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1. Introduction

The study of the cardinality of the set of invariant means on a group was
initiated by Day [3] and Granirer [8]. In 1976, Chou [1] showed that for a
discrete infinite amenable group G the cardinality of the set ML(G) of all
left invariant means on F(G) is 22G. Later, Lau and Paterson [20] proved
that if G is a noncompact amenable locally compact group, then the set
MTL(G) of all topologically left invariant means on L(G) has cardinality
22dCG), where d(G) is the smallest cardinality of a covering of G by compact
sets. (Of course, when G is compact, MTL(G) is the singleton containing
only the normalized Haar measure of G). For results on the size of the set
ML(G)\MTL(G), see Granirer [9], Rudin [29], and Rosenblatt [26]. See also
Yang [32] and Miao [21] for some recent developments in certain related
aspects. We refer the readers to the books of Pier [23] and Paterson [22] for
more details on the study of the size and the structure of the set of invariant
means on groups and semigroups.

Let G be a locally compact group, A(G) the Fourier algebra of G, VN(G)
the von Neumann algebra defined by the left regular representation
{p, L2(G)} and TIM(G) the set of all topologically invariance means on
VN(G). The set TIM() was first studied by Dunkl and Ramirez for compact
groups. They showed [4] that if G is an infinite compact group, then
TIM()I > 2. Renaud [25, Theorem 1] proved that there exists a unique
topologically invariant mean on VN(G)when G is discrete. In Theorem 1 of
[10], Granirer showed the following: if G is non-discrete and second count-
able (i.e., there is a countable basis for open sets in G), then TIM() is not
norm separable. A stronger results was obtained by Chou in [2, Theorem 3.3]:
if G is non-discrete and metrizable, then there exists a linear isometry of
(l)* into VN(G)* which embeds a "big subset" (having cardinality 2) of
(F)* into TIM(). See also Granirer [13, p.172-173] for the discussion on
the set TIMp() of topologically invariant means on Ap(G)*, where Zp(G) is
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the Fig-Talamanca-Herz space (k < P < oo) and Ap(G) A(G) if p 2. In
particular, he proved that TIMp(G)] > 2c in case G is second countable and
non-discrete. Recently, Lau and Losert showed, among many other results,
that if VN(G) has a unique topologically invariant mean, then G must be
discrete (see [19, Theorem 4.10 and Corollary 4.11]). They actually remedied
Renaud’s result by using a totally different machinery (as noticed by a
number of mathematicians, there is a gap in the proof of Proposition 8 in
[25]; see [19, p. 21]).
The main purpose of this paper is to prove that if G is a non-discrete

locally compact group, then TIM() has cardinality 22(, where b(G) is the
smallest cardinality of an open basis at the unit element e of G.

Section 2 consists of some notations and preliminary results.
For an initial ordinal/z, let X be the set of all ordinals less than/z with its

natural order. We introduce a subset of l(X)*"

(x) (6 l(X)*; I111 th(1) 1 and

b(f) 0 if f l(X) and lim.f(a) 0},otX

where 1 is the constant function of value one. This set with. X N was first
considered by Chou [2]. We shall prove in Section 3 that Ix)l--22txt
(Proposition 3.3).
The main idea of Section 4 was inspired by Lau-Losert [19, Lemma 4.8]. If

G is a r-compact non-metrizable locally compact group, let /x be the initial
ordinal satisfying tzl -b(G). We shall show that there exists a decreasing
family (N) _< , of normal subgroups of G such that NO G, N {e} and
b(N,) b(G) for all a </z; N is compact if a > 0; N,,/N,+ is metrizable
but N,+I :# N for a </x; and Nr fq < rN for each limit ordinal 3’ -</x
(Proposition 4.3). This interesting property concerning the local structure of
G at e plays a key role in proving the main results. The proof of Proposition
4.3 will constitute the major technical part of this paper.

In Section 5, we shall present a weaker version of Chou’s result [2,
Theorem 3.3] and obtain the exact cardinality of TIM() for a non-discrete
locally compact group G. Let tx be the initial ordinal with I/x[ b(G) and
X {a; a </}. In case G is tr-compact and non-metrizable, by modifying
the technique of Chou [2], we construct a family of linear isometrics (r*) of
l(X)* into VN(G)*. For each b F(X)*, let

{all w*-cluster points of (Tr*b) in VN(G)*}.
It is shown that {W,; b l(X)*} is a family of pairwise disjoint non-empty
subsets of VN(G)* and W, c_ TIM() if b o(X) (Theorem 5.4). Conse-
quently, if G is non-discrete, then there exists a one-one map W:F(X)*
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2VN(G)* \{} such that W((X))
_

2TIM(’) (Corollary 5.5). Finally, the equal-
ity [TIM(t)[ 22b() is proved when G is a non-discrete locally compact
group (Theorem 5.9). If G is abelian and ( is its dual group, then A(G) can
be identified with La(() and VN(G) with L=((); now each m VN(G)*
belongs to TIM(() if and only if the corresponding mean in L(() is a
topologically left invariant mean. Since b(G)= d(G)(see [17, (24.48)]), our
Theorem 5.9 coincides with Lau-Paterson’s result [20, Theorem 1] when G is
abelian.
Some applications of the main theorems are given in Section 6. We show

that if G is non-discrete, then TIM(()contains a subset E with IEI-
[TIM()[ 22b() such that lira mzl[ 2 for ml, m2 E and m 4: m2.

Let UCB(r) be the space of all uniformly continuous functionals on A(G)
and F() be the space of topological almost convergent elements in VN(G).
Note that each m TIM() is determined by its value on UCB(r).
Hence, by Theorem 5.9, any norm dense subset of UCB()/F()f3 UCB()
has cardinal’.ty greater than b(G)when G is non-discrete; in particular,
UCB()/F()f’)UCB() is not norm separable. Our Theorem 5.9 also
implies Theorem 12 of [11].

2. Preliminaries and some notations

Let C be the complex field. If E is a Banach space over C, let E* denote
the Banach space of all bounded linear functionals E C. If b E*, then
the value of b at an element x in E will be written as b(x) or (b, x).
Throughout this paper, G denotes a locally compact group with unit

element e and a fixed Haar measure h. Let L2(G) be the Banach space of
square h-integrable complex-valued function f on G with norm Ilfll2--
(flfl 2 dA)1/2. Let VN(G) be the von Neumann algebra defined by the left
regular representation {p, L2(G)}, i.e., the closure of the linear span of
{p(a); a G} in the weak operator topology, where p(a)f(x)=f(a-lx),
x G, f L2(G). Let A(G) be the Fourier algebra of G, consisting of all
functions of the form f. , where f, g L2(G), (x) g(x-1 ), and

f* ,(x) fJ(t)(t-lx) dt fJ(t)g(x-lt)dt, xG.

Then each b f. g in A(G) can be regarded as an ultraweakly continuous
functional on VN(G) defined by

(T) (Tf, g) for T VN(G),

where (.,.) is the inner product in LZ(G). Furthermore, as shown by P.
Eymard in [6, p. 210 and p. 218], each ultraweakly continuous functional on
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VN(G) is of this form. Therefore, A(G) is the predual of VN(G), i.e.,
A(G)*---VN(G). In particular, the w*- and weak operator topologies on
VN(G) coincide. Also, A(G)with pointwise multiplication and the norm

I111 sup{14,(T)l; T VN(G) and IITII 1}

forms a commutative Banach algebra. There is a natural action of A(G) on
VN(G) given by

(u. r,v) (T, uv) for u,v A(G), T e VN(G).

