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1. Introduction

We are interested in Schauder bases for the Sobolev spaces W0’ P(12) for f
a general smooth subdomain of Rn. In the particular case where f is a cube
it has been proved by Z. Ciesielski and J. Domsta in [3] that Wa’P(f) has a
Schauder basis made of functions that are mutually orthogonal in L2().
Also, for the particular case p 2 it is well known that the eigenfunctions of
the Laplace operator constitute a basis of W0’2 with the property that the
elements of the basis are mutually orthogonal in L2. For a general domain f
and general p, the existence of a Schauder basis for W0’ P(f)was proved by
S. Fucik, O. John and J. Necas in [4]. However, it is not known whether the
elements of this basis are mutually orthogonal in L2. The existence of a
Schauder basis for W01’ P(12), for general p and f, made of elements that are
mutually orthogonal in L2(I’),) seem to be an open question. It should be
mentioned that the Gram-Schmidt orthonormalization of a Schauder basis
may fail to be a Schauder basis (see [11], [9]).

In this paper we prove the existence of a Schauder basis of W01’ P(2) with a
property that is weaker than that of having elements that are mutually
orthogonal in L2(’) but that can usefully be substituted for it in some
contexts. To wit, let {wi}i>l be a Schauder basis of W’P() and V the
closure in L2 of the subspace of Wd’P(12) spanned by the subsequence
{wi}i> n" We show the existence of a basis with the property that

Vn, v. n Span{w1,..., Wn} O. (])

Note that whenever the elements of a basis are mutually orthogonal in
L2(), (1) is trivially satisfied.
Our interest in this problem came from needs encountered while dealing

with the question of existence of a solution to a partial differential equation
(see [2]). We elucidate the connection between the two: Schauder bases of
Banach spaces are used in the theory of partial differential equations in
connection with the Galerkin method. This is one of the methods commonly
used to establish the existence of a solution to a partial differential equation.
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The blueprint for applying this method is fairly simple and well known.
However, in applying it to specific equations one may encounter difficulties in
carrying out some of the required tasks. The use of Schauder bases that have
special properties has been successful in some cases (see J.L. Lions, [7], in
particular, 6.3 Base speciale and 1.7. Un autre resultat de regularite. Bases
speciales). Among such special properties, the property that the elements of
the basis are mutually orthogonal in L2 is frequently used, and often is a key
element in the proof. The Property is used essentially in the following way: In
implementing the Galerkin method one seeks at first a solution u
Span{w1,..., wn}. If v E=laiwi and the elements of the basis are mutu-
ally orthogonal in L2 then

EOliWi dx (2)
i=1

and this then can be used very fruitfully (it amounts to enlarging the class of
test unctions).
Denote by 1 the L2 projection onto 1/. Then, obviously, we always

have, without any orthogonality assumption on the

fQn(u,)vclx fQ,(u,,) EOliWi dd. (3)
i=1

One is then tempted to substitute Qn(un) for Un in the partial differential
equation. Property (1) (when satisfied) allows to do this and still carry out the
rest of the steps as called for by the Galerkin method to a conclusive end (see
[2], for example). It should be pointed out that in the case where the
elements of the basis are mutually orthogonal Qn(un) Un.

Finally, we mention that our results can be extended to spaces other than
W0’ P(I)) (see Remark 2).

2. Some auxiliary results

We begin by recalling an elementary result of LP(f) spaces:

THEOREM 2.1. Let 1 be a bounded domain of Rm. There exists a sequence
{vi} which is a Schauder basis in LP(I)) for p (1, ). Furthermore, such {vi}
can be found with

(a) faviv dx iij
n

(b) Pn( f ) E OliUi’ Oli ff vi dx
i=1

and the norm of Pn in .(LP(I), LP(O)) uniformly bounded for p in a
compact subset of (1, ).
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Proof In the particular case where 1 a R, it is well known that the Haar
system has all of the properties listed in the theorem. For the case m > 1 the
sequence {vi} can be constructed as the image of the Haar system via an
isomorphism from LP() to LP(O, 1), such as the isomorphism in [5], [6]. It
should be noted that it is important that the isomorphism used be indepen-
dent of p and isometric when p 2. q

The sequence mentioned above is known to be made of functions which
are not continuous. We need a sequence of smooth functions with all of the
properties listed in the above theorem. Our intention is to establish the
following theorem, whose proof will be delayed until we have introduced
some notation and proved some lemmas.

THEOREM 2.2. There exists a sequence {b/i} such that bl C(-) Vi and
{ui} has all of the properties listed in Theorem 2.1.

