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ON THE SET OF TOPOLOGICALLY INVARIANT MEANS
ON THE VON NEUMANN ALGEBRA VN(G)

ZHiGuo Hu!

1. Introduction

The study of the cardinality of the set of invariant means on a group was
initiated by Day [3] and Granirer [8]. In 1976, Chou [1] showed that for a
discrete infinite amenable group G the cardinality of the set ML(G) of all
left invariant means on [“(G) is 22 Later, Lau and Paterson [20] proved
that if G is a noncompact amenable locally compact group, then the set
MTL(G) of all topologlcally left invariant means on L*(G) has cardinality
22“? where d(G) is the smallest cardinality of a covering of G by compact
sets. (Of course, when G is compact, MTL(G) is the singleton containing
only the normalized Haar measure of G). For results on the size of the set
ML(G)\ MTL(G), see Granirer [9], Rudin [29], and Rosenblatt [26]. See also
Yang [32] and Miao [21] for some recent developments in certain related
aspects. We refer the readers to the books of Pier [23] and Paterson [22] for
more details on the study of the size and the structure of the set of invariant
means on groups and semigroups.

Let G be a locally compact group, A(G) the Fourier algebra of G, VN(G)
the von Neumann algebra defined by the left regular representation
{p, L*(G)} and TIM(G) the set of all topologically invariance means on
VN(G). The set TIM(G) was first studied by Dunkl and Ramirez for compact
groups. They showed [4] that if G is an infinite compact group, then
|TIM(G)| > 2. Renaud [25, Theorem 1] proved that there exists a unique
topologically invariant mean on VN(G) when G is discrete. In Theorem 1 of
[10], Granirer showed the following: if G is non-discrete and second count-
able (i.e., there is a countable basis for open sets in G), then TIM(G) is not
norm separable A stronger results was obtained by Chou in [2, Theorem 3.3}:
if G is non-discrete and metrizable, then there exists a linear isometry of
(I"y* into VN(G)* which embeds a “big subset” (having cardinality 2°) of
(I*)* into TIM(G) See also Granirer [13, p.172-173] for the discussion on
the set TIM (G) of topologically invariant means on A,(G)*, where A4,(G) is
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the Figa-Talamanca-Herz space (1 < p < ©) and 4,(G) = A(G)if p = 2.In
particular, he proved that |TIM, (G)| > 2° in case G is second countable and
non-discrete. Recently, Lau and Losert showed, among many other results,
that if VN(G) has a unique topologically invariant mean, then G must be
discrete (see [19, Theorem 4.10 and Corollary 4.11]). They actually remedied
Renaud’s result by using a totally different machinery (as noticed by a
number of mathematicians, there is a gap in the proof of Proposition 8 in
[25]; see [19, p. 21]).

The main purpose of this paper is to prove that if G is a non-discrete
locally compact group, then TIM(G) has cardinality 22"”, where b(G) is the
smallest cardinality of an open basis at the unit element e of G.

Section 2 consists of some notations and preliminary results.

For an initial ordinal u, let X be the set of all ordinals less than w with its
natural order. We introduce a subset of /(X )*:

F(X) = {6 € (X)*; 6]l = $(1) = 1and
$(f) = 0if f € I"(X) and lim f(a) = o},

where 1 is the constant function of value one. This set with X = N was first
considered by Chou [2]. We shall prove in Section 3 that |F(X)| = 22"
(Proposition 3.3).

The main idea of Section 4 was inspired by Lau-Losert [19, Lemma 4.8]. If
G is a o-compact non-metrizable locally compact group, let u be the initial
ordinal satisfying |u| = b(G). We shall show that there exists a decreasing
family (N,), ., of normal subgroups of G such that N, = G, N, = {e} and
b(N,) = b(G) for all « < u; N, is compact if a > 0; N,/N, ., is metrizable
but N,,; # N, for a < u; and N, = N, ., N, for each limit ordinal y < u
(Proposition 4.3). This interesting property concerning the local structure of
G at e plays a key role in proving the main results. The proof of Proposition
4.3 will constitute the major technical part of this paper.

In Section 5, we shall present a weaker version of Chou’s result [2,
Theorem 3.3] and obtain the exact cardinality of TIM' (G) for a non-discrete
locally compact group G. Let u be the initial ordinal with |u| = b(G) and
X ={a; a < u}. In case G is o-compact and non-metrizable, by modifying
the technique of Chou [2], we construct a family of linear isometries (7*); of
I*(X)* into VN(G)*. For each ¢ € I*(X)*, let

W, = (all w*-cluster points of (7'$); in VN(G)*}.

It is shown that {W,; ¢ € I"(X)*} is a family of pairwise disjoint non-empty
subsets of VN(G)* and W, C TIM(G) if ¢ € F(X) (Theorem 5.4). Conse-
quently, if G is non-discrete, then there exists a one-one map W : [*(X)* —
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2VNGT\ () such that W(F(X)) c 2TM© (Corollary 5.5). Finally, the equal-
ity |TIM(G)| = is proved when G is a non-discrete locally compact
group (Theorem 5 9). If G is abelian and G is its dual group, then A(G) can
be identified with_ LYG) and VN(G) with L*(G); now each m € VN(G)*
belongs to TIM(G) if and only if the corresponding mean in L*(G) is a
topologically left invariant mean. Since b(G) = d(G) (see [17, (24.48)]), our
Theorem 5.9 coincides with Lau-Paterson’s result [20, Theorem 1] when G is
abelian.

Some applications of the main theorems are given in Section 6. We show
that if G is non-discrete, then TIM(G) contains a subset E with |E| =
ITIM(G)| = 22" such that |m, — m,|l = 2 for m,, m, € E and m, # m,.
Let UCB(G) be the space of all uniformly continuous functionals on A(G)
and F(G) be the space of topological almost convergent elements in VN(G).
Note that each m € TIM(G) is determined by its value on UCB(G)
Hence, by Theorem 5.9, any norm dense subset of UCB(G)/F(G)NUCB(G)
has cardmall greater than b(G) when G is non-discrete; in particular,
UCB(G)/F(G)NUCB(G) is not norm separable. Our Theorem 5.9 also
implies Theorem 12 of [11].

2. Preliminaries and some notations

Let C be the complex field. If E is a Banach space over C, let E* denote
the Banach space of all bounded linear functionals E — C. If ¢ € E*, then
the value of ¢ at an element x in E will be written as ¢(x) or (¢, x).

Throughout this paper, G denotes a locally compact group with unit
element e and a fixed Haar measure A. Let L?(G) be the Banach space of
square A-integrable complex-valued function f on G with norm |[|fll, =
(J5fI> dN)V2. Let VN(G) be the von Neumann algebra defined by the left
regular representation {p, L?(G)}, i.e., the closure of the linear span of
{p(a); a € G} in the weak operator topology, where p(a)f(x) = f(a~'x),
x € G, f € L*(G). Let A(G) be the Fourier algebra of G, consisting of all
functions of the form f * g, where f, g € L*(G), §(x) = g(x™ '), and

f*8(x) = [ f(0)§( %) de = [ f(0)g(xTr)dt, x€G.

Then each ¢ = f* g in A(G) can be regarded as an ultraweakly continuous
functional on VN(G) defined by

&(T) =(If,g) for T € VN(G),

where (-,-) is the inner product in L2(G). Furthermore, as shown by P
Eymard in [6, p. 210 and p. 218], each ultraweakly continuous functional on
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VN(G) is of this form. Therefore, A(G) is the predual of VN(G), i.e.,
A(G)* = VN(G). In particular, the w*- and weak operator topologies on
VN(G) coincide. Also, A(G) with pointwise multiplication and the norm

¢l = sup{|¢(T)|; T € VN(G) and |ITIl < 1}

forms a commutative Banach algebra. There is a natural action of A(G) on
VN(G) given by

(u-T,v) =<{T,uw) foru,ve€A(G),T <€ VN(G).