For more details on the algebras VN(G) and A(G), see Eymard [6].
An m VN(G)* is called a topologically invariant mean on VN(G), if
(i) Ilmll <m, I> 1, where I p(e) denotes the identity operator,
(ii) (m,u. T) (re, T) for T VN(G)and u A(G) with u(e)= 1.

Let TIM() be the set of all topologically invariant means on VN(G). It is
known that TIM() is a non-empty w*-compact convex subset of VN(G)*
(see Renaud [25] for a further discussion). Let C(G) denote the Banach
space of bounded continuous complex-valued functions on G with the
supremum norm and Coo(G) denote all functions in C(G)with compact
support, where the support of a continuous function u on G is the closure of
the set {x G; u(x) 4 0}. The support of an element f L2(G) is defined
by saying that x supp f if and only if there exists a neighborhood V of x
such that (f, v> 0 for all v Coo(G) with supp v

___
V. The support of an

operator T VN(G) is defined by saying that x supp T if and only if there
exists a neighborhood U of e such that x supp(Tu) for all u Coo(G)with
supp u

___
U (see [15, p. 117]). An equivalent definition for supp T is that

x supp T if and only if u. T 0 implies u(x) 0 for all u A(G) (see [6]
Proposition 4.4] or [14, p. 119]).

Let UCB(r) denote the norm closure of A(G). VN(G). Then UCB() is a
C*-subalgebra and an A(G)-submodule of VN(G)(see [12])which coincides
with the norm closure of {T VN(G); supp T is compact}. In case G is
abelian, UCB(J) is isometrically algebra isomorphic to the algebra of bounded
uniformly continuous functions on the dual group G of G. For this reason,
operators in UCB() are called uniformly continuous functionals on A(G)
(see [11]). The C*-algebra UCB(r) and its relationship with other C*-subal-
gebras of VN(G) have been studied by Granier in [11] and [12] and by Lau in
[18]. By the definitions of TIM(J) and UCB(r), each element m in TIM()
is determined by its value on UCB().
Dunkl-Ramirez [5] called {T VN(G); u u. T is a weakly compact

operator of A(G) into VN(G)} the ^space of weakly almost l?eridic function-
als of A(G) and denoted it by W(G). It turns out that W(G) is a self-adjoint
closed A(G)-submodule of VN(G) which coincides with the space of weakly
almost periodic functions in L(() when G is abelian (see [5] for more



TOPOLOGICALLY INVARIANTMEANS 467

details). Chou [2] used F() to denote the space of all T VN(G) such that
m(T) equals a fixed constant d(T) as rn runs through TIM() and called
F(() the space of topological almost convergent elements in VN(G). We can
easily check that F(() is a norm closed self-adjoint A(G)-submodule of
I/N(G). It is known what W(() has a unique topologically invariant^ mean
(see [5] and [11]). In particular, this gives that W(G)_ F(G). The above
inclusion is also obtained by Chou using his results on characterizations of
F(t). See Chou [2] for more information on F(().

Let bl and b2 be two positive definite functions in A(G). We say that b
is orthogonal to b2 if II 1 2 1 / 2 II (see [30, p. 31]).

If M is a locally compact group with unit element e, we use b(M) to
denote the smallest cardinality of an open basis at e. When M is abelian and
.r is the dual group of M, Hewitt and Stromberg showed that b(M) d(h;l),
the smallest cardinality of a covering of M by compact sets (see [16] and [17,
(24.48)]).
For any two sets A and B, A\B denotes their difference, 1a denotes the

characteristic function of A as a subset of the underlying set or locally
compact group, 2a is the set of all functions from A to {0, 1}, an [Z[ is the
cardinality of A. Then 12A[ 21"41, the cardinality of the set of all subsets of
A. So we also use 2A to denote the set of all subsets of A. When a is an
ordinal number, cl means the cardinality of the set {/3;/3 is an ordinal and
/3 < a}. An ordinal a is called an initial ordinal if cl is infinite and /3 < a

implies 1/31 < cl (see [27, p. 271]).

LEMMA 2.1. Let a be an initial ordinal. If fl and y > 0 are ordinals such
that fl + /= re, then /= a.

Proofi Since T>0, /3</3+ 3’=a (see [27, p. 193]). Then
because a is an initial ordinal. But 1/31 + I’/I cl. It follows that I’/I I1.
Also, T </3 + T a (see [27, p. 193]). Therefore, , a.

If X is a set, let l(X) be the Banach space of all bounded complex-valued
functions on X with the supremum norm. It is well known that if b l(X)*,
then any two of the following three conditions implies the remaining one:

(i) II 11 1,
(ii) b(1)= 1,
(iii) b > 0, that is, b(f) > 0 for all non-negative f l(X),

where 1 is the constant function of value one. When b l(X)* has any two
of the above properties, we call b a mean on l(X). If X is a directed set,
we define

(b I(X)* II 11 (1) 1, b(f) 0y(X)

f I(X) and lim.f(a) 0).if
tX
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This set with X N, the set of all positive integers, was first considered by
Chou when he introduced the technique to embed a large set in TIM() (see
[2]). Yang in [32] studied the case X A(Y), the set of all non-empty finite
subsets of a infinite set Y directed by inclusion. When X is a directed set, a
tail in X is defined by

T={/3X;/3>_a}, aX.

Therefore, b og"(X) if and only if b is a mean on l(X) and b(1T) 1 for
all a X.

If X is a set (with the discrete topology), /3X denotes the Stone-tech
compactification of X. Then l(X) is isometrically isomorphic to C(/3X).
Thus /3X can be identified with the spectrum of l(X), i.e., the set of all
nonzero multiplicative linear functionals on l(X)with the Gelfand topology
(see, say, [31, Proposition 4.5, p. 18]). In this way, each x X is identified
with the evaluation , on l(X) at x, i.e., (f) f(x) for f l(X). On the
other hand, /3X can also be obtained by "fixing" the free ultrafilters on X,
that is, /3X {all ultrafilters on X} with {Z*; Z

___
X} as a base for closed

subsets of /3X, where Z*= {th /3X; Z th} (see [7, pp. 86-87]). Now,
every x X corresponds to the fixed ultrafilter bx on X containing {x}, i.e.,
bx {E; x E

_
X}. Either way of the above embeddigs will be used later.

When X N, Chou in [2] pointed out that /3N\N ___(N). For the
general case, we have:

LEMMA 2.2. Let X be a directed set. If dp fiX and ch contains {T;
a X}, then ch (X).

