{equation*}
$$

off an exceptional set of r of finite length. We take

$$
\begin{equation*}
\mu(r)=T_{F}^{\#}(\mathfrak{r}) \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
r+\frac{1}{\mu(r)}=\theta r \tag{30}
\end{equation*}
$$

so that

$$
\begin{equation*}
\theta=1+\frac{1}{r \mu(r)} . \tag{31}
\end{equation*}
$$

In other words, this is our choice of θ.
Finally, we have, for any entire function $F: \mathbb{C}^{2} \rightarrow \mathbb{C}$, with the above choices,

$$
\begin{equation*}
\frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \log ^{+}\left|\frac{1}{F} \frac{\partial F}{\partial z_{1}}\right| d \theta_{1} d \theta_{2} \leq 17 \log ^{+} T_{F}^{\#}(\mathfrak{r})+\log r+C^{\prime} \tag{32}
\end{equation*}
$$

off a set of finite length, where C^{\prime} is a finite constant. This is the version of LLD we apply in this paper. A similar result holds for $\partial F / \partial z_{2}$.

In abbreviated notation, we have in the usual way,

$$
\begin{align*}
T^{\#}\left(\mathfrak{r}, F^{\prime}\right) & =m\left(\mathfrak{r}, F^{\prime}\right)=m\left(\mathfrak{r}, \frac{F^{\prime}}{F} F\right) \\
& \leq m\left(\mathfrak{r}, \frac{F^{\prime}}{F}\right)+m(\mathfrak{r}, F) \\
& =(1+o(1)) T(\mathfrak{r}, F) \tag{33}
\end{align*}
$$

off an exceptional set of finite length. Here, F^{\prime} denotes either $\partial F / \partial z_{1}$ or $\partial F / \partial z_{2}$.

We are freely using here such elementary results as

$$
\begin{align*}
T^{\#}(\mathrm{r}, F+G) & \leq T^{\#}(\mathrm{r}, F)+T^{\#}(\mathrm{r}, G)+O(1) \tag{34}\\
T^{\#}(\mathfrak{r}, F G) & \leq T^{\#}(\mathfrak{r}, F)+T^{\#}(\mathfrak{r}, G)+O(1) \tag{35}
\end{align*}
$$

and

$$
\begin{equation*}
T^{\#}\left(\mathfrak{r}, \frac{1}{F}\right)=T^{\#}(\mathfrak{r}, F)+O(1) \tag{36}
\end{equation*}
$$

Now going way back to (5), we have

$$
\begin{equation*}
T^{\#}\left(\mathfrak{r}, \frac{f^{\prime \prime}(g)}{f^{\prime}(g)}\right) \leq(3+o(1)) T^{\#}(\mathfrak{r}, g) \tag{37}
\end{equation*}
$$

with the usual allowance for an exception set. This is a key step, and uses (33), (35), and (36). By Clunie's result (see our appendix) $f^{\prime \prime} / f^{\prime}$ must be a rational function, so that we have

$$
\begin{equation*}
f=\int P e^{Q} \tag{38}
\end{equation*}
$$

where P and Q are polynomials, because f is entire.
Along a second line of reasoning from (2) and (3) and Clunie's result and LLD, supposing that f^{\prime} is transcendental, we get

$$
\begin{equation*}
T^{\#}\left(\mathfrak{r}, A_{1}^{\prime}\left(z_{1}\right)\right) \sim T^{\#}\left(\mathfrak{r}, A_{2}^{\prime}\left(z_{2}\right)\right) \tag{39}
\end{equation*}
$$

off a set E of finite length, where $\mathfrak{r}=(r, 2 r), r \rightarrow \infty$, and $A_{1}^{\prime}\left(z_{1}\right)$ is meant as a function of both z_{1} and z_{2} and similarly for $A_{2}^{\prime}\left(z_{2}\right)$, and $T^{\#}$ is the polydisc characteristic. Consequently, off E,

$$
\begin{equation*}
T\left(r, A_{1}^{\prime}\left(z_{1}\right)\right) \sim T\left(2 r, A_{1}^{\prime}\left(z_{1}\right)\right) \tag{40}
\end{equation*}
$$