For more details on the algebras VN(G) and A(G), see Eymard [6].

An m € VN(G)* is called a topologically invariant mean on VN(G), if

@ llm|l = {m, I) = 1, where I = p(e) denotes the identity operator,

(i) (m,u-T) = {m,T) for T € VN(G) and u € A(G) with u(e) = 1.
Let TIM(G) be the set of all topologlcally invariant means on VN(G). It is
known that TIM(G) is a non-empty w*-compact convex subset of VN(G)*
(see Renaud [25] for a further discussion). Let C(G) denote the Banach
space of bounded continuous complex-valued functions on G with the
supremum norm and Cy(G) denote all functions in C(G) with compact
support, where the support of a continuous function u on G is the closure of
the set {x € G; u(x) # 0}. The support of an element f € L*(G) is defined
by saying that x & supp f if and only if there exists a neighborhood V' of x
such that (f,v) = 0 for all v € Cy,(G) with supp v € V. The support of an
operator T € VN(G) is defined by saying that x & supp T if and only if there
exists a neighborhood U of e such that x & supp(Tu) for all u € C,(G) with
supp u C U (see [15, p. 117]). An equivalent definition for supp T is that
x € supp T if and only if u - T = 0 implies u(x) = 0 for all u € A(G) (see [6,
Proposition 4.4] or [14, p. 119)).

Let UCB(G) denote the norm closure of A(G) - VN(G). Then UCB(G) is a
C*-subalgebra and an A(G)-submodule of VN(G) (see [12]) which coincides
with the norm closure of {T € VN(G); supp T is compact}. In case G is
abelian, UCB(G) is isometrically algebra isomorphic to the algebra of bounded
uniformly continuous functions on the dual group G of G. For this reason,
operators in UCB(G) are called uniformly continuous functionals on A(G)
(see [11]). The C*-algebra UCB(G) and its relatlonshlp with other C*-subal-
gebras of VN(G) have been studied by Granier in [11] and [12] and by Lau in
[18]. By the definitions of TIM(G) and UCB(G), each element m in TIM(G)
is determined by its value on UCB(G).

Dunkl-Ramirez [S] called {T € VN(G); u —» u-T is a weakly compact
operator of A(G) into VN(G)} the space of weakly almost penodxc function-
als of A(G) and denoted it by W(G). It turns out that W(G) is a self-adjoint
closed A(G)-submodule of VN(G) which coincides with the space of weakly
almost periodic functions in L°(G) when G is abelian (see [5] for more
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details). Chou [2] used F(G) to denote the space of all T € VN(G) such that
m(T) equals a fixed constant d(T') as m runs through TIM(G) and called
F(G) the space of topologlcal almost convergent elements in VN(G). We can
easily check that F(G) is a norm closed self-adjoint A(G)-submodule of
VN(G). It is known what W(G) has a umque topologically invariant mean
(see [5] and [11]). In particular, this gives that W(G) C F(G). The above
inclusion is also obtained by Chou using his results on characterizations of
F(G). See Chou [2] for more information on F(G).

Let ¢, and ¢, be two positive definite functions in 4(G). We say that ¢,
is orthogonal to ¢, if ld, — d,ll = by ll + byl (see [30, p. 31D.

If M is a locally compact group with unit element e, we use b(M) to
denote the smallest cardinality of an open basis at e. When M is abelian and
M is the dual group of M, Hewitt and Stromberg showed that b(M) = a(m),
the smallest cardinality of a covering of M by compact sets (see [16] and [17,
(24.43)).

For any two sets A and B, A\ B denotes their difference, 1, denotes the
characteristic function of A4 as a subset of the underlying set or locally
compact group, 24 is the set of all functions from A to {0, 1}, an |A4| is the
cardinality of 4. Then |24| = 214, the cardinality of the set of all subsets of
A. So we also use 24 to denote the set of all subsets of A. When « is an
ordinal number, |a| means the cardinality of the set { 8; B is an ordinal and
B < a}. An ordinal « is called an initial ordinal if || is infinite and B < a
implies |B| < |al (see [27, p. 271).

LEMMA 2.1. Let a be an initial ordinal. If B and y > 0 are ordinals such
that B+ v = a, then y = a.

Proof. Since y> 0, B< B+ y=a (see [27, p. 193D. Then |B| < |al
because « is an initial ordinal. But |8| + |yl = |al. It follows that |y| = |a].
Also, y < B + y = a (see [27, p. 193]. Therefore, y = . O

If X is a set, let [”(X) be the Banach space of all bounded complex-valued
functions on X with the supremum norm. It is well known that if ¢ € I"(X)*,
then any two of the following three conditions implies the remaining one:

@ lell =1,

() ¢ =1,

(iii) ¢ = 0, that is, ¢(f) = 0 for all non-negative f € I*(X),
where 1 is the constant function of value one. When ¢ € I*(X)* has any two
of the above properties, we call ¢ a mean on [”(X). If X is a directed set,
we define

F(X) = {$ € "(X)"; 16l = $(1) = 1, 6(f) = 0
if £ € I"(X) and lim f(a) = 0}.
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This set with X = N, the set of all positive integers, was first considered by
Chou when he introduced the technique to embed a large set in TIM(G) (see
[2D. Yang in [32] studied the case X = A(Y), the set of all non-empty finite
subsets of a infinite set Y directed by inclusion. When X is a directed set, a
tail in X is defined by

T,={BeX;B=a}, ac€X.

Therefore, ¢ € #(X) if and only if ¢ is a mean on /*(X) and ¢(17) = 1 for
all a € X. 5

If X is a set (with the discrete topology), BX denotes the Stone-Cech
compactification of X. Then I”(X) is isometrically isomorphic to C(BX).
Thus BX can be identified with the spectrum of I*(X), i.e., the set of all
nonzero multiplicative linear functionals on /”(X) with the Gelfand topology
(see, say, [31, Proposition 4.5, p. 18]). In this way, each x € X is identified
with the evaluation £ on [”(X) at x, i.e., £(f) = f(x) for f € I”(X). On the
other hand, BX can also be obtained by “fixing” the free ultrafilters on X,
that is, X = {all ultrafilters on X} with {Z*; Z C X} as a base for closed
subsets of BX, where Z* = {¢ € BX; Z € ¢} (see [7, pp. 86-87]). Now,
every x € X corresponds to the fixed ultrafilter ¢, on X containing {x}, i.e.,
¢, = {E; x € E c X}. Either way of the above embeddigs will be used later.

When X =N, Chou in [2] pointed out that BN\N c #(N). For the
general case, we have:

LEMMA 2.2. Let X be a directed set. If ¢ € BX and ¢ contains {T,;
a € X}, then ¢ € F(X).