Proof Let b /3X and b contain {T; a X}. Since b is in the
spectrum of l(X), 4 is a mean on F(X). It is known that E b if and only
if th(1e) 1. Now, for each a X, T b and hence b(lr)= 1. There-
fore, b (X). D

3. The cardinality of(X)

For a directed set X, let (X) be the subset of F(X)* defined as in {}2. If
X N, then I(N)I 2 22x, since /3N\N _c(N) (see Chou [2, p. 208]),
where c is the cardinality of the continuum. When X A(Y), the set of all
non-empty finite subsets of an infinite set Y directed by inclusion, Yang
proved in [32, Lemma 2.1] that L(X)I 22x if F(X) is the real Banach
space. Throughout this section, /x will be an initial ordinal and X denote the
set {/3;/3 is an ordinal and/3 </x} with its natural order. We shall show that
L(X)I--22’. For this purpose, we begin with a technical lemma which
provides us a family " of functions in 2x such that I/I 2 Ixt and any two
functions in 3g are not cofinal.
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LEMMA 3.1. There exists a family {f/; I} c_ 2x such that III 2 Ixl and

filr 4: f.lr for i, j I with i 4: j, a X,

where flA is the restriction offunction f to the set A.

Proof Case (i). Assume that 2 I1 < 2 Ixl for all a X.
For each pair f, g 2x, we define f g if there exists an element a X

such that f[ r g[ r. Then "~ "is an equivalent relation on 2x. Let f 2x.
We put [f] {g 2x; g f}, the equivalence class containing f. Let I be
the set of all such equivalence classes. Then 2x U {[f]; [f] I}.

Fix an f 2x. We have [f] U xF,, where F {g 2x; glr flr}.
Since levi 211, I[f]l -< E x21l. This is true for every f 2x. Hence,

21xl=12Xl I[f][ < ( 211)
[f]I [f]I

By K6nig-Zermelo’s inequality (see [27, p. 313]), we have

211 < 1-I 21xl (21xl) Ixl= 21xl
aX

(3.1)

Obviously, III-< 2 Ixl. Consequently,

21Xl<max(llI, 211)<2Ixl. (3.2)

Now (3.1) and (3.2) combined give 111 2 Ixl. For each equivalence class
I, we choose an f/ i. Then the family {fi; I} satisfies the require-

ment.

Case (ii). Assume that 2 I1 2 IXI for some a X.
Let ao min{/3; /3 X and 2 lal 21xl}. Then a0 is a limit ordinal. By

the generalized division algorithm (see [24, p. 177]), there exists a unique pair
of ordinals r/and e such that Ix a0r/+ e and e < a0. Note that e < ao <
/z and ao(sr + 1) ao " + a0 for any ordinal ’. By Lemma 2.1, e = 0 and r/
has to be a limit ordinal.

Let to be the initial ordinal satisfying tol 2 xl, Let I {i; is an ordinal
and < to}. Then III= tol 2x, In the following we inductively construct
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a family (Xi) < of subsets of X such that

X n T,, X n T for i, j < o with j, a X. (3.3)

Let 0 < o. Assume that we have chosen a family (Si)i<io of subsets of X
satisfying (3.3). Recall that /z a0r. For every : < r, let Se be the segment
of ordinals between a0 : and a0( + 1), i.e.,

Se={a;ao<a<ao(+ 1)}.

Since a0 < a02 if and only if :1 < s2 (see [27, p. 200]), {S; : < r/} is
painvise disjoint. Furthermore, X U1

and, for every a X, there
exists a : < r/such that S c_ T. Now, la01 and hence 21s 2I01

2 Ixl for all : < r/. But we have

I{X o Se;i < i0}1 < Ii01 < 2 Ixl for

Consequently, for each : < r/, there exists a set Be __C_ Se such that Be {X
uSe; i<i0}. Let Xio= Ue<nBe. Then Xi0nSeg;XinSe if i<i0 and
: < r/. Hence X n T X n T for all < i0 and a X. Therefore, the
family {Xi; < io} has property (3.3). By transfinite induction, we obtain a
family (Xi)i < of subsets of X satisfying (3.3).

Finally, for each I, let f/:X + {0, 1} be the characteristic function of
Xi. Then {fi; I} has the required property, rn

Remark 3.2. Under the generalized continuum hypothesis (GCH, for
short), a < b implies that 2a< 2/, where a and b are any two cardinal
numbers. In Lemma 3.1, lal < Itzl ISl for all a X, since/z is an initial
ordinal. Thus, if the GCH is assumed, we always have 2I1 < 2 Ixl for all
a X; this is the case (i) in the above proof. To avoid using the GCH, we
have to consider case (ii) in our proof as well.

Now we are ready to prove that r(X) is a

PROPOSITION 3.3. Ix)l 22x.

"big subset" of F(X)*.

Proof. Obviously, Ir(X)l < II(X)*I 221xl. By Lemma 2.2, it suffices to
show that there are 22x many ultrafilters on X containing {T; a X}. We
now follow an argument of Rudin [28, Theorem 1.3] (see also the proof of
[32, Lemma 2.1]).

Let A--A(X) be the set of all non-empty finite subsets of X. In the
following, we shall construct a family {A,; z A} of subsets of X satisfying:

(i)
(ii)
(iii)

IA,I 2
if r r’, then A, n A,,
if a A,, then a > max(z), where max(z) max{/3;
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Since IAI IXI I1, we can write A {%; </x}. Let 0 </z. Assume
that we have defined a family {A,;i < i0} of subsets of X satisfying (i)-(iii).
Let B U <0A,. Then IBI <lzl, since each A, is finite and Ii01
Let a be the unique ordinal satisfying max(%0) + a =/x (see [27, p. 194]).
Since a : 0; a =/z, by Lemma 2.1. In particular, lal I1 > IBI. But I1
is infinite. So, we can choose a finite set A.

___
{/3; max(z0) </3 </x}\B

with IA. 22%. Clearly, the family {A,; 0 i0} has properties (i)-(iii). By
transfinie induction, we have constructed a family {A,; </x}--{A;
z A} of subsets of X satisfying (i)-(iii).
For each z A, label the elements of A by ordered 21l-tuples

(x, x2,..., x2,) with x {0, 1}. Let E be the subset of A consisting of the
21l-tuples which have x 0. If we let E/ E and E =A\Ei, then
[") l121rl E/’,, is not empty for any choice of i E !?, 1}, since (dl, *if2’ 2Irl)
U i=lEi. Denote the sets Ei, i= 1, 2,..., 2I. by E(h), where z" is a map
from z to {0, 1}.

Let /= {f.; j I}
_

2x be the same family of functions as in Lemma 3.1.
For each f ,W’, we define

B(f) U{E(fl,); ’ A},

where fl is the restriction of f to the set z.
Suppose that fl,. f, fn / 1,’", fm are distinct functions in " and a X.

Since fl[,..., fn[r, fn+l [r,..., fmlr are different (by Lemma 3.1), there
exists an element z A such that z

_
T and fll,,..., f[,, f/l I,,..., fml,

are different. Hence the above argument gives

E(AI,) ca ca E(fnl,) ca (Ar\E(fn+ I-) CI CI (A,\E(fml,) * .
Using "

_
T, and property (iii), we have A,

_
T. Therefore,

E(AI, ) ca ca E(fl,) 3 (Zz\E(fn+ 11z) f3 f3 (Z,\E(fml,)
n T, = .