where the characteristic T is now of functions of one variable.
This is because

$$
\begin{align*}
T^{\#}\left(\mathfrak{r}, A_{1}^{\prime}\left(z_{1}\right)\right) & =m\left(\mathfrak{r}, A_{1}^{\prime}\left(z_{1}\right)\right) \\
& =\frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \log ^{+}\left|A_{1}^{\prime}\left(r e^{i \theta_{1}}\right)\right| d \theta_{1} d \theta_{2} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log ^{+}\left|A_{1}^{\prime}\left(r e^{i \theta_{1}}\right)\right| d \theta_{1}=m\left(r, A_{1}^{\prime}\right) \\
& =T\left(r, A_{1}^{\prime}\right), \tag{41}
\end{align*}
$$

and $T^{\#}\left(\mathrm{r}, A_{2}^{\prime}\left(z_{2}\right)\right)=T\left(2 r, A_{2}^{\prime}\right)$. Thus

$$
T\left(r, A_{1}^{\prime}\right)=(1+o(1)) T\left(2 r, A_{2}^{\prime}\right)
$$

By symmetry, we get

$$
T\left(r, A_{2}^{\prime}\right)=(1+o(1)) T\left(2 r, A_{1}^{\prime}\right)
$$

so that $T\left(r, A_{1}^{\prime}\right)=(1+o(1)) T\left(4 r, A_{1}^{\prime}\right)$ and (40) follows, on replacing $4 r$ above by $2 r$.

From (40), as we will show in a minute, $A_{1}^{\prime}\left(z_{1}\right)$ must have order zero. (Similarly, $A_{2}^{\prime}\left(z_{2}\right)$ must have order 0 .) Recall from (2) that

$$
f^{\prime}\left(g\left(z_{1}, z_{2}\right)\right) g_{1}\left(z_{1}, z_{2}\right)=A_{1}^{\prime}\left(z_{1}\right)
$$

Hold z_{2} fixed, say $z_{2}=0$. By Theorem C of the Appendix, if f is transcendental, then, using LLD (in one variable) we would have $T\left(r, f^{\prime}\left(g\left(z_{1}, 0\right)\right)=\right.$ $O\left(r^{\alpha}\right)$ for each $\alpha>0$, off a set E of finite length, and thus by a familiar elementary argument, with no exceptions. (For if E is a set of finite length, then for all sufficiently large $r \in E$, the interval $[r, 2 r]$ is not contained entirely in E. And if $T(\rho) \leq A \rho^{a}$ and $\rho \geq r \geq \rho / 2$ then $T(r) \leq A 2^{\alpha} r^{\alpha}$, etc.) Hence $f^{\prime}(g(z, 0))$ must be of order zero. Another approach to this fact is via Lemma 2 on pp. 751-752 of [HEL]. See also [SOY]. We now quote Theorem 2.9 of [HAY], p. 53 (reversing the notation).

Theorem H. Suppose that $f(z), g(z)$ are entire functions and that $\varphi(z)=$ $f(g(z))$ has finite order. Then either $g(z)$ is a polynomial or $f(z)$ has zero order.

We want to conclude that the $f(z)$ of (1) has zero order. So suppose by way of contradiction, (using Theorem H) that $g(z)$ is a polynomial of degree N. Here, we write $g(z)=g(z, 0)$. Then, given large z, say $|z|>R$, there exists a $w \in \mathbb{C}$ with $g(w)=z$ and $|w| \leq 2|z|^{1 / N}$. For fixed $\alpha>0$ we have

$$
\left|f^{\prime}(g(w))\right| \leq A \exp \left(B|w|^{\alpha}\right)
$$

so that

$$
\left|f^{\prime}(z)\right| \leq A \exp \left(\bar{B}|z|^{\alpha / N}\right) \quad|z|>R
$$

where $\bar{B}=2 B$, and thus we see that $f^{\prime}(z)$ has order zero in any event. But since by (38), $f^{\prime}=P e^{Q}$, we must have $Q=$ const, and $f=P$, say, a polynomial. So in any event, $f=P$.

Now for the promised proof that $A_{1}^{\prime}\left(z_{1}\right)$ must have order zero, go back to (40).