Proof. Let ¢ € BX and ¢ contain {T,; a € X}. Since ¢ is in the
spectrum of /*(X), ¢ is a mean on [*(X). It is known that E € ¢ if and only
if ¢(15) = 1. Now, for each a € X, T, € ¢ and hence ¢(1;) = 1. There-
fore, ¢ € FA(X). O

3. The cardinality of {X)

For a directed set X, let #{X) be the subset of /*(X)* defined as in §2. If
X = N, then |F(N)| = 2¢ = 22" since BN\N S F(N) (see Chou [2, p. 208]),
where c is the cardinality of the continuum. When X = A(Y), the set of all
non-empty finite subsets of an infinite set Y directed by inclusion, Yang
proved in [32, Lemma 2.1] that |#(X)| = 22" if [*(X) is the real Banach
space. Throughout this section, u will be an initial ordinal and X denote the
set { 8; B is an ordinal and B < w} with its natural order. We shall show that
IF(X)| = 22", For this purpose, we begin with a technical lemma which
provides us a family % of functions in 2% such that |% | = 2'*! and any two
functions in % are not cofinal.
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LEMMA 3.1. There exists a family {f;; i € I} € 2% such that |I| = 2'X! and
filTa ;eflea forl,] € I with i'¢j, a€X,

where f|4 is the restriction of function f to the set A.

Proof. Case (i). Assume that 2!*! < 21X for all a € X.

For each pair f, g € 2%, we define f ~ g if there exists an element @ € X
such that fl7, = glr,. Then “ ~ is an equivalent relation on 2¥. Let f € 2.
We put [f] = {g € 2%; g ~ f}, the equivalence class containing f. Let I be
the set of all such equivalence classes. Then 2% = U{[f]; [f] € I}.

Fixan f € 2X. We have [f] = U, c xF,, where F, = {g € 2%; glz, = fIz.}.
Since |F,| = 2!, |[[f]l < X, < x2'*\. This is true for every f € 2%. Hence,

2¥ =¥ = ¥ |[flls £ ( L 2|a|)

[flel [flel *a€X

- |1|( ¥ 2|al) - max(III, Y 2|a|)_

acX aeX

By Konig-Zermelo’s inequality (see [27, p. 313]), we have

Y 2lel < 1;1){2”(I = (2x)* = i1, (3.1)
acX o

Obviously, |I| < 2'XI. Consequently,

211 < max(|1|, Y 2|a|) <21, (32)

aceX

Now (3.1) and (3.2) combined give |I| = 2'*|. For each equivalence class
i € I, we choose an f; € i. Then the family {f;; i € I} satisfies the require-
ment.

Case (ii). Assume that 2!°! = 21 for some a € X.

Let a, = min{ B; B € X and 2!#! = 21X}}, Then ¢, is a limit ordinal. By
the generalized division algorithm (see [24, p. 177]), there exists a unique pair
of ordinals n and & such that u = ayn + ¢ and & < «,. Note that £ < o <
wand ay({+ 1) = ay{ + «, for any ordinal ¢. By Lemma 2.1, ¢ = 0 and 7
has to be a limit ordinal.

Let  be the initial ordinal satisfying |w| = 2!X!. Let I = {i; i is an ordinal
and i < w}. Then |I| = |w| = 2/X\. In the following we inductively construct
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a family (X)), ., of subsets of X such that
XNT,#X;NT, fori,j<owithi#j,ac€X. 3.3)

Let iy < w. Assume that we have chosen a family (X)), ; of subsets of X
satisfying (3.3). Recall that u = a,7. For every ¢ < ), let S, be the segment
of ordinals between a,¢ and a (¢ + 1), ie.,

Sg={a; apé < a<ay(£+1)}.

Since ¢, < ayé, if and only if £ < £, (see [27, p. 200D, {S,; £ < n} is
pairwise disjoint. Furthermore, X = U ,.,S, and, for every a € X, there
exists a £ < n such that S, C 7,. Now, |S,| = |a,| and hence 215! = 21l =
21X for all ¢ < . But we have

X, 0S5 <ig}| < ligl <2 for £ < 7.

Consequently, for each ¢ < 7, there exists a set B, C S, such that B, & {X;
N Se; i <igh Let X; = U, ,B;. Then X; NS, # X; NS, if i <iy and
é§<mn Hence X; NT, #X;,NT, for all i <i, and a € X. Therefore, the
family {X;; i < ioo} has property (3.3). By transfinite induction, we obtain a
family (X)), . , of subsets of X satisfying (3.3).

Finally, for each i € I, let f;: X — {0, 1} be the characteristic function of
X;. Then {f;; i € I} has the required property. O

Remark 3.2. Under the generalized continuum hypothesis (GCH, for
short), a < b implies that 2° < 2% where a and b are any two cardinal
numbers. In Lemma 3.1, |a| < |u| = |X] for all @ € X, since u is an initial
ordinal. Thus, if the GCH is assumed, we always have 2%/ < 21X! for all
a € X; this is the case (i) in the above proof. To avoid using the GCH, we
have to consider case (ii) in our proof as well.

Now we are ready to prove that #(X) is a “big subset” of I”(X)*.
PROPOSITION 3.3.  |#(X)| = 227,

Proof. Obviously, |F(X)| < |[I*(X)*| = 22", By Lemma 2.2, it suffices to
show that there are 22 many ultrafilters on X containing {7,; « € X}. We
now follow an argument of Rudin [28, Theorem 1.3] (see also the proof of
[32, Lemma 2.1]).

Let A = A(X) be the set of all non-empty finite subsets of X. In the
following, we shall construct a family {A4,; 7 € A} of subsets of X satisfying:

G 14, =22
(i) if r# 7',then A, NA,, =
(iii) if @ € 4,, then a > max(7), where max(r) = max{g; B € 7}.
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Since |A| = |X| = |ul, we can write A = {7; i < u}. Let i; < u. Assume
that we have defined a family {4, ; i <i,} of subsets of X satisfying (i)—(iii).
Let B = U,<,°A Then |B| < Ip,l since each A, is finite and |iy| < |ul.
Let a be the unique ordinal satisfying max(r; ) +a= u (see [27, p. 194).
Since a # 0; a = u, by Lemma 2.1. In partlcular |al = |ul > |B|. But |ul
is infinite. So, we can choose a finite set A4, <{B; max(r;) < B < ul\B
with |4, | = 22" Clearly, the family {4, ; i < lo} has propertles (i)—(ii). By
transfinife induction, we have constructed a family {A4,; i < u} ={4,;
7 € A} of subsets of X satisfying (i)—(iii).

For each 7€ A, label the elements of A_ by ordered 2-tuples
(x4, X5, ..., x,m) with x; € {0, 1}. Let E; be the subset of 4, consisting of the
2"'—tuples which have x; = 0. If we let E) =E; and E1 =A,\E,;, then
N ,2,','1E °i is not empty for any choice of ¢; € {0, 1} since (31, £3y.ny Eqn) €
U 2" Ef. Denote the sets E;, i = 1,2,...,2", by E(h), where h is a map
from T to {0, 1}.

Let = {f;; j € I} € 2% be the same family of functions as in Lemma 3.1.
For each f € %, we define

B(f) = U{E(fl.); 7€ A},

where fl, is the restriction of f to the set 7.

Suppose that f,, ..., f,, fos1>---» f,n are distinct functions in 2 and o € X.
Since filr,,..., fulr,, fusilz,s- -+, fulz, are different (by Lemma 3.1), there
exists an element 7 € A such that 7C T, and fil,, ..., f.les favileseeos Fiule
are different. Hence the above argument gives

E(fllT) NN E(fnl‘f) N (AT\E(fn+1|“') ARSNE (AT\E(fm|T) * @.

Using 7 C 7, and property (iii), we have A, C T,. Therefore,

E(fllf) N--N E(fn"f) N (A-r\E(anl?) ARSNE (AT\E(fmIT)
NT, +J.