Note that {A,; z A} is pairwise disjoint. It follows that

B(I) B(f.) (X\B(f.+a)) (X\B(fm)) T: , .
Hence for any map F /---> {0, 1}, the collection

{B(f)e(f); f .’} {T,; a X},

where B(f) B(f) and B(f) X\B(f), generates a filter base. Conse-
quently, we have 2I’1 22x different ultrafilters on X containing {T;
a X}. This completes the proof of the proposition, ra
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4. The local structure of or-compact non-metrizable groups

Let G be a locally compact group with unit element e and b(G) be the
smallest cardinality of an open basis at e defined as in 2. In this section, we
shall present an important property of a tr-compact non-metrizable locally
compact group G concerning its local structure at e. This property is very
crucial for our main results and is interesting in itself. We begin with two
lemmas. The first one is similar to [19, Lemma 4.7]. The second one deals
with the relation between b(N) and b(G), where N is a closed subgroup
of G.

This section is motivated by Lau-Losert [19, Lemma 4.8].

LEMMA 4.1. Let G be a g-compact locally compact group. Let N be a closed
normal subgroup of G and U an open neighborhood of e. Then there exists a
compact normal subgroupMofG such thatM N UandN/M is metrizable.

Proof By the Kakutani-Kodaira Theorem (see [17, (8.7)]), there exists a
compact normal subgroup K of G such that G/K is metrizable and K _c U.
Let M K C N. Then M is a compact normal subgroup of G and M

___
N c

U. Note that N/M NK/K
_
G/K. Therefore, N/M is metrizable, rn

LEMMA 4.2. Let G be a locally compactgroup andN be a closed subgroup of
G. Let be a cardinal number. IfN is an intersection of no more than t open
subsets of G, then b(G) <_ b(N).

Proof Choose a set I with III t. Since G is a normal topological space
(i.e., any two disjoint closed subsets of G can be separated by two disjoint
open subsets of G), by the assumption, we can write N [’1 i iAi, where
each A is a closed subset of G and N

___
z (the interior of A in G). Also

we choose a set J with IJI b(N) such that {By N; j J} is a neighbor-
hood basis at e in N, where each By is a compact neighborhood of e in G.
We can assume that By c K for all j J, where K is a fixed compact subset
of G. Let A(I) (resp. 3J)) be the set of all non-empty finite subsets of I
(resp. J). For any : A(I) and r/ A(J), denote Ae= f’lieAi and

Bn f’l n Bj. Then Ae and Bn are neighborhoods of e in G.
We claim that {A Bn; : A(I), r/ A(J)} is a neighborhood basis at e

in G. Assume that there exists a neighborhood U of e in G such that

Ae N Bn U for all A(I) and r/ A(J). Choose an element xe, n (A
c Bn)\U for each pair (:, r/) A(I) x A(J). We direct A(I) and A(J) by
counter inclusion (i.e., ’1 < ’2 if and only if ’2 K_C_ ’1), and direct A(I) A(J)
by (:x, */1) < (2, */2) if and only if :a < : and rh < */2. Then the net

(xe, n)(e, n) A()xA() in K has a cluster point, say, x K. By the direction on
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A(I) A(J) and the compactness of A Bn, we have x A Bn
(sc, r/) A(I) A(J). Consequently,

for all

x n (A, n Bn) n (N n n (N n {e};
(, rl)A(I)A(J) r/ A(J) jJ

i.e., x=e. But U is a neighborhood of e in G and x,nU for all
(:, r/) A(I) A(J). This contradicts the fact that x e is a cluster point
of (x, n)(, n) A(I)A(J). It follows that

n Bn; : A(I), n A(J)}
is a neighborhood basis at e in G.

Since [J[ b(N), [J[ 1 or [JI is infinite. In any case, we have that
IA(/)I I11 b(N). So,

b(G) _<IA(I) A(J)I IA(I) II A()I IA(I)Ib(N).

If is infinite, then IA(I)I III and hence b(G) < b(N) by the above
inequality. If is finite, then N is an open subgroup of G and now
b(N) b(G). Therefore, we always have that b(G) < b(N). rq

The main result of this section is contained in the following proposition.

PROPOSITION 4.3. Let G be a g-compact non-metrizable locally compact
group with unit element e. Then there exists a limit ordinal tz and a decreasing
family (N) <_ of normal subgroups of G (i.e., a <_ [3 implies N

_
N) such

that:
(i) NO G and Ng {e};
(ii) N is compact ]’or each a > 0;
(iii) N/N+ is mettizable but N+ 4: N for all
(iv) N. M < N for every limit ordinal <_
(v) b(N) b(G) for all a <

Furthermore, tz is minimal among all such families and tz is the initial ordinal
satisfying Iz b(G).

Proof Let d be the initial ordinal satisfying Idl b(G). Then d is a limit
ordinal. Let {O; a < d} be an open basis at e in G. Let NO G. By Lemma
4.1, there exists a compact normal subgroup N of G such that N

_
NO O0

and No/N is metrizable. Let do < d. Assume that we have chosen a
decreasing family (N) <a0 of normal subgroups of G such that N,, is
compact for each 0 < a < d0, N+a __. N, q O and N/N+ is metrizable if
a + 1 < d0, and Nr f’l <N for every limit ordinal 3’ < do. If do is a
limit ordinal, then we put Nao= f)<a0N. If d0--/3+l (such /3 is
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unique), then, by Lemma 4.1, we choose Nao to be the compact normal
subgroup of G such that Ndo --Na tq Oa and Na/Ndo is metrizable. By
transfinite induction, we get a decreasing family (N) < d of normal sub-
groups of G such that NO G, N is compact for all 0 < a < d, N+

_
N

O,, and N,/N,+ is metrizable for a < d, and N--- f’) < vN for every
limit ordinal , < d. Now

n oo (e),
tz<d

so, fl < aN {e}. Let Na {e}. Then Na fl < aN.
We claim that for each 0 < a < d, N is an intersection of no more than

lal0 open subsets of G, where 0 is the first infinite cardinal number. This
is true for a 1 because N is a G-set in G (i.e., Na is an intersection of
countably many open subsets of G, since G/N is metrizable). Let do < d.
Assume that the above statement is true for all 0 < a < d0. If do is a limit
ordinal, then Ndo fl < doN and hence, by the inductive assumption, Ndo
is an intersection of no more than Ido120 Id01t 0 open subsets of G. If
do =/3 + 1 for some /3 < d, then Ndo is a G-set in N, since Na/Ndo is
metrizable. By the assumption that Na is an intersection of no more than
1/310 open subsets of G, Nao is an intersection of no more than 1/31t-0
1/310 Id010 open subsets of G. By transfinite induction, our assertion
follows.