It is relatively easy to verify that by an appropriate smoothing of the
elements of the sequence {vi} of Theorem 2.1 one again obtains a Schauder
basis. The major difficulty lies in showing that the elements of such a
sequence are mutually orthogonal in L2. Attempting to achieve this by
orthogonalizing the smoothed elements of the sequence {vi}, by using the
Gram-Schmidt process, for example, is not guaranteed to yield a Schauder
basis. Indeed, it is well known that the Gram-Schmidt orthonormalization of
a Schauder basis may fail to be a Schauder basis (see [11], [9]). Our main
difficulty will be to show that in our context, the desired smoothing can be
done successfully without losing orthogonality.

Let P0 (2, ) and p be its conjugate. Throughout the rest of the paper
we will assume that p [p, P0]. By [lullp we mean the norm of u in LP().
Similarly, for an operator T we denote by IlTIIp its norm in ..(LP(’),
LP(I))). The subscript p is omitted whenever no confusion may ensue.
Let p(x) be the usual mollifier function, and {ei} be a decreasing sequence

of positive numbers converging to 0. Define

T: LP(f) L(f)

T( Ui) U * pei.

LEMMA 2.3. k/C > 0, P0 [2, oo) there exists a sequence {e/} such that for
any sequence {ei} satisfying 0 < e < e

III- Zllp <_ c Vp ( P’o, Po),

Proof We will prove the above inequality for p =/90. For fixed i, p, v
converges to u in LP(12)as e tends to 0. We choose e/ such that

Ilp * u viii _< c. 2 -i. min(1, Ilvil1-1)
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The proof is similar for p p). The lemma then follows from the Riesz-
Thorin Theorem. H

PROPOSITION 2.1. Vp [p,po],
(a) T is an automorphism on LP(I) ),
(b) w Tv is a Schauder basis of LP(I)) Vp [P’o, Po],
(C) W C Vi.

Proof (a) Direct consequence of Lemma 2.3 (using Newman series).
(b) Direct consequence of (a) and Theorem 2.1.
(c) Follows from the fact that p, is a smooth function, rn

Remark 1. Assuming that the sequence {ei} converges to 0 fast enough we
easily deduce from Lemma 2.3 that

]]T]] < 2, lIT*I] < 2, ]]T-]] < 2, II(r,)-lll _< 2 Vp (p), P0). (4)

Let E span{vl,...,Vn}, En,
L2 orthogonal projection onto
onto En, .

span{w1,..., w}. We denote by P, the
and by P, the L2 orthogonal projection

LEMMA 2.4. If g _1_ E, then T*g _1_ En.

Proof (T’g, Ui) (g, TUi) 0 for < n because Tv w

LEMMA 2.5. Vf Lp(I)),

P,,T*f P,,T*P,,,( f ).

Proof. This follows form the previous lemma and the fact that (f-
P,.f) _L E,.

LnMMA 2.5. V> 0, there exists e {e/} such that for any e {ei}, 0 <_
<__ ?, and Vf L’(),
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Proof As in the proof of Lemma (2.3) we will prove the estimate above
for p P0, P P and derive the lemma via the Riesz-Thorin Theorem.
Since the proofs for the case p P0 and the case p p are identical we
will show the proof for only one of the cases. For the remainder of this proof
P =P0.
We are interested in the restriction of (I Pn)T* to En, e. But since

En, TEn,

we will, equivalently, study the restriction of

(I-P,,)T*T

to En. Since T*Tu u + (T*T- I)u, for u E we have

(I- P,,)T*T(u) (I P,,)(T*T- I)u.

Since III enll M we only need to estimate the norm of (T*T I) on En.
We have

(I- T’T) (I- T*) + T*(I- T)

whence

III- T*TIIp < III- TIIp, + IITIIp’III- TIIp,

where we used that
U En,

-IIAIIp,. To summarize, we then have, for

II(I-P)T*T(u)I[
=[I(I-Pn)[T*T-IluI[
=ll(I- P.)[(T* I) T*(I T)]ul]
_< M(III rll,, / rllp, llI rll,)llu I1,.

By Lemma (2.3) and (4) the factor M(III- Tllp, + IITllp, llI- TIIp) can be
made arbitrarily small (independently of p) for an appropriate e.

Given > 0 we choose e such that M(III- Zllp, / IlTIIp, llI- Zllp) < .
Hence Vu En,

1[(I- P)T*T(u)II <_ llull.