Note that {A4,; 7 € A} is pairwise disjoint. It follows that
B(fy) NN B(f,) N (X\B(f,+1)) N N (X\B(f,)) N T, * D.
Hence for any map F: % — {0, 1}, the collection
(B(H)™; feg} u(T,; aeXx),
where B(f)° = B(f) and B(f)! = X\ B(f), generates a filter base. Conse-

quently, we have 2\%!=22"" different ultrafilters on X containing {T;
a € X). This completes the proof of the proposition. O
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4. The local structure of o-compact non-metrizable groups

Let G be a locally compact group with unit element e and b(G) be the
smallest cardinality of an open basis at e defined as in §2. In this section, we
shall present an important property of a o-compact non-metrizable locally
compact group G concerning its local structure at e. This property is very
crucial for our main results and is interesting in itself. We begin with two
lemmas. The first one is similar to [19, Lemma 4.7]. The second one deals
with the relation between b(N) and b(G), where N is a closed subgroup
of G.

This section is motivated by Lau-Losert [19, Lemma 4.8].

LEMMA 4.1. Let G be a o-compact locally compact group. Let N be a closed
normal subgroup of G and U an open neighborhood of e. Then there exists a
compact normal subgroup M of G such that M € N N U and N /M is metrizable.

Proof. By the Kakutani-Kodaira Theorem (see [17, (8.7)]), there exists a
compact normal subgroup K of G such that G/K is metrizable and K c U.
Let M = KN N. Then M is a compact normal subgroup of G and M C N N
U. Note that N/M = NK/K < G /K. Therefore, N/M is metrizable. O

LEMMA 4.2. Let G be a locally compact group and N be a closed subgroup of
G. Let R be a cardinal number. If N is an intersection of no more than R open
subsets of G, then b(G) < Rb(N).

Proof. Choose a set I with |I| = X. Since G is a normal topological space
(i.e., any two disjoint closed subsets of G can be separated by two disjoint
open subsets of G), by the assumption, we can write N = N, ,A,, where
each A, is a closed subset of G and N C A, (the interior of A; in G). Also
we choose a set J with |71 = b(N) such that {B; N N; j € J} is a neighbor-
hood basis at e in N, where each B; is a compact neighborhood of e in G.
We can assume that B; C K for all j € J, where K is a fixed compact subset
of G. Let A(I) (resp. A(J )) be the set of all non-empty finite subsets of
(resp. J). For any £€ A(I) and n € A(J), denote A§ N;c¢A4; and
B, = Nc,B;. Then 4, and B, are neighborhoods of e in G.

'We claim that {4, n B (e A(I h,ne A(J)}isa nelghborhood basis at e
in G. Assume that there exists a neighborhood U of e in G such that
AN B, ¢ U forall ¢ € A() and n € A(J). Choose an element x, , € (4,
N B )\U for each pair (¢, m) € A(J) X A(J). We direct A(I) and A(J) by
counter inclusion (ie., ¢, < ¢, ifand only if ¢, C ¢;), and direct A(1) X A(J)
by (&, m) < (&, ’fh) if and only if £ < &, and m; < m,. Then the net
(x¢, )£, me ayxaqy I K has a cluster point, say, x € K. By the direction on
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A(I) X A(J) and the compactness of 4, N B,, we have x € 4, N B, for all
(&, m) € A(I) X A(J). Consequently,

re N (40B)= N (NnB)= N (NNB)={e);
(&, m)eA)XAU) neA(J) jeJ

i.e, x=e. But U is a neighborhood of ¢ in G and Xe o, €U for all
(&,m) € A(I) X A(J). This contradicts the fact that x = e is a cluster point
of (x¢ )¢, me ayxa) It follows that

{4, B,; €€ A1), n € A(V))

is a neighborhood basis at e in G.
Since |J| = b(N), |J| =1 or |J| is infinite. In any case, we have that
[A(D)] = |J| = b(N). So,

b(G) <|A(T) X A(N)| =|AD)[|A) | =[A(D) [p(N).

If X is infinite, then |A(I)| = |I| = X and hence b(G) < Xb(N) by the above
inequality. If X is finite, then N is an open subgroup of G and now
b(N) = b(G). Therefore, we always have that b(G) < Xb(N). O

The main result of this section is contained in the following proposition.

PROPOSITION 4.3. Let G be a o-compact non-metrizable locally compact
group with unit element e. Then there exists a limit ordinal u and a decreasing
family (N,), <, of normal subgroups of G (i.e., @ < B implies N, 2 Np) such
that:

(i Ny=GandN, ={e}

(i) N, is compact for each o > 0;

Giii)) N,/N,,, is metrizable but N, # N, for all a < u;

() N, = N,<,N, for every limit ordinal vy < y;

& BN = b(G) forall &< p.
Furthermore, p is minimal among all such families and w is the initial ordinal
satisfying |l = b(G).

Proof. Let d be the initial ordinal satisfying |d| = b(G). Then d is a limit
ordinal. Let {O,; a < d} be an open basis at e in G. Let N, = G. By Lemma
4.1, there exists a compact normal subgroup N, of G such that N; € N, N O,
and N;/N, is metrizable. Let d, < d. Assume that we have chosen a
decreasing family (N,), ., of normal subgroups of G such that N, is
compact for each 0 < a <dj, N,,;, €N, N O, and N,/N,,, is metrizable if
a+1<d,, and N, = N,,N, for every limit ordinal y <d,. If d, is a
limit ordinal, then we put N; = N, <4 N,. If dg=B+1 (such B is
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unique), then, by Lemma 4.1, we choose N, to be the compact normal
subgroup of G such that N, CN; N Oy and N;/N, is metrizable. By
transfinite induction, we get a decreasing family (N,), ., of normal sub-
groups of G such that N, = G, N, is compact for all 0 < a <d, N,,; €N,
N O, and N,/N,,, is metrizable for « <d, and N, = N, ., N, for every
limit ordinal y < d. Now

nNac—: n0a={e}9

a<d a<d

$0, N ,<4N, = {e}. Let N, = {e}. Then N, = N, 4N,.

We claim that for each 0 < @ < d, N, is an intersection of no more than
|a|X, open subsets of G, where R, is the first infinite cardinal number. This
is true for a = 1 because N, is a Gyset in G (i.e., N, is an intersection of
countably many open subsets of G, since G/N, is metrizable). Let d, < d.
Assume that the above statement is true for all 0 < a <d,. If d,, is a limit
ordinal, then N, = N, .4 N, and hence, by the inductive assumption, N,
is an intersection of no more than |dy|*R, = |d,|R, open subsets of G. If
dy =B+ 1 for some B <d, then N, is a Gyset in Np, since Ny/N, is
metrizable. By the assumption that Nj is an intersection of no more than
|BIR, open subsets of G, N, is an intersection of no more than |B|X§ =
IBIR, = |dyIR, open subsets of G. By transfinite induction, our assertion
follows.

Let 0 < a < d. By the above claim and Lemma 4.2, we have

b(G) < (1alRy)b(N,). (4.1)

Since d is the initial ordinal satisfying |d| = b(G) > R, then |a| < b(G) and
hence

Now (4.1) and (4.2) combined give

b(G) < (lalRg)b(N,)
= max(lalxo, b(Na)) = b(Na);

i.e., b(G) < b(N,). Conversely, b(N,) < b(G), since N, is a subgroup of G.
Therefore, b(N,) = b(G) for all a <d. We conclude that (N,), ., is a
decreasing family of normal subgroups of G satisfying:

GG N, =G and N, = {e};

(i) N, is compact for each a > 0;

(ii) N,/N,,, is metrizable for all a < d;

Gvw N,=N,,N, for every limit ordinal y < d;
@ b(N,) ="b(G) for all a <d.
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Let p be the minimal ordinal among all such families. We see that u has to
be a limit ordinal. In fact, assume that u = v + 1 (v is infinite, since G is
non-metrizable). Then N, = N,/N, is metrizable, contradicting the fact that
b(N,) = b(G) > R,. It follows that w is a limit ordinal. By passing to an
appropriate subfamily, we can achieve that N,,, # N, for all . The ordinal
type of this subfamily will be still u, by minimality. Note that (i)—(v) implies
(@, Gi), (iiy, (iv), and (v). Consequently, w is minimal among all families
satisfying (i)—(v).