Let 0 < t < d. By the above claim and Lemma 4.2, we have

b(G) _< (ll0)b(N.). (4.1)

Since d is the initial ordinal satisfying Id] b(G) > o, then ]a] < b(G) and
hence

Ickier0 max(Icl,0) < b(G). (4.2)

Now (4.1) and (4.2) combined give

b(G) < (lal0)b(N)
max(lalt0, b(N,)) b(N);

i.e., b(G) < b(N,). Conversely, b(N,) < b(G), since N is a subgroup of G.
Therefore, b(N,)= b(G) for all a <d. We conclude that (N,),d is a
decreasing family of normal subgroups of G satisfying:

(i)
(ii)
(iii)

(v)

N0=GandNd={e};
N,, is compact for each a > 0;
N,/N,+I is metrizable for all a < d;
N f’l < N for every limit ordinal , _< d;
b(N,) b(G) for all a < d.
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Let /x be the minimal ordinal among all such families. We see that /x has to
be a limit ordinal. In fact, assume that /. v + 1 (v is infinite, since G is
non-metrizable). Then N, N,/N is metrizable, contradicting the fact that
b(N,) b(G)> 0. It follows that is a limit ordinal. By passing to an
appropriate subfamily, we can achieve that N+ N for all t. The ordinal
type of this subfamily will be still /x, by minimality. Note that (i)-(v) implies
(i), (ii), (iiiY, (iv), and (v). Consequently, is minimal among all families
satisfying (i)-(v).
By the same procedure as above, we can prove that for each 0 <
N is an intersection of no more than IcilY0 open subsets of G. Since
f’) ,,<N =N {e}, {e} is an intersection of no more than I/zl20
open subsets of G. Applying Lemma 4.2 to N {e}, we get that b(G)<
I/xlb(N) Itxl. But /x < d, by the minimality of/x, and Idl b(G). There-
fore, tzl b(G) and hence /z d; i.e., /x is the initial ordinal satisfying
I1 b(G). This completes the proof of the proposition, rn

Remark 4.4. The basic idea used in constructing (N,,) _< is essentially
the same as that used in Lau-Losert [19, Lemma 4.8]. The net (N,,) there
possesses property (i)-(iv). Here, for our purpose, we begin by showing the
existence of the family of subgroups of G satisfying (i)-(v). Hence the result
is strengthened in the following two related aspects, which are important in
the sequel.

(1) The limit ordinal /x is totally determined by the local structure of the
tr-compact non-metrizable group G (/x is actually the first ordinal satisfying
txl b(G)).
(2) b(N,,) b(G) for all a < (this property reflects, in some sense, that

each compact normal subgroup N in this net has the same "non-metrizabil-
ity" as G does).

5. Main results

Let G be a g-compact non-metrizable locally compact group. Let (N)
be the decreasing family of normal subgroups of G as in Proposition 4.3. By
the properties of (N,,) , we can define a family (P,,) < of projections in
VN(G) as in the proof of Lau-Losert [19, Theorem 4.10]. Let P0---0
VN(G). For 0 < a </, let P VN(G) be the central projection defined by
convolution with the normalized Haar measure h, of N. More exactly,

is given by

(Pf)(x) fv(t-ix) dA,,(t), f L2(G),O < ct < tz,
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where L2(G/Na) is the subspace of L2(G) consisting of all functions in
LE(G) which are constant on the cosets of N (see [6, (3.23)]). Now (Pa)a <
is an increasing net of projections in VN(G); i.e., PaPa PaPa Pa for
a </3 </z. Define

Qa=Pa+a -P,, a<.

Then (Qa)a < u, is an orthogonal net of projections in VN(G); that is,

if a =/,
QaQt= 0 ifa4=fl.

We begin with a technical lemma.

LEMMA 5.1. Let G be a g-compact non-metrizable locally compact group
and (Na) <_ , be the decreasingfamily of normal subgroups of G as in Proposi-
tion 4.3. Let (Qa)a < be the orthogonal net ofprojections in VN(G) defined as
above. If U is a neighborhood of the unit element e of G and a < Ix, then there
exists an f L2(G) such that ]lfl12 1, supp f

_
UNa, and Qaf f.

Proof Since Na+ Na, there exists an x0 N, such that x0Na+10
N,/I . By the compactness of N+ 1, there exists a neighborhood V of e
in G such that

xoN+V N,+V= . (5.1)

We can assume that V
_
U and V is compact.

Let g 1+v. Then g L2(G), supp g

_
VN/ UN,+, and g is

constant on the cosets of N+I; i.e., g -+LZ(G/Na+I). If a 0, then Qog
Pig g, since g LZ(G/N1). Now g/[lgll2 satisfies the requirements. In the
following we assume that a > 0 and we shall show that g LZ(G/N,,).
Assume that g LZ(G/Na). Then there exists an h LZ(G) such that h

is constant on the cosets of N and g--h a.e. Now g-- 1 on Na+aV and
g 0 on N,V\N,+IV. Hence, there exist measurable subsets Wa

_
N,+IV

and W2

_
NV\N+1V such that

/.(Wl) (Na+lV), (5.2)

/(W2) i(NaVNa+ V) (5.3)

and h=lonW1, h=0onW2.Therefore, h =1 on NaW and h =0on
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N,W2, since h is constant on the cosets of N. It follows that N,W c3 N,W2. But

(by (5.2))
(by (5.3))
(by (5.1))

In particular, xoWx q W2 ; and hence N,W c3 N,W2 #: , a contradic-
tion. We conclude that g . L2(G/N,).

Let f= Qo,g (= (P+I P,)g g P,g, since g L2(G/N,+I)). Then
f L2(G) and f : 0 in L2(G). Now

Q,f Q2g Q,g f;

i.e., Qo,f f. Also,

(Pag)(x) fNg(t-lx) dh(t)

fNlN+y(t-lx) dh(t)

=ha(Nx(Na+lW)-l), xG.

Then (Pg)(x) 0 if x NN,/1V NV. This gives supp(P g) c__ NV.
But supp g c__ N,/ V c_ N,V. Consequently,

supp f supp( g P, g)
_
N,V VN,

_
UN,.

Replacing f by f/Ilfl12, we complete the proof of the lemma. D

Let G, (N), , and (Q,) < , be the same as in Lemma 5.1. Let J be a set
with IJI b(G), where b(G) is the smallest cardinality of an open basis at
e G defined as in 2. Let {U.; j J} be an open basis at e. For each j J,
we choose a symmetric neighborhood V of e such that V2

_
U.. If a </z

and j J, then, by Lemma 5.1, there exists an f L2(G) such that
IIfl12 1, supp f c_ N, and Q,f f. Let

Then u e A(G), Ilull u(e) 1, supp u
_

(Yjga)(Yjga) -1
VjNaN21Vj-1 Vj2Na c_ UiN; i.e., supp U

_
UiN,.
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Fix j J. We have Ilu- ull Ilull + Ilull 2 for a,/3 </x. Note
that .(Q)r < is an orthogonal net of projections in I/N(G), u f f and
Qvf f. It follows that

1 if a= ,
(5.4)u(Qa) (Qaf,f) 0 if a /3.

But IIQ QII 1 if a,/3 </ and a /3, since (Q) < ,
we get

is orthogonal. So

Ilu ull >l(u u)(Q Qa)l =lug(Q Qa) u(Q Q)I 2.

Consequently, Ilu ull Ilull + Ilull 2 for all a,/3 </z with a /3,
that is, (u) < is an orthogonal net in A(G).

Let X {a; a is an ordinal and a </x} directed by its natural order.
Direct J by < j if and only if U.

___
U, and J X by (i, a) < (j,/3) if and

only if i<j and a </3. A few properties of the net (u).,)xx is
summarized in the following lemma.