Let

$$
\begin{equation*}
B_{\varepsilon}=\{r: T(2 r)<(1+\varepsilon) T(r)\} \tag{42}
\end{equation*}
$$

where $T(r):=T\left(r, A_{1}^{\prime}\right)$. If $2^{k} r \in B_{\varepsilon}$ for $k=0,1,2, \ldots$, we have

$$
\begin{align*}
T\left(2^{k} r\right) & \leq(1+\varepsilon)^{k} T(r) \tag{43}\\
\frac{T\left(2^{k} r\right)}{\left(2^{k} r\right)^{\alpha}} & \leq\left(\frac{1+\varepsilon}{2^{\alpha}}\right)^{k} \frac{T(r)}{r^{\alpha}} \tag{44}
\end{align*}
$$

and if $1+\varepsilon<2^{\alpha}$, we have

$$
\underline{\lim } \frac{T(\rho)}{\rho^{\alpha}}=0
$$

Let J_{ε} be the complement of B_{ε}, so that we need $2^{k} r \notin J_{\varepsilon}, k=0,1,2, \ldots$. That is, $r \notin \bigcup_{k} J_{\varepsilon} / 2^{k}$. But the length of this union is finite, since the length of $J_{\varepsilon} / 2^{k}$ is 2^{-k} times the length of J_{ε}. Again, by the familiar elementary argument, we may dispense with the exceptional set to conclude that $A_{1}^{\prime}\left(z_{1}\right)$ has order zero.

Now from (2) and (3),

$$
\begin{equation*}
\frac{g_{1}\left(z_{1}, z_{2}\right)}{g_{2}\left(z_{1}, z_{2}\right)}=\frac{A_{1}^{\prime}\left(z_{1}\right)}{A_{2}^{\prime}\left(z_{2}\right)} \tag{45}
\end{equation*}
$$

(This holds off the zeros of $f^{\prime}\left(g\left(z_{1}, z_{2}\right)\right)$, and hence everywhere by continuity, unless $f^{\prime} \equiv 0$, which is ruled out.)

From (45), it follows that the zeros of $g_{1}\left(z_{1}, z_{2}\right)$ are exactly (counting multiplicity) the zeros of $A_{1}^{\prime}(z)$ and the zeros of $g_{2}\left(z_{1}, z_{2}\right)$ are exactly the zeros of $A_{2}^{\prime}\left(z_{2}\right)$. The argument for this is that from (2), every zero of $g_{1}\left(z_{1}, z_{2}\right)$ is a zero of $A_{1}^{\prime}\left(z_{1}\right)$. In the other direction, suppose there were a $z_{1} \in \mathbb{C}$ such that $A_{1}^{\prime}\left(z_{1}\right)=0$ but there were a $z_{2} \in \mathbb{C}$ with $g_{1}\left(z_{1}, z_{2}\right) \neq 0$. Then for those z_{2} we would have $A_{2}^{\prime}\left(z_{2}\right)=0$. Now, for this fixed z_{1}, $\left\{z_{2}: g_{1}\left(z_{1}, z_{2}\right) \neq 0\right\}$ is an open set in \mathbb{C}, and we would have $A_{2}^{\prime}\left(z_{2}\right) \equiv 0$, contrary to the hypothesis that $A_{2} \neq$ const.

Thus we have

$$
\begin{align*}
& A_{1}^{\prime}\left(z_{1}\right)=g_{1}\left(z_{1}, z_{2}\right) \exp u_{1}\left(z_{1}, z_{2}\right) \tag{46}\\
& A_{2}^{\prime}\left(z_{2}\right)=g_{2}\left(z_{1}, z_{2}\right) \exp u_{2}\left(z_{1}, z_{2}\right) \tag{47}
\end{align*}
$$

where u_{1} and u_{2} are entire functions. Going back to (2), we have

$$
\begin{equation*}
f^{\prime}\left(g\left(z_{1}, z_{2}\right)\right)=e^{u\left(z_{1}, z_{2}\right)} \tag{48}
\end{equation*}
$$

where $u=u_{1}=u_{2}$. Remember that we know that f is a polynomial. If $\operatorname{deg} f \geq 3$ then $\operatorname{deg} f^{\prime} \geq 2$ and thus f^{\prime} has at least two zeros. If they are distinct zeros, then g cannot omit both of these two values, since $g \neq$ const. In the case where $\operatorname{deg} f \leq 2, \operatorname{deg} f^{\prime} \leq 1$, so that

$$
\begin{equation*}
f^{\prime}(w)=\alpha w+\beta, \quad \alpha, \beta \in \mathbb{C} \tag{49}
\end{equation*}
$$