By the same procedure as above, we can prove that for each 0 < a < p,
N, is an intersection of no more than |a|X, open subsets of G. Since
N o< .N, =N, = {e}, {e} is an intersection of no more than | pl?Ry = |ul
open subsets of G. Applying Lemma 4.2 to N = {e}, we get that b(G) <
|u|b(N) = |u|. But u < d, by the minimality of u, and |d| = b(G). There-
fore, |ul = b(G) and hence w =d; i.e., u is the initial ordinal satisfying
|ul = b(G). This completes the proof of the proposition. O

Remark 4.4. The basic idea used in constructing (N,), <, is essentially
the same as that used in Lau-Losert [19, Lemma 4.8]. The net (N,), ., there
possesses property (i)—(iv). Here, for our purpose, we begin by showing the
existence of the family of subgroups of G satisfying ()—(v). Hence the result
is strengthened in the following two related aspects, which are important in
the sequel.

(1) The limit ordinal u is totally determined by the local structure of the
o-compact non-metrizable group G (u is actually the first ordinal satisfying
[l = b(G)).

(2) b(N,) = b(G) for all a < u (this property reflects, in some sense, that
each compact normal subgroup N, in this net has the same “non-metrizabil-
ity” as G does).

5. Main results

Let G be a o-compact non-metrizable locally compact group. Let (N,), .,
be the decreasing family of normal subgroups of G as in Proposition 4.3. By
the properties of (N,), < ,» we can define a family (P,), ., of projections in
VN(G) as in the proof of Lau-Losert [19, Theorem 4. 10] Let Py=0¢€
VN(G). For 0 < a < p, let P, € VN(G) be the central projection defined by
convolution with the normalized Haar measure A, of N,. More exactly,

P,:L*(G) - L*(G/N,)(< L*(G))

is given by

(Pf)(®) = [ fe70) dA(r), fELH(G),0<a<p,
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where L*(G/N,) is the subspace of L*(G) consisting of all functions in
L*(G) which are constant on the cosets of N, (see [6, (3.23)]). Now (P,), .
is an increasing net of projections in VN(G); ie., P,P; = P,P, =P, for
a < B < u. Define

Qa=Pa+1—Pa’ a< .

Then (Q,), <, is an orthogonal net of projections in VN(G); that is,

Q, ifa=8,
QaQﬁ:{o if @ # .

We begin with a technical lemma.

LemMMA 5.1. Let G be a o-compact non-metrizable locally compact group
and (N,), ., be the decreasing family of normal subgroups of G as in Proposi-
tion 4.3. Let (Q,), < , be the orthogonal net of projections in VN(G) defined as
above. If U is a neighborhood of the unit element e of G and a < p, then there
exists an f € L*(G) such that |fll, = 1, supp f < UN,, and Q, f = f.

Proof. Since N,,; & N,, there exists an x, € N, such that x,N,,; N
N, ., = . By the compactness of N, , there exists a neighborhood V of e
in G such that

XN, VAN,V =0. (5.1)

We can assume that V' € U and V is compact.

Let g =1y . Then ge& L*G), suppg S VN,,, CUN,,,, and g is
constant on the cosets of N,  oq; 1€, g € LA(G/N,, ). If a =0, then Q,g =
P,g = g, since g € L*(G/N,). Now g/ llgll, satisfies the requirements. In the
following we assume that « > 0 and we shall show that g & L%(G/N,).

Assume that g € L*(G/N,). Then there exists an 4 € L*(G) such that h
is constant on the cosets of N, and g =h ae. Now g =1 on N, ,V and
g =0on N,V\N,,,V. Hence, there exist measurable subsets W, C N,V
and W, C N,V \ N, .,V such that

MW,) = A(NiV), (52)
MW,) = ANV AN, V), (53)

and h =1 on W, h = 0 on W,. Therefore, h =1 on N,W, and h =0 on
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N_W,, since h is constant on the cosets of N,. It follows that N,W, N N, W,
= J. But

MxoWy N W) = MxgNlV 0 W) (by (5.2))
= MxoNos1V N (NV\ N, 1V)) (by (53))
= MxqN,1V) (by (5.1))

= MN,. V)= AMV) > 0.
In particular, x,W, N W, # & and hence N, W, N N,W, # J, a contradic-
tion. We conclude that g & L2(G/N,).

Let f=Q,g (= (P,,; — P,)g =g — P,g, since g € L(G/N,,,)). Then
feL*G)and f#0in L? (G). Now

Q.f=0:8=0.8=f;
ie., Q,f =f. Also,

(P.g)(x) = f g(t71x) dA (1)

Ly, w(t77%) dAg(2)

Il
Z

= A (N, ﬁx(NaHV)_l), x €G.

Then (P,g)x) =0 if x € N,N,,,V = N,V. This gives supp(P,g) C N,V.
But supp g € N,V € N,V. Consequently,

supp f = supp(g — P,g) < N,V =VN, C UN,.
Replacing f by f/lIfll., we complete the proof of the lemma. O

Let G, (N,), <, and (Q,), <u be the same as in Lemma 5.1. Let J be a set
with |J| = b(G), ‘Where b(G) is the smallest cardinality of an open basis at
e € G defined as in §2. Let {U; j € J} be an open basis at e. For each j € J,
we choose a symmetric nelghborhood V; of e such that V2 CU.If a<p
and j €J, then, by Lemma 5.1, there exists an fle L2(G) such that
Ifilla = 1, supp f{ C V;N,, and Q,f} = fI. Let

u, =fi*f:{’ a<p,jeEJ.

Then u), € A(G), llulll = ul(e) =1, supp u) ¢ (V,NI)V,N,)~" =
V,N,N;'V;'' = Vi?N, c UN,; i.e., supp U] € UN,.
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Fix j €J. We have |lu/, — ujll < llull + llujll = 2 for a, B < u._Note
that (Q,),  , is an orthogonal net of projections in VN(G), u} = f] » f and
Q, fi = fi. It follows that

. S (1 ife=8,
w0 = it = o s (54)

But |Q, — Q4ll = 1if @, B < wand a + B, since (Q,), < , is orthogonal. So
we get

leel, = bl = |(d, = b )(Qu = Q)| =|0i(Qa — p) — uh(Qu = Qp)| = 2.

Consequently, [lu/, — ujll = llufll + llujll = 2 for all @, B < p with a # B,
that is, (u/), . , is an orthogonal net in A(G).

Let X ={a; a is an ordinal and a < u} directed by its natural order.
Direct J by i <j if and only if U, € U, and J X X by (i, @) < (j, B) if and
only if i <j and a < pB. A few properties of the net (u)); ayexx i
summarized in the following lemma.