LEMMA 5.2. Under the same assumptions as above, the net (u)(, )sxx
has the following properties.

(i) u A(G), Ilull u(e) 1 and supp u
_
U.N for all (j, a) J

X.
(ii) For each fixed j J, (u) x is an orthogonal net in A(G).
(iii) (u)1, )e xx is topologically convergent to invariance; that is, if v

A(G) and v(e) 1, then

lim Ilou- ull 0.
(j, a)JX

Proof. By the above argument, we only need to show that the net
(u),x possesses property (iii). Our proof follows Renaud [25, Propo-
sition 3]. Let > 0 and K be a compact neighborhood of e in G. Then there
exists a u A(G) such that u 1 on K. Now, (v u)(e) 0. Since points
are synthesis for A(G) (see [6, (4.11) Corollary 2]), there exists a w A(G)
Coo(G) such that I1( u) wll < and w 0 on some neighborhood U of
e.
Note that supp u

_
UN. If U.N

___
U K, then uu u and wu O.

Hence for such u, we have

IIv- u wll Ilull
=llv-u-wll<,
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Therefore, by the direction on J X, we only have to show that there exists
an element (Jo, Co) J x X such that U. N c U c K. Choose a neighbor-
hood V of e such that V U c K. Since (N)o < < is a decreasing net of
compact subgroups of G and Cl o < <N {e}, there exits an 0 < x such
that No _c V. Let ]o J be such that U.o

___
V. Then U.0N0 __C_ V

__
U c K.

Remark 5.3. Recall that if N is a compact normal subgroup of a locally
compact group G, then A(G/N) embeds into A(G) (corresponding to the
subspace of all N-periodic functions in A(G), see [6, Proposition (3.25)]).
In our case, now U o<<A(G/N) is norm dense in A(G) (since
U 0< < L2(G/N) is norm dense in L2(G)). For a fixed 0 < a </x, (u)j j

may not be topologically convergent to invariance. However, since N is
synthesis for A(G) (see [15, p. 94]), we still can show that (u)jj is
topologically convergent to invariance "for A(G/N)"; that is,

limllvu ull 0
jJ

for all v A(G)with v 1 on N,.
sequel.

But this fact will not be needed in the

For a directed set X, let o(X) be the subset of l(X)* defined as in 2.
Chou in [2] showed that if G is a non-discrete metrizable locally compact
group, then there exists an orthogonal sequence in A(G)which is topologi-
cally convergent to invariance. Using such a sequence, he constructed a
linear isometry of (l=)* into VN(G)* which embeds the large set N) into
TIM() (see [2, Theorem 3.3]). Recall that the net (u),)xx in Lemma
5.2 is topologically convergent to invariance and (ui)x is orthogonal for
each fixed j J. Thus in case G is non-metrizable, although we can not set
up one linear isometry embedding a big set into TIM(O), we still have the
following weaker version of Chou’s results obtained by modifying his tech-
nique.

THEOREM 5.4. Let G be a tr-compact non-metrizable locally compact group
and (N,) , be the decreasing family of normal subgroups of G as in Proposi-
tion 4.3. Let X {a; c < } with its natural order and (u)(i,)ex be the
same net in A(G) as in Lemma 5.2. For every element j in J, define 7rl VN(G)
-. r(x) by

<r, >, r X.

Then:
(a) For each j J, rl is a positive linear mapping of VN(G) onto I(X) with

II rll 1 and the conjugate r is a linear isometry of I(X)* into VN(G)*.
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(b) For each 4 I(X)*, if we let

W (all w*-clusterpoints of (rr)jj in I/(G)* ),
then W , W c_ TIM() if 4 or(s), and the family {W6; th I(X)*} is
pairwise disjoint.

Proof. (a) Fix j J. Clearly, cry is linear, cry(I) is the constant function of
value one, and try(T)>0 if T>0. If TI/(G) and aX, then
[ry(T)(a)l I(T,u)I <_ IITII Ilull--IITII. Therefore, I[ryll--- 1. To see
that r is onto and 7r* is an isometry, we only have to show that for each
f l(X), there exists a T VN(G) such that cry(T) f and II Tll Ilfll.

Let A A(X) be the set of all non-empty finite subsets of X directed by
inclusion. Let fl(X). For each r A, let S= Y’.f(a)Q. Since
(Q) < is an orthogonal net of projections in VN(G) and f l(X), then

II&ll < Ilfll for all z A,

and the net (S) A is convergent in the weak operator topology to an
operator T I/TV(G)with IITII-< Ilfllo. Recall that on I/N(G) the weak
operator topology coincides with the tr(l/N(G),A(G))-topology. Conse-
quently, by u A(G) and formula (5.4), we get

rrj(T)(a) (T,u) lim (S,u)
rA

lim E f(13)(Q,u)
rA

=f(a) forall aX;

i.e., rj(T) f. In particular, Ilfll < rsll TII II TII, and hence TII
Ilfll. This completes the proof of (a).
An interesting fact here is that the above operator T is independent of the

choice of j in J, that is, given f l(X), there exists a "common"T VN(G)
such that

IITII Ilfll and 7rj(T) f for all j J.

We need this fact later.
(b) Let b I(X)*. Since r*ll II 11 for allj J and the unit ball in

VN(G)* is w*-compact, then the net (r*b)j s must have a w*-cluster point
in VN(G)*. So, W6 = 3.

Let b .(X) and F W6. Then there exists a subnet (rj,*b)j, of (r*b)j s
such that 7rj,*b --+ F in the tr(VN(G)*, VN(G))-topology. Now,

IIFII _< lim infll rffbll II 411 1,
j,
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and

(F,I) lij,m(rj,*b, I) liy,m( th, 7rj,(I)) b(1) 1,

where 1 is the constant function of value one. Therefore, IIFll (F, I) 1.
Let T VN(G)and v A(G)with v(e)= 1. Then

(F,v. T- T) lij,m (zrj,*b, v. T T) lij,rn( th, rj,(v. T- T)). (5.5)

j’ j’By Lemma 5.2, limj,, Ilvu u II 0. Thus, we get

lim rj, ( v. T T)(t) lim ( v. T T, u )
j’,a j’,o

j’ j’lim (T, vu,, u,, ) O.
j’, a

So, given > 0, there exists j and a0 such that

Irj,(o T- T)(a)[ < for all (j’, t) > (j, Co). (5.6)

Since th oqr(X), then (5.6) implies that

l( 4’ rj,(v. T T)) < for all j’ > j. (5.7)

Consequently, (5.5) and (5.7) combined give

(F, v. T- T) lim( b, rj,(v. T- T)) 0;
j,

i.e., (F,v. T) (F,T) for all T (G), v A(G) with v(e)-- 1. We
conclude that W

_
TIM(() for all b (X).

Let h, 2 l(X)* be two different elements. Assume that F W
W. Let f l(X). By the fact mentioned after the proof of (a), there exists
a "common" T VN(G) such that

rj(T) =f for all j J.