and we have, from (48),

$$
\begin{gather*}
\alpha g\left(z_{1}, z_{2}\right)+\beta=\exp u\left(z_{1}, z_{2}\right) \tag{50}\\
g\left(z_{1}, z_{2}\right)=\frac{1}{\alpha}\left(\left[\exp u\left(z_{1}, z_{2}\right)\right]-\beta\right) \tag{51}\\
f(w)=\frac{\alpha w^{2}}{2}+\beta w+\gamma \tag{52}\\
\frac{\alpha}{2}\left[\frac{1}{\alpha} e^{u\left(z_{1}, z_{2}\right)}-\beta\right]^{2}+\beta\left[\frac{1}{\alpha} e^{u\left(z_{1}, z_{2}\right)}-\beta\right]+\gamma=A_{1}\left(z_{1}\right)+A_{2}\left(z_{2}\right) \tag{53}
\end{gather*}
$$

This is of the form

$$
\begin{equation*}
\Phi\left(u\left(z_{1}, z_{2}\right)\right)=A_{1}\left(z_{1}\right)+A_{2}\left(z_{2}\right) \tag{54}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi(w)=\frac{\alpha}{2}\left[\frac{1}{\alpha} e^{w}-\beta\right]^{2}+\beta\left[\frac{1}{\alpha} e^{w}-\beta\right]+\gamma \tag{55}
\end{equation*}
$$

But what we have proved shows that $\Phi(w)$ must be a polynomial, which it obviously is not, unless of course $\alpha=0$, in which case f is affine and the assertion of the theorem holds. Aside from the untreated case where f^{\prime} is the square of an affine function, we have only the possibility $f^{\prime}(w) \equiv \beta$, $f(w)=\beta w+\gamma$, and the assertion of the theorem holds.

In the one remaining case,

$$
\begin{align*}
f^{\prime}(\xi) & =(a \xi+b)^{n} \tag{56}\\
f(\xi) & =\frac{1}{(n+1) a}(a \xi+b)^{n+1}+C \tag{57}\\
g\left(z_{1}, z_{2}\right) & =e^{\frac{1}{2} u\left(z_{1}, z_{2}\right)} \tag{58}
\end{align*}
$$

and we would have

$$
\begin{equation*}
\Phi\left(u\left(z_{1}, z_{2}\right)\right)=\overline{A_{1}}\left(z_{1}\right)+\overline{A_{2}}\left(z_{2}\right) \tag{59}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi(w)=\frac{1}{(n+1) a}\left(a e^{w / 2}+b\right)^{n+1}+C . \tag{60}
\end{equation*}
$$

Arguing as above, we know that Φ must be a polynomial, which it obviously is not. This contradiction disposes of the last case, and the theorem is proved.

3. Remarks and open problems

Consider the "easier" problem

$$
\begin{equation*}
f\left(g\left(z_{1}, z_{2}, z_{3}\right)\right)=A_{1}\left(z_{1}\right)+A_{2}\left(z_{2}\right)+A_{3}\left(z_{3}\right) \tag{61}
\end{equation*}
$$

This is easier because setting $z_{3}=$ constant gives (1). By a different result (see [RST]), the zero-set of the right-hand side of (61) is connected (actually $A_{1}\left(z_{1}\right)+A_{2}\left(z_{2}\right)+A_{3}\left(z_{3}\right)$, for non-constant entire functions A_{1}, A_{2}, A_{3}, is irreducible as an entire function, in the sense of the usual multiplication of functions). Also f, or $f-\lambda$ for suitable $\lambda \in \mathbb{C}$, mut have infinitely many distinct zeros, and hence at least two, say w_{1} and w_{2}. But then the zero-set of the left-hand side of (61) would have at least two disjoint components, a contradiction. (Notice that replacing f by $f-\lambda$ does not change the form of (61).)