LEMMA 5.2. Under the same assumptions as above, the net (ul); o e jxx
has the following properties.
@ ul, € AG), lulll = ui(e) = 1 and supp u), c U\N, forall (j, @) €J
X X.
(ii) For each fixed j € J, (ul), < x is an orthogonal net in A(G).
(i) (u)(j aye sxx s topologically convergent to invariance; that is, if v €
A(G) and v(e) = 1, then

lim  |lowl — uill = 0.
(i, a)eIxX

Proof. By the above argument, we only need to show that the net
(U])(j, oy 1xx DOssesses property (iii). Our proof follows Renaud [25, Propo-
sition 3]. Let £ > 0 and K be a compact neighborhood of e in G. Then there
exists a u € A(G) such that u = 1 on K. Now, (v — uXe) = 0. Since points
are synthesis for A(G) (see [6, (4.11) Corollary 2)), there exists a w € A(G) N
Cy(G) such that ||[(v — u) — wll < & and w = 0 on some neighborhood U of
e.

Note that supp u, € UN,. If UN, c U N K, then uu), = u} and wu) = 0.
Hence for such u/, we have

lowl, — wlll =||(v — u — w)ul|
= llo —u —wl lluill

=llv—u-w| <e.
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Therefore, by the direction on J X X, we only have to show that there exists
an element (jy, &g) € J X X such that U, N, < U N K. Choose a neighbor-
hood V of e such that V2 c U N K. Smce (N )o<a <, iS a decreasing net of

compact subgroups of G and Ny, <, N, {e} there exits an a, < u such
that N, c V. Let j, €J besuchthatU CV.Then U N, cV?*cUNK.
[m]

Remark 5.3. Recall that if N is a compact normal subgroup of a locally
compact group G, then A(G/N) embeds into A(G) (corresponding to the
subspace of all N-periodic functions in A(G), see [6, Proposition (3.25)D.
In our case, now Uo<a<nA(G/N,) is norm dense in A(G) (since
Uo<a<n?(G/N,) is norm dense in L*(G)). For a fixed 0 < a < u, (] )JE,
may not be topologically convergent to invariance. However, since N, is
synthesis for A(G) (see [15, p. 94]), we still can show that (u),c; is
topologically convergent to invariance “for A(G/N,)”;that is,

lim|low), — ul]l =0
jel

for all v € A(G) with v = 1 on N,. But this fact will not be needed in the
sequel.

For a directed set X, let (X) be the subset of [*(X)* defined as in §2.
Chou in [2] showed that if G is a non-discrete metrizable locally compact
group, then there exists an orthogonal sequence in A(G) which is topologi-
cally convergent to invariance. Using such a sequence, he constructed a
linear isometry of (I”)* into VN(G)* which embeds the large set #(N) into
TIM(G) (see [2, Theorem 3.3]). Recall that the net W), aye IxX in Lemma
5.2 is topologically convergent to invariance and (1)), . x is orthogonal for
each fixed j € J. Thus in case G is non-metrizable, although we can not set
up one linear isometry embedding a big set into TIM(G), we still have the
following weaker version of Chou’s results obtained by modifying his tech-
nique.

THEOREM 5.4. Let G be a ag-compact non-metrizable locally compact group
and (N,), ., be the decreasing family of normal subgroups of G as in Proposi-
tion 4.3. Let X = {a; a < u} with its natural order and (u},),; . e jxx be the
same net in A(G) as in Lemma 5.2. For every element j in J, define m; : VN(G)
- I”(X) by

7(T)(a) =(T,ul), T€VN(G),a€<X.

Then:
(a) Foreachj€J, m; isa posmve linear mapping of VN(G) onto I”(X) with
||l = 1 and the con]ugate w}* is a linear isometry of I"(X)* into VN(G)*.
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(b) For each ¢ € I"(X)*, if we let
W, = {all w*-cluster points of (m$),., in VN(G)*},

then W, # &, W, < TIM(G) if ¢ € F(X), and the family (W,; ¢ € I(X)*} is
pairwise disjoint.

Proof. (a) Fix j € J. Clearly, =; is linear, m/(I) is the constant function of
value one, and 7(T) 20 if T>0. If TEVN(G) and a €X, then
|7 (TX )l = KT, ul>| < IITIl llulll = ITIl. Therefore, |7l =1. To see
that #; is onto and 7* is an isometry, we only have to show that for each
fe l“(X), there exists a T € VN(G) such that 7(T) = f and ||T]| = ||fll«.

Let A = A(X) be the set of all non-empty finite subsets of X directed by
inclusion. Let f € l”(X). For each r€ A, let S,=X,.,f(a)Q,. Since
(Q.). <, is an orthogonal net of projections in VN(G) and f € I"(X), then

ISl < lifl. forallTe A,

and the net (S,),., is convergent in the weak operator topology to an
operator T € VN(G) with |IT|| < |Ifll.. Recall that on VN(G) the weak
operator topology coincides with the o (VN(G), A(G))-topology. Conse-
quently, by u/, € A(G) and formula (5.4), we get

7(T) (@)

(T,ul) = lim(S,,ul)
T€A

lim ¥ f(£){Qp, )

BET

=f(a) forall ¢ €X;

ie., wj(T) = f. In particular, ||fl. < [l7|l ITll = IIT|l, and hence [IT|l =
lIfll». This completes the proof of (a).

An interesting fact here is that the above operator T is independent of the
choice of j in J, that is, given f € I”(X), there exists a “common”T € VN(G)
such that

ITIl = llfll. and 7;(T) = f forall j € J.

We need this fact later.

(b) Let ¢ € I"(X)*. Since |7l = || ¢l for allj € J and the unit ball in
VN(G)* is w*-compact, then the net (7*$); o ; must have a w*-cluster point
in VN(G)*. So, W, # @.

Let ¢ € #(X) and F € W,. Then there exists a subnet (7/$); of (), <,
such that 7f¢ — F in the o (VN(G)*, VN(G))-topology. Now,

IFIl < li}n infl| m¢ll = lloll =1,
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and

(F,I) = lim{(w}¢, I) = im( ¢, m,(I)) = $(1) = 1,
J J

where 1 is the constant function of value one. Therefore, ||F|| = (F,I) = 1.
Let T € VN(G) and v € A(G) with v(e) = 1. Then

(F,u-T-T) = li}p(ﬂ}!‘(ﬁ,v'T -T)= 1i]5n(¢,ar,.,(u- T-T)). (55)
By Lemma 5.2, lim; , llou}, — ulll = 0. Thus, we get
},i,n; m(v-T—T)(a) = },i’rg(v- T-T,ul)
= }lin;(T,vu{; —ul)=0.
So, given £ > 0, there exists j; and «, such that
I'n'j:(v' T - T)(a)| <eg forall (j,a) = (j; ap)- (5.6)
Since ¢ € F(X), then (5.6) implies that
K¢, m(v-T-T))|<e forallj=j. (5.7)
Consequently, (5.5) and (5.7) combined give

(F,v-T—-T)=1lim(¢,m(v-T—T)) =0;
J

ie, (F,u-T) =(F,T) for all T € VN(G), v € A(G) with v(e) = 1. We
conclude that W c TIM(G) for all ¢ € F(X).

Let ¢y, ¢, € I"(X)* be two different elements. Assume that F € W, N
W,,. Let f € I"(X). By the fact mentioned after the proof of (a), there emsts
a “common” T € VN(G) such that

m(T) =f forall jelJ.

Then ¢y, f) = (¢;, m(T)) = (m}¢;, T) for all j €J. Similarly, we have
(o, [) = m}d,, T for all je J By takmg limits on subnets, we thus get
(¢, f) = (F,T) and (¢y, f) =(F,T); ie, (¢, f) = (¢, f). This is
true for all f € [”(X). It follows that ¢, = ¢,, contradicting the fact that
&, # &,. Therefore, W, N W, = for all ¢;, ¢, € I"(X)* with ¢, # ¢,.
This completes the proof of the theorem. m]
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Recall that if A is a set, then 2 denotes the set of all subsets of A. The
above theorem together with the embedding results for VN(G)* will yield
the following result.