Then ( thl, f) (bl, rj(T)) (71"?tl T) for all j J. Similarly, we have
(b2, f) (r*b2, T) for all j J. By taking limits on subnets, we thus get
(41,f) (F,T) and (412, f) (F,T); i.e., (411, f) (b2,f). This is
true for all f l(X). It follows that b ---412, contradicting the fact that
b # b2. Therefore, W# q W for all b, b2 I(X)* with b b2.
This completes the proof of the theorem, t3
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Recall that if A is a set, then 2A denotes the set of all subsets of A. The
above theorem together with the embedding results for VN(G)* will yield
the following result.

COROLLARY 5.5. Let G be a non-discrete locally compact group. Let Ix be
the initial ordinal satisfying I1 b(G) and X a; a < i} with its natural
order. Then there exists a one-one map W" l(X)* 2vNa)* such that"

(i) IV(b) :/: (for all ch I(X)*;
(ii) W(bl) W(th2)= fif qb1, d2 I(X)* and oh1 4: b2;
(iii) W(adp) aW(ch) and W(dl + d2)

_
W(d) + W(th2) for all

oh, 41, b2 I(X)* and a C;
(iv) W(th)

_
TIM() if 4 o(S).

Proof. When G is metrizable, this corollary is a consequence of Chon [2,
Theorem 3.3]. In the following we assume that G is non-metrizable.

If G is tr-compact, let W" F(X)* 2vNa)* be defined by W(b)= W6,
where W6

_
VN(G)* is the same as in Theorem 5.4(b). Then W satisfies (i),

(ii) and (iv). It is easy to check that W also satisfies (iii).
In the general case (G not necessarily tr-compact), let Go be a compactly

generated open subgroup of G. Let t: A(Go) A(G) be the extension map
defined by to b, where b o on GO and 0 outside Go. Then, by Granirer
[10, Theorem 3], t** is a linear isometry of VN(G0)* into VN(G)* and
t**(TIM(o)) TIM(). Note that now GO is tr-compact and non-metriz-
able and b(Go) b(G). Let W1 "I(X)* 2vN)* be the map given in the
previous paragraph. Define W t%’o Wa, where "" 2vu0)* 2w)* is
the map generated by t**; i.e., t**($’) {t**F; F } for all $’. VN(G0)*.
Then W I=(X)* 2VN(G)* has properties (i)-(iv).

COROLLARY 5.6. Let G be a non-discrete locally compact group. Then

22b().TIM()[ >

Proof Let /z be the initial ordinal with Il b(G) and X {a;
Let W:I=(X)* 2wa)* be the one-one map in Corollary 5.5. Then, by
properti6s (i), (ii), and (iv) and Proposition 3.3, we have

TIM(() > r(x) 22’x 22’’.

To show that the equality in Corollary 5.6 holds, we need two more
technical lemmas.
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LEMMA 5.7. Let G be a non-discrete locally compact group and K be a
compact subset of G. Let

Cr(G) {f; f Coo(G) and supp f_c K}.
Then there exists a subset . of L2(G) such that SI _< b(G) and .2a is
I1" 112-dense in Cr(G).

Proof Choose a set J with IJI b(G). Let {U.; j J} be an open basis at
the unit element e of G. Since K is compact, for each fixed j J, there exist
xi,..., x K such that K

___
IJ xU.. Let g’0 be the set of all such sets

xU. K, j J and k 1, .,n. Then Ig’01 -< IJI -b(G) (since b(G) is
infinite), and "0 is a basis for open sets in K (with the relative topology). Let

’= E E U H fr sme H,...,H,, g’o
kl

Then we still have I’1< b(G). Define

"= ale; a Q, E , k 1,..., n
k--1

where Qc {a + ib e; a, b are rationals}. Then __. L(G) and
b(G), since Q is countable and Ig’l _< b(G) (with b(G) infinite).
We claim that .. is II-dense in C(G). We can assume that I(K) > 0.

Let f C(G) with Ilfll > 0 and let e > 0. Then there exists a partition
{F; k 1,..., n} of supp f (__. K) such that each F is measurable and

If(x) -f(y) < 6 forx, yF,k= 1,...,n,

where 6 e(4A(K)l/2)-. By the density of Qc in C, for each k, we can
choose an a Q such that

lakl < Ilfl[oo and If(x) akl < 26 for x Fk. (5.8)

Fix 1 < k < n. By the regularity of the left Haar measure A of G, there exist
an open set Ok and a compact set Mk such that Mk c_ Fk c_ Ok and

A(Ok\Mk) < 6z, (5.9)

where 62 Z(2nllflloo)-2. Note that g’0 is a basis for open sets in K,
Ok K is open in K and Mk is compact. Then there exist HI,..., Hm
such that Mk c_ U =a H/

___
Ok C K. Let Ek U =H/. Then Ek 8". Now

M _c E _c O and Mk __c F __c Ok. Hence (5.9) implies

A(EAF) < A(O\M) < , (5.10)
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where Ek AFk is the symmetric difference of Ek and Fk. Let

n

g ., aklFk.
k=l

Then g .W. Recall that f E,= flF,. Hence,

n n

If- gl E (fle, aklEk) < E Ifle, aklek
K--1 k--1

k=l k=l K=I
n n

< 2i1 E lekek + Ilfll E 1FkaE (by (5.8))
k=l k---1

n

< 2tllK + Ilfll le,ae,.
k--1

Consequently, we have

n

Ill-gl12 21111rtl2 + Ilflloo IIl,aell2
k--1

n

----2tlA(g) 1/2 + Ilfll E A(FkAEk)/2

< + Ilflln/2 (by (5.10))

=g+g=e;
i.e.,, Ill- gl[2 < . It follows that Sa is I1" [[2-dense in Cr(G). [3

LEMMA 5.8. Let G be a non-discrete locally compact group and Va compact
subset of G. Let

Av(G) {v; v - A(G) and supp v _c V}.

Then them exists a subset ’ of A(G) such that < b(G) and is
II II,()-dense in Av(G).

Proof. Choose a compact neighborhood K of e such that V __. K. Define

A1 span{f g, f, g Coo(G), supp f _c K, supp g
___
K},

where span E means the linear span of E.
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Assume that there exists a v Av(G) such that v (the norm closure
of A in A(G)). Then by the Hahn-Banaeh Theorem, there exists a T
VN(G) A(G)* such that (T, v) 4:0 but (T, f g) (Tf, g) 0 for all
f, g Coo(G) with supp f

_
K and supp g K. By the definition of supp T,

we have that K
_
G\supp T; i.e., supp T

_
G\K G\ V. Note that v

Av(G) and hence supp v

_
V. It follows that supp v q supp T . By [6,

Proposition (4.6) and (4.8)], v. T--0. We choose a u A(G) such that
u 1 on V. Then vu v, and hence

0 (v" T,u) (T, uv) (T,v),

contradicting the fact that (T, v) 4: 0. We conclude that Av(G) _-.
Let

Cr(G) {f; f C00(G) and supp f c_ K}.

By Lemma 5.7, there exists an .’
_
L2(G) such that kl< b(G) and . is

I1" 112-dense in Cr(G). Define

._if,a= ., aifi * gi; ai - Q, fi, gi "’, 1,..., n
i=1

where Qc is the same dense subset of C as in the proof of Lemma 5.7. Then
[Yd < b(G), since Qc is countable and [Sal< b(G). Since Sa is I1" IIz-dense
in Cr(G) and Q is dense in C, by the definition of A(G), Sa is IIAto)-dense
in A1. Recall that Av(G) c_ 11. Therefore, 5a is I1" IIAt6)-dense in Av(G).