To apply this argument to (1), we would need to know that there are at least two numbers λ_{1}, λ_{2} such that $A_{1}\left(z_{1}\right)+A_{2}\left(z_{2}\right)-\lambda_{1}$, and $A_{1}\left(z_{1}\right)-$ $A_{2}\left(z_{2}\right)-\lambda_{2}$ both have connected zero-sets (which would be implied by these functions being irreducible, for example.) Perhaps $A_{1}\left(z_{1}\right)+A_{2}\left(z_{2}\right)-\lambda$ is irreducible (or at least has a connected zero-set for "most" values of λ; perhaps there can be at most one exceptional λ. Notice that the zero set of $\exp z_{1}-\exp z_{2}-\lambda$ is disconnected for $\lambda=0$, but is connected for all other complex λ. Note that it was proved in [ABR] and [RSTv] that if A_{1} and A_{2} are non-constant polynomials, then $A_{1}\left(z_{1}\right)-A_{2}\left(z_{2}\right)$ must have connected zero set. This approach to an alternate proof of our theorem seems promising but difficult. (See [FRI] for some more information about the polynomial case.)

Finally, two open problems.
Problem I. How about

$$
\begin{equation*}
f\left(g\left(z_{1}, z_{2}\right)\right)=A_{1}\left(z_{1}\right) A_{2}\left(z_{2}\right) ? \tag{62}
\end{equation*}
$$

(Notice that the right-hand side of (62) has the product instead of the sum as in (1).

More generally:
Problem II. How about

$$
\begin{equation*}
f\left(g\left(z_{1}, z_{2}\right)\right)=\sum_{j=1}^{n} A_{j}\left(z_{1}\right) B_{j}\left(z_{2}\right) ? \tag{63}
\end{equation*}
$$

4. Appendix: A theorem of Clunie.

We give a detailed proof of the theorem only outlined in [HAY, p. 54], this time in the context of functions of several complex variables. (We have reversed some of the notation in Hayman's book, interchanging f and g.)

Theorem C. Let $f(z)$ be a transcendental meromorphic function of one complex variable, and let $g\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ be a non-constant entire function of n complex variables, and let

$$
\varphi\left(z_{1}, z_{2}, \ldots, z_{n}\right)=f\left(g\left(z_{1}, z_{2}, \ldots, z_{n}\right)\right)
$$

Then

$$
T^{\#}(\mathfrak{r}, \varphi) / T^{\#}(\mathfrak{r}, g) \rightarrow \infty
$$

as $r_{1}, r_{2}, \ldots, r_{n} \rightarrow+\infty, \mathfrak{r}=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$.
Proof. We may and do assume that $f(w)$ has infinitely many distinct zeros at $w_{1}, w_{2}, \cdots \rightarrow \infty$. (Otherwise, we could replace f by $f-\lambda$ for some constant λ.) Then

$$
\begin{equation*}
N\left(\mathfrak{r}, \frac{1}{\varphi}\right) \geq \sum_{\nu=1}^{p} N\left(\mathfrak{r}, \frac{1}{g(w)-w_{\nu}}\right) \tag{64}
\end{equation*}
$$

because the averaged counting function N is a monotone increasing function of the pole-set. We also want

$$
\begin{equation*}
m^{\#}\left(\mathfrak{r}, \frac{1}{\varphi}\right) \geq \sum_{\nu=1}^{p} m^{\#}\left(\mathfrak{r}, \frac{1}{g(w)-w_{\nu}}\right)-O(1) \tag{65}
\end{equation*}
$$

Here, we are using the notation
$m^{\#}(\mathfrak{r}, \psi)=\left(\frac{1}{2 \pi}\right)^{n} \int_{\theta_{1}=-\pi}^{\theta_{1}=\pi} \ldots \int_{\theta_{n}=-\pi}^{\theta_{n}=\pi} \log ^{+}\left|\psi\left(r_{1} e^{i \theta_{1}}, \ldots, r_{n} e^{i \theta_{n}}\right)\right| d \theta_{1} \ldots d \theta_{n}$,
and observe that $m^{\#}-m=O(1)$ because $\log \sqrt{1+x^{2}}-\log ^{+} x$ is bounded.
Now fix n and let

$$
\begin{equation*}
0<\delta<\frac{1}{10} \min \left\{\left|w_{i}-w_{j}\right|: i \neq j, i, j=1, \ldots, n\right\} \tag{67}
\end{equation*}
$$