COROLLARY 5.5. Let G be a non-discrete locally compact group. Let u be
the initial ordinal satisfying || = b(G) and X = {a; a < u} with its natural
order. Then there exists a one-one map W : I°(XY* — 2"V such that:

W) W(¢) + Dforall ¢ € I"(X)*;
) W(p) N W(dy) = Bif by, b, € (X)* and b, + by;
(i) W(a¢) = aW(dp) and W(¢p, + ¢,) < W(¢)) + W(¢,) for all
b, b1, ¢, € I"(X)* and a € C;
(iv) W(¢) c TIM(G) if ¢ € FX).

Proof. When G is metrizable, this corollary is a consequence of Chon [2,
Theorem 3.3]. In the following we assume that G is non-metrizable.

If G is o-compact, let W:I*(X)* — 2"V be defined by W(¢) = W,
where W, € VN(G)* is the same as in Theorem 5.4(b). Then W satisfies (i),
(i) and (iv). It is easy to check that W also satisfies (iii).

In the general case (G not necessarily o-compact), let G, be a compactly
generated open subgroup of G. Let t: A(G,) — A(G) be the extension map
defined by tv = d, where © = v on G, and 0 outside G,. Then, by Granirer
[10, Theorem 3], £** is a linear isometry of VN(G,)* into VN(G)* and
t**(TIM(G,)) = TIM(G). Note that now G, is o-compact and non-metriz-
able and b(G,) = b(G). Let W, : ["(X)* — 2"V@0" be the map given in the
previous paragraph. Define W = t**oWl, where 1% ; 2VNGo* _, QVNG)* g
the map generated by £**; i.e., **(&) = {t**F; F € &) for all & C VN(G,)*.
Then W : I*(X)* — 2VN © has properties ()—(iv). O

COROLLARY 5.6. Let G be a non-discrete locally compact group. Then
|TIM(G)| = 22"

Proof. Let u be the initial ordinal with |u| = b(G) and X = {a; a < u}.
Let W:I*(X)* — 2V be the one-one map in Corollary 5.5. Then, by
properties (i), (i), and (iv) and Proposition 3.3, we have

|TIM(é)| 2L7(x)| = 92 _ 522®

To show that the equality in Corollary 5.6 holds, we need two more
technical lemmas.
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LEMMA 5.7. Let G be a non-discrete locally compact group and K be a
compact subset of G. Let

Cx(G) ={f; f € C(G) and supp f C K}.

Then there exists a subset Z of L*(G) such that |#| < b(G) and % is
| - ll-dense in Cx(G).

Proof. Choose a set J with |[J| = b(G). Let {U}; j € J} be an open basis at
the unit element e of G. Since K is compact, for each fixed j € J, there exist
xl, o xf € K such that K ¢ UL 1x,’cU Let &, be the set of all such sets
x{(U N K j€Jand k=1,...,n, Then &, < |J| = b(G) (since b(G) is
1nf1n1te) and &, is a basis for open sets in K (with the relative topology). Let

n
&= {E;E = |J H, for some H;,..., H, 68’0}.
k=1

Then we still have |&€ | < b(G). Define

n
= { Yalz;a,€Q,E €& k= ln}
k=1

where Q, = {a + ib € C; a, b are rationals}. Then #c L*(G) and |.Z| <
b(G), since Q, is countable and |& | < b(G) (with b(G) infinite).

We claim that Z is || - ||-dense in Cx(G). We can assume that A(K) > 0.
Let f € Cx(G) with ||fll. > 0 and let & > 0. Then there exists a partition
{F; k =1,...,n} of supp f (€ K) such that each F, is measurable and

|f(x) —f(y)| <8, forx,yeF,k=1,...,n

where 8, = £(4M(K)"/?)~1. By the density of Q, in C, for each k, we can
choose an g, € Q, such that

la,l < lIfllo and | f(x) — a;| < 28, for x € F,. (5.8)

Fix 1 < k < n. By the regularity of the left Haar measure A of G, there exist
an open set O, and a compact set M, such that M, Cc F, ¢ O, and

MON\M,) < 8,, (5.9)

where §, = 32(2n||fllm)'2. Note that &, is a basis for open sets in K,
O, N K is open in K and M, is compact. Then there exist HY,..., H: € &,
such that M, c U™, HF c O, N K. Let E, = U™, HF. Then Ekeg Now
M, cE, c O, and M, C F, c O,. Hence (5.9) implies

ME,AF,) < MO\M,) < 8, (5.10)
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where E, AF, is the symmetric difference of E, and F,. Let
n
g= X alg,.
k=1
Then g €.#. Recall that f = ¥}_, f15,. Hence,
n n
If—gl=| X (flpk - akIE,,) < X If1p, — alg,
K=1 k=1
n n n
= Y If—adlpng + Xlfllg g + X ladls g
k=1 k=1 K=1
n n
<28, % lp,ng, + Iflle X 1pag,  (by (5.8))
k=1 k=1
n
<281 + Ifle X 1545,
k=1
Consequently, we have
n
If = gllz < 28, 11¢ll> + Iflle ¥ 11505, 12
k=1
n
=28, MK)"? + Ifl. ¥ MFAE)?
k=1

< £ 4 Ifln8l?  (by(5.10))

[NV TRV

£
+ 5= £,
i.e.,, IIf — gll2 < . It follows that # is || - ||>-dense in Cx(G). O

LEMMA 5.8. Let G be a non-discrete locally compact group and V a compact
subset of G. Let

Ay (G) = {v; v € A(G) and suppv c V}.

Then there exists a subset % of A(G) such that |A < b(G) and & is
“ . IIA(G)-dense in AV(G)

Proof. Choose a compact neighborhood K of e such that V' C K. Define

A, = span{f* £, f,g € Cy(G), supp f K, supp g K},

where span E means the linear span of E.
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Assume that there exists a v € 4,(G) such that v & 4, (the norm closure
of A, in A(G)). Then by the Hahn-Banach Theorem, there exists a T €
VN(G) = A(G)* such that (T,v) #+ 0 but (T, f*g) = (Tf, g> = 0 for all
f, 8 € Cy,(G) with supp f € K and supp g < K. By the definition of supp T,
we have that K € G\supp T; i.e., suppT € G\ K € G\ V. Note that v €
A,(G) and hence supp v C V. It follows that supp v N supp T = <. By [6,
Proposition (4.6) and (4.8)], v-T = 0. We choose a u € A(G) such that
u =1on V. Then vu = v, and hence

=(v-T,uy =<T,uv) =<(T,v),

contradicting the fact that (T, v) # 0. We conclude that 4,(G) c 4.
Let

Cx(G) = {f; f € Cy(G) and supp f < K}.

By Lemma 5.7, there exists an .# C L?(G) such that |#| < b(G) and .Z is
Il - ll-dense in Cx(G). Define

n
&= {Zaifi*gi;aiEQc’fi’gi EZ,i= 1,-—-,’1},

i=1

where Q, is the same dense subset of C as in the proof of Lemma 5.7. Then
kA < b(G), since Q, is countable and |¥| < b(G). Since & is || - ||,-dense
in Cx(G) and Q, is dense in C, by the definition of A(G), #is || * || 4)-dense
in A,. Recall that 4,(G) c 4,. Therefore, . is || - |l4c)-dense in A4,(G).