We are now ready to find out the precise cardinality of TIM() for any
non-discrete locally compact group G.

THEOREM 5.9. Let G be a non-discrete locally compact group. Let b(G) be
the smallest cardinality of an open basis at the unit element e of G. Then

IrIM(O) 22‘,.

Proof By Corollary 5.6, we only have to show that TIM(()I < 22b<).
Let U and V be two compact neighborhoods of e in G such that U V.

We choose two functions u0 and v0 in A(G) such that uo(e) 1, v0 1 on
U, supp u0

_
U and supp v0 __. V. Then u0 UoVo. Let

{u0. r; r
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Then ’ is a subspace of VN(G), and each m TIM() is determined by its
value on ’, by the definition of TIM(). Hence we have

TIM()[ < cII, (5.11)

where c is the cardinality of the continuum.
In the following we shall prove that k.l < cb(G). Let T VN(G) and

v A(G). Then

<uo T, v) <T, uoV> <T, uoVoV) <uo T, vov). (5.12)

Now VoV A(G)with support contained in V. Define

Av(G) v A(G) supp v V}

Then, by (5.12), each u0 T’ is determined by its value on Av(G). By
Lemma 5.8, there exists an Sc_A(G) such that bcq < b(G) and S is
I1" IIA)-dense in Av(G). Hence each u0 T .. is determined by its value
on S. Consequently,

k’l < cI1 < cb(G). (5.13)

Finally, (5.11) and (5.13) combined give

cO() 22b()TIM((})I -< c’’ -< c

since b(G) is infinite.

Remark 5.10. Lau and Paterson showed that if G is a non-compact
amenable locally compact group, then IMTL(G)I 22d(G), where MTL(G) is
the set of all topologically left invariant means on L(G) and d(G) is the
smallest cardinality of a covering of G by compact sets (see [20, Theorem 1]).
When G is abelian and G is the dual group of G, A(G) can be identified
with LI(() (by Fourier transform) and VN(G)with L((}); each f L=(()
can be regarded as a multiplication operator on L2(()which is isomorphic to
L2(G) by Plancherel’s theorem. Under these identifications, the module
action of LI(() on L=(() is just the usual convolution. Consequently,
m VN(G)* belongs to TIM(,’) if and only if the corresponding mean on
L=(() is a topologically left invariant mean. In particular, TIM(O)I
[MTL(O)[. Now b(G)= d(() (see [17, (24.48)]). Therefore, when G is
abelian, our Theorem 5.9 coincides with Lau-Paterson’s result.
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6. Some applications

For a locally compact group G, let b(G) be the smallest cardinality of an
open basis at the unit element e of G defined as before. The format of the
following proposition and corollary is due to Chou [2]. He discussed the case
when G is metrizable.

PROPOSITION 6.1. If G is a non-discrete locally compact group, then TIM()
contains a subset E such that IEI ITIM()I 22b(a) and ifm1, mE E and
m m2, then IIm m211 2. I particular, TIM(() is not norm separable.

Proof. When G is metrizable, this is shown by Chou (see [2, Corollary
3.51).

In the following we assume that G is non-metrizable. By Granirer [10,
Theorem 3], we may assume that G is o--compact. Let /x be the limit ordinal
associated with G as in Proposition 4.3, X {a; a </x} with its natural
order and (X) the subset of l(X)* define as in 2. Let

{6 fiX; b contains{T;a X}},
where/3X is the Stone-(ech compactification of the discrete set X and T, is
a tail in X as in 2. Then, by Lemma 2.2 and the proof of Proposition 3.3,_

o(X) and ke’l 221xl= 22b).
Let tha, thE with thl = b2. Then [[ba th2[I 2, since tha, thE /3X.

Let ,a W61 and -/2 Wb where W6 is the non-empty subset of TIM(G)
defined for each b 7(X as in Theorem 5.4. Then, there exist subnets
(Tr*) and (r’2)2 of (Tr), where (Tr)x, is the net of linear maps
associated with G as in Theorem 5.4, such that

7rj(l --) O1 and 7r’*2J2
in the tr(VN(G)*, VN(G))-topology. Since I1 2ll 1, 1 211
2. On the other hand, if f l=(X) with Ilfll 1, then, by the fact men-
tioned in the proof of Theorem 5.4, there exists a
such that IITII Ilfll 1 and

r(T) =f, forall j J.

Hence, we get

IIq’l

"common" T VN(G)
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that is,

]l 1 /211 >--I( (1 (2, f>l for all f l(X) with IIfll 1.

It follows that t//1 2 II II 2 II 2. Consequently, II 2 II 2
for 01 W, and ’2 W,.
For each , choose a g, W,. Let E be the set of all such . Then

IEI [ 22) and Ilm m2ll 2 for all m, m2 E with m = m2.

Recall that F(() is the space of all T FN(G) such that re(T) equals a
fixed constant d(T) as rn runs through TIM(). Also, each rn TIM() is
determined by its value on UCB() and W(() __. F(t). Thus Theorem 5.9
will yield the following result.

COROLLARY 6.2. Let G be a non-discrete locally compact group. If is a
norm dense subset of the quotient Banach space VN(G)/F() (or
UCB()/F() q UCB()), then

kl > b(G).

In particular, FN(G)/F(), UCB()/F() UCB() and UCB()/W()
q UCB() are not norm separable.

Proof. Assume that is norm dense in (G)/F(). Then there exists
a subset .& of VN(G) such that 1 kl and the set

$’={T+S;T_andS

in norm dense in VN(G). Thus each m TIM() is determined by its value
on 8". Fix an mo TIM(). We have

m(T+S) =m(T) +m(S) =m(T) +m0(S),

for all rn TIM(), T and S F((). Therefore, each rn TIM() is
determined by its value on . Consequently, we have

ITIM(d)I < cll cll 2.olal, (6.1)

where c is the cardinality of the continuum and R0 is the first infinite
cardinal number. On the other hand, by Theorem 5.9,

IrIM(d)l-- 22() > 2(). (6.2)
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Now (6.1) and (6.2) combined give

>

But b(G) > It0, since G is non-discrete. Therefore, kl > b(G).
Similarly,^ we can prove the UCB(t)/F(t)tq UCB(t)case, since each

rn TIM(G) is determined by its value on UCB((), by the definitions of
TIM(tJ) and UCB(). t3

If u A(G)with u(e)= I, let

{T vTv( ); u. T 0).

If T u +/- and rn TIM((), then m(T) m(u. T) m(0) 0. Hence
u +/-

_
F(t). Note that W(() __q F(t). By the same procedure as in the proof

of Corollary 6.2, we can also prove the following.

COROLLARY 6.3 (Granirer [11, Theorem 12]). If G is a locally compact
group such that there exists a u A(G) with u(e)= 1 and an X, a norm
separable subsp,ace of VN(G), such that UCB((J) is contained in the norm
closure of W(G) + u +/- +X, then G is discrete.
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