Since T-1p nf En for any f, we then have for u T-1p nf,

II(I- Pn)T*Pe,n(f)l[ <- a[[T-1p,,(f)[[ Yr.
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Hence,

[l( I P,) T*P, n( f

< 64[IZ*(P,n(f))]
using (4).
We then have (using I1 II _< Ilen +[lI- enll) that

II(I- e.)T*e,.(f)ll <- 4(1[(I- e,)z*e,n(f)[I +[IenT*e,n(f)ll)

Hence

46II(I- Pn)T*P,n(f)l[ <- (1 46)

for 6 small enough, i.e., 46/(1 46) > 0. rn

LEMMA 2.7. There exists a sequence {e/} and a constant C > 0 independent
ofp, n such that for any sequence {ei}, 0 < e < e Vi and for any f

IIP,nfll CIIfll.

Proof We have that

[IT*P,nfll ll(I-Pn)T*e,nfll + ]lenZ*e,nfll
< (1 / )I}PnZ*P,nfl] by Lemma 2.6

C1
=- ClllenZ*fll by Lemma 2.5.

Since the norms of (T*) -1 and Pn are bounded independently of p it then
follows that

IIe,,fll CIIfll. cn (5)

Proof of Theorem 2.2. Let u be the sequence constructed by applying the
Gram-Schmidt process to the sequence Tvi. By construction the sequence u
is orthonormal in L2. Since the u are finite linear combinations of the TU it
immediately follows from part (c) of the proposition that u C=. Set
Ce faf ui dx and it then follows that fn(X) -,7=lOliUi ee, nf"
By a Theorem of Nikolskii (see T. Marti, p. 57, Theorem 5, for example),

we then deduce from the estimate (5) that u is a Schauder basis of LP(f)
Vp [p}), P0]. Also, from an examination of the proof of the above theorem
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it can easily be seen that /f ze(),

lim IIf- e,nfllp O.

3. The main result

wm’p(-) (u LP() such that Ilull pm,p Ilull +
lal_<m

Wg’ p(-) {u W 1, p(,) such that u 0 on dO}.

Let A denote the Laplace operator. We recall that if (-A + 1) is taken
to be the isomorphism from W2, p(f) n W01’ P(12) onto LP(f), then L
(-A + 1)1/2 is an isomorphism from W01’P(f) onto LP(f) and is self-adjoint
in L2 (see [10], p. 334, for example). We are now in a position to state the
following proposition.

PROPOSITION 3.1. There exists a sequence of functions wk, k 1,..., 0%
which forms a Schauder basis for Wol’p(I), Rm) tp (P’o, Po) and satisfies:

1. Wk C () Wol’2(’-).
2. fnLwj zwi dr 6i, j.

3. Iff Wd’P(f), i ffZf Zwi dx and Pn(f) E,=lakwk then Pn(f)
converges to f and the norm of Pn in .(Wd’ P(12); W01’ P(f)) is bounded
uniformly in n and p.

Proof Take W L-lu where u is the sequence of Theorem 2. t3

In order to state our next result we need the following notation. Denote by
V the closure in L2 of the space spanned by the subsequence {wi}i > n"

THEOREM 3.1.

Vn V q Span{wl,...,wn} O. (6)

Proofi Suppose not. Then there exists a nonzero element in the intersec-
tion. Without loss of generality assume that the element in question is w n.
Then there exist a/g such that fk Y"i>nakiWi and fk converges to w in L2

as k goes to . Therefore (using the fact that L Lw L2) we have

lim (fk,L Z(wn)) (wn, L Lwn) (twn, Lwn) 1.
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On the other hand

(fk,L L(wn)) E aki (zwi,Lwn) =- O.
i>n

Denoting by Q,, the L2 projection onto the space VnI (in L2) we then
have the following corollary:

COROLLARY 3.2. If ai, ffQn(wi) Qn(wj) dx for < n and j < n then
the matrix (ai, j)i, is definite positive and invertible.

Proof The statement of the corollary is equivalent to saying that the
vectors (Qn(wi))i=l, are linearly independent. Suppose they are not. Then
there exist ai, 1,..., n not all 0 such that ,i=laiQn(wi) 0. Therefore

Span{w Wn} OliWi-- Ci(1- an)(Wi) -- E oliQn(Wi)
i=1 i=1 i=1

0i(1- On)(Wi) 1/n.
i=1

From the previous theorem it then follows that Y’.7=lOgiWi= O. Since the
vectors w are linearly independent, a 0 for each i, which contradicts the
assumption. []

Remark 2. It is possible to derive such results for spaces other than

W0’ P(12)without a significant change in the proof. Indeed the specificity of
W0’ P(f) entered the proof only via the operator L of Section 3. Therefore
by selecting another suitable L it would be possible to derive the results for
other spaces.

Acknowledgment. The author thanks Professor R.F. Wheeler for bringing
to his attention the references ]11] and [9]. Thanks are also due to an
anonymous referee who suggested Remark 2.
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