O

We are now ready to find out the precise cardinality of TIM(G) for any
non-discrete locally compact group G.

THEOREM 5.9. Let G be a non-discrete locally compact group. Let b(G) be
the smallest cardinality of an open basis at the unit element e of G. Then

|TIM(G)| = 22"
Proof. By Corollary 5.6, we only have to show that |TIM(G)| < 22"“.
Let U and V be two compact neighborhoods of e in G such that U ¢ V.
We choose two functions u, and v, in A(G) such that uy(e) =1, v, = 1 on

U, supp u, € U and supp v, € V. Then u, = uy,. Let

& ={u,-T; T € VN(G)}.
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Then & is a subspace of VN(G), and each m € TIM(G) is determined by its
value on %, by the definition of TIM(G). Hence we have

|TIM(G6)| < 121, (5.11)

where c is the cardinality of the continuum.
In the following we shall prove that |#| < c®®, Let T € VN(G) and
v € A(G). Then

CugT,v) =T, uq) = {T,ugwev) = uy* T,v0). (5.12)
Now vy € A(G) with support contained in V. Define
Ay(G) = {v€ A(G);suppv c V}.

Then, by (5.12), each u, T €% is determined by its value on A,(G). By
Lemma 5.8, there exists an % C A(G) such that | < b(G) and & is
Il - l4c)y-dense in A4, (G). Hence each u,- T € F is determined by its value
on .. Consequently,

18| < M1 < P, (5.13)
ITIM(é)l < ¥l < O 22b(o)’

since b(G) is infinite. O

Remark 5.10. Lau and Paterson showed that if G is a non-compact
amenable locally compact group, then |MTL(G)| = 2'1(6) , where MTL(G) is
the set of all topologically left invariant means on L°°(G) and d(G) is the
smallest cardinality of a covering of G by compact sets (see [20, Theorem 1]).
When G is abelian and G is the dual group of G, A(G) can be identified
with L'(G) (by Fourier transform) and VN(G) with L*(G); each f € L(G)
can be regarded as a multiplication operator on L(G) which is isomorphic to
L*(G) by Plancherel’s theorem. Under these identifications, the module
action of LX(G) on L*(G) is _just the usual convolution. Consequently,
m € VN(G)* belongs to TIM(G) if and only if the corresponding mean on
L*(G) is a topologically left invariant mean. In particular, |TIM(G)| =
IMTL(G)|. Now b(G) = d(G) (see [17, (24.48)]). Therefore, when G is
abelian, our Theorem 5.9 coincides with Lau-Paterson’s result.
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6. Some applications

For a locally compact group G, let b(G) be the smallest cardinality of an
open basis at the unit element e of G defined as before. The format of the
following proposition and corollary is due to Chou [2]. He discussed the case
when G is metrizable.

by

contains a subset E such that |E| = |TIM(G)| = 22" _and if m;,m, € E and
my # my, then ||m; — m,|| = 2. In particular, TIM(G) is not norm separable.

PROPOSITION 6.1.  If G is a non-discrete locally compact group, then TIM(G)
&

Proof. When G is metrizable, this is shown by Chou (see [2, Corollary
3.5D.

In the following we assume that G is non-metrizable. By Granirer [10,
Theorem 3], we may assume that G is o-compact. Let u be the limit ordinal
associated with G as in Proposition 4.3, X = {a; a < u} with its natural
order and #(X) the subset of [”(X)* define as in §2. Let

& = {¢ € BX; ¢ contains {T,; a € X}},

where BX is the Stone-Cech compactification of the discrete set X and T, is
a tail in X as in §2. Then, by Lemma 2.2 and the proof of Proposition 3.3,
o CF(X) and | | = 22" = 227,

Let ¢y, ¢, €& with ¢; # ¢,. Then ||, — ¢,ll =2, since ¢;, ¢, € BX.
Let ¢, € W, and ¢, € W, , where W, is the non-empty subset of TIM(G)
defined for each ¢ € #(X) as in Theorem 5.4. Then, there exist subnets
(m¥); and (7)), of (7);c,, where (7}),c,, is the net of linear maps
associated with G as in Theorem 5.4, such that

mipy > ¢ and 7w, o Py

in the o (VN(G)*, VN(G))-topology. Since ||, Il = ]l =1, 1, — ¢l <
2. On the other hand, if f € [*(X) with ||fll. = 1, then, by the fact men-
tioned in the proof of Theorem 5.4, there exists a “common” T € VN(G)
such that [Tl = lIfll« = 1 and

m(T) =f, forall jelJ.

Hence, we get

Iy, — Wl =|<w; — ¢, T
= lim [{mfid — miiy, T |

11111512 K o, ﬂ'jl(T)> - < % "jz(T)>|

=|<¢1af> - <¢1,f>|
=|<¢’1 - ¢2’f>|’
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that is,

Iy, — ol =|<d; — &y, f)| forall f e 1*(X) with |Ifll. = 1.

It follows that [l¢; — ¢,ll = ll¢; — ¢,ll = 2. Consequently, ll¢; — |l =2

for y € Wy and ¢, €W,
For each ¢ Eb.%f choose a ¢ € W,. Let E be the set of all such ¢. Then
|E| = |o | =22 and |lm, — m2|| =2 for all m,,m, € E with m, # m,.
O

Recall that F(G) is the space of all T € VN(G) such that m(T) equals a
fixed constant d(T') as m runs through TIM(G) Also, each m € TIM(G) is
determined by its value on UCB(G) and W(G) c F(G). Thus Theorem 5.9
will yield the following result.

COROLLARY 6.2. Let G be a non-discrete locally compact group. If & is a
norm dense subset of the quotient Banach space VN(G)/F (G) (or
UCB(G)/F(G) N UCB(G)), then

#| > b(G).

In particular, VN(G)/F(G), UCB(G)/F(G) N UCB(G) and UCB(G)/W(G)
N UCB(G) are not norm separable.

Proof. Assume that & is norm dense in VN(G)/F(G). Then there exists
a subset 2 of VN(G) such that |2| = |#/| and the set

g={T+S;TEQandSeF(é)}

in norm dense in VN(G). Thus each m & TIM(G) is determined by its value
on &. Fix an m, € TIM(G). We have

m(T +8) =m(T) + m(S) =m(T) + my(S),

for all m € TIM(G), T €9 and S € F(G). Therefore, each m € TIM(G) is
determined by its value on 2. Consequently, we have

|TIM(G)| < 12! = ¢191 = 2%, (6.1)

where ¢ is the cardinality of the continuum and R, is the first infinite
cardinal number. On the other hand, by Theorem 5.9,

|TIM(G)| = 22" > 26, (6.2)
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Now (6.1) and (6.2) combined give
X,lZ| > b(G).

But b(G) = X, since G is non-discrete. Therefore, |#| > b(G).

Similarly, we can prove the UCB(G)/F(G) N UCB(G) case, since each
me TIM(G) is determined by its value on UCB(G), by the definitions of
TIM(G) and UCB(G). O

If u € A(G) with u(e) = 1, let
= {T€VN(G);u T =0}.

If T€u' and me TIM(G) then m(T) = m(u - T) = m(0) = 0. Hence
ut ¢ F(G). Note that W(G) c F(G). By the same procedure as in the proof
of Corollary 6.2, we can also prove the following.

COROLLARY 6.3 (Granirer [11, Theorem 12]). If G is a locally compact
group such that there exists a u € A(G) with u(e) =1 and an X, a norm
separable subspace of VN(G), such that UCB(G) is contained in the norm
closure of W(G) + u* +X, then G is discrete.
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