Write

$$
\begin{equation*}
f(w)=\left(w-w_{1}\right)^{m_{1}} \ldots\left(w-w_{p}\right)^{m_{p}} \Phi(w) \tag{68}
\end{equation*}
$$

where $\Phi(w)$ is regular at each w_{i}, and where we also choose δ so small that $\Phi(w) \neq 0$ for $0<\left|w-w_{i}\right| \leq \delta$ for all $i=1,2, \ldots, p$; say $|\Phi(w)| \geq \varepsilon>0$. Now let

$$
\begin{equation*}
E=\bigcup_{i=1}^{p}\left\{\left(z_{1}, \ldots, z_{n}\right):\left|g\left(z_{1}, \ldots, z_{n}\right)-w_{i}\right| \leq \delta\right\} \tag{69}
\end{equation*}
$$

Now for $\left(z_{1}, \ldots, z_{n}\right) \in E$, we have

$$
\begin{equation*}
\log ^{+}\left|\frac{1}{f\left(g\left(z_{1}, \ldots, z_{n}\right)\right)}\right| \geq \sum_{\nu=1}^{p} \log ^{+}\left|\frac{1}{g\left(z_{1}, \ldots, z_{n}\right)-w_{\nu}}\right|-M \tag{70}
\end{equation*}
$$

for a suitable constant M depending on p, δ, and ε. But

$$
\begin{equation*}
\left(\frac{1}{2 \pi}\right)^{n} \int_{\theta_{1}=-\pi}^{\theta_{1}=\pi} \ldots \int_{\theta_{n}=-\pi}^{\theta_{n}=\pi} \log ^{+}\left|\frac{1}{g\left(r_{1} e^{i \theta_{1}-w_{i}}, \ldots, r_{n} e^{i \theta_{n}}\right)-w_{i}}\right| d \theta_{n} \ldots d \theta_{1} \tag{71}
\end{equation*}
$$

is asymptotic, as $r_{1}, \ldots, r_{n} \rightarrow \infty$ to

$$
\begin{equation*}
\left(\frac{1}{2 \pi}\right)^{n} \int \ldots \int \log \left|\frac{1}{g\left(r_{1} e^{i \theta_{1}}, \ldots, r_{n} e^{i_{\mathrm{H}}}\right)}\right| d \theta_{n} \ldots d \theta_{1} \tag{72}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{i}=\left\{\left(\theta_{1}, \ldots, \theta_{n}\right):\left|g\left(r_{1} e^{i \theta_{1}}, \ldots, r_{n} e^{i \theta_{n}}\right)-w_{i}\right| \leq \delta\right\} \tag{73}
\end{equation*}
$$

because the integral over the remaining part is less than $\log ^{+}(1 / \delta)$.

We conclude, using (70), that

$$
\begin{equation*}
T^{\#}\left(\mathfrak{r}, \frac{1}{\varphi}\right) \geq p T^{\#}(\mathfrak{r}, g)+O(1) \tag{67}
\end{equation*}
$$

for any integer p, and the result follows. This completes the text of this paper.

References

[ABR] Shreeram S. Abhyankar and Lee A. Rubel, Every difference polynomial has a connected zero-set, J. Indian Math. Soc. 43 (1979), 69-78.
[FRI] Michael Fried, Irreducibility results for separated variables equations, J. Pure Appl. Algebra 48 (1987), 9-22.
[HAY] Walter K. Hayman, Meromorphic functions, Oxford at the Clarendon Press, 1964.
[HEL] S. Hellerstein, The distribution of values of a meromorphic function and a theorem of H.S. Wilf, Duke Math. J. 32 (1965), 749-764.
[RST] Lee A. Rubel, Willam Souires and B.A. Taylor, Irreducibility of certain entire functions, with applications to harmonic analysis, Ann. of Math. 108 (1978), 553-567.
[RSTv] Lee A. Rubel, A. Schinzel and H. Tverberg, On difference polynomials and hereditarily irreducible polynomials, J. Number Theory 12 (1980), 230-235.
[SOY] G.D. Song and Chung-Chun Yang, Further growth properties of compositions of entire and meromorphic functions, Indian J. Pure Appl. Math. 15 (1984), 67-82.
[STO] Wilhelm Stoll, Value distribution and the lemma of the logarithmic derivative on polydiscs, Internat. J. Math. Math. Sci. 6 (1983), 617-669.

University of Illinois
Urbana, Illinois
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

[^0]: Received January 6, 1993.
 ${ }^{1}$ The research of the first author was partially supported by a grant from the National Science Foundation.

 1991 Mathematics Subject Classification. Primary 30D05; Secondary 30D35, 32A22.

