THE DESCRIPTIVE COMPLEXITY OF HELSON SETS

Etienne Matheron

Introduction

A closed subset E of the circle group \mathbf{T} is called a Helson set if every continuous complex-valued function on E can be extended to a function on \mathbf{T} with absolutely convergent Fourier series. We denote by \mathscr{H} the class of Helson subsets of T.

In this paper we are interested in the descriptive properties of \mathscr{H}. We shall need the following definitions: a subset of a compact metric space is called a $\mathbf{G}_{\delta \sigma}$ set if it is the union of countably many \mathbf{G}_{δ} sets and an $\mathbf{F}_{\sigma \delta}$ set if its complement is $\mathbf{G}_{\delta \sigma}$. In the sequel we follow the notations of [17]. Thus, the symbols $\Pi_{2}^{0}, \mathbf{\Sigma}_{3}^{0}, \boldsymbol{\Pi}_{3}^{0}$ respectively means $\mathbf{G}_{\delta}, \mathbf{G}_{\delta \sigma}, \mathbf{F}_{\sigma \delta}$. However, we sometimes use \mathbf{G}_{δ} instead of $\boldsymbol{\Pi}_{2}^{0}$.

Let $\mathscr{K}(\mathbf{T})$ be the space of all compact subsets of \mathbf{T} equipped with its (metric, compact) Hausdorff topology. One natural question (at least for some people) is to find the exact Borel class of \mathscr{H} as a subset of $\mathscr{K}(\mathbf{T})$ (this is what "descriptive properties" meant). It is easy to check (Section 1) that \mathscr{H} is Σ_{3}^{0}. In this paper we show that \mathscr{H} is a true $\boldsymbol{\Sigma}_{3}^{0}$ set (that is, $\boldsymbol{\Sigma}_{3}^{0}$ but not $\boldsymbol{\Pi}_{3}^{0}$). We do this in two ways. First (Section 2) we prove that even inside the countable sets \mathscr{H} is true Σ_{3}^{0}. Then (Section 3) we get the same conclusion for perfect Helson sets. In fact, our result is slightly more general: we show that for any M_{o} set E, the perfect Helson sets contained in E form a true $\mathbf{\Sigma}_{3}^{0}$ subset of $\mathscr{K}(E)=\{F \in \mathscr{K}(\mathbf{T}) ; F \subseteq E\}$ (the definition of an M_{o} set will be given in Section 3). The proof also yields that some other natural classes of thin sets, like the $W T P, U^{\prime}$ or U_{o}^{\prime} sets, are true Σ_{3}^{0} within any M_{o} set.

1. Definitions, upper bound for the complexity

Let $\mathbf{M}(\mathbf{T})$ be the space of Borel, complex measures on \mathbf{T} with its natural norm $\left\|\|_{M}\right.$ and $\mathbf{P M}$ be the space of all distributions on \mathbf{T} with bounded

Received July 20, 1993.
1991 Mathematics Subject Classification. Primary 43A46, O4A15, 26A21.

Fourier coefficients. The norm of an element $S \in \mathbf{P M}$ is defined by $\|S\|_{P M}$ $=\sup _{n \in \mathbb{Z}}|\hat{S}(n)|$. Thus the Fourier transform identifies $\mathbf{P M}$ with $l^{\infty}(\mathbb{Z})$.

Evidently $\|\mu\|_{M} \leq\|\mu\|_{P M}$ if $\mu \in \mathbf{M}(\mathbf{T})$, and it is well known (see [4] or [5]) that $E \in \mathscr{K}(\mathbf{T})$ is a Helson set if and only if there is a constant $c \geq 0$ such that

$$
\|\mu\|_{M} \leq c\|\mu\|_{P M} \quad \text { for every } \mu \in \mathbf{M}(\mathbf{T}) \text { supported by } E .
$$

From this it is easy to see that \mathscr{H} is a Σ_{3}^{0} subset of $\mathscr{K}(\mathbf{T})$. Indeed one can write

$$
\begin{aligned}
E \in \mathscr{H} \Leftrightarrow \exists k & \in \mathbb{N} \quad \forall \mu \in \mathbf{B}_{1}(\mathbf{M}(\mathbf{T})) \\
& \left(\operatorname{supp}(\mu) \subsetneq E \text { or }\|\mu\|_{M} \leq \frac{1}{2} \text { or } \exists n|\hat{\mu}(n)|>\frac{1}{k}\right)
\end{aligned}
$$

(here $\mathbf{B}_{1}\left(\mathbf{M}(\mathbf{T})\right.$) is the unit ball of $\mathbf{M}(\mathbf{T})$ with its w^{*} topology and $\operatorname{supp}(\mu)$ is the support of the measure μ).

The condition under brackets is clearly Π_{2}^{0} in (μ, E). Since $\mathbf{B}_{1}(\mathbf{M}(\mathbf{T})) \times$ $\mathscr{K}(\mathbf{T})$ is compact, \mathscr{H} is Σ_{3}^{0}.

From now on we write ω for the set of natural numbers and 2^{ω} for the Cantor space of all infinite sequences of 0 's and 1 's with its usual product topology.

We fix a bijection $(p, q) \mapsto\langle p, q\rangle$ from ω^{2} onto ω and denote the inverse map by $n \mapsto\left((n)_{0},(n)_{1}\right)$. For $\alpha \in \mathbf{2}^{\omega}$, we define $\alpha_{p} \in \mathbf{2}^{\omega}$ by $\alpha_{p}(q)=$ $\alpha(\langle p, q\rangle)$. Finally let \mathbf{W} be the following subset of $\mathbf{2}^{\omega}$:

$$
\mathbf{W}=\left\{\alpha \in \mathbf{2}^{\omega}, \exists p \alpha_{p}(q)=1 \text { for infinitely many } q^{\prime} \mathrm{s}\right\}
$$

It is well known that \mathbf{W} is a true Σ_{3}^{0} subset of $\mathbf{2}^{\omega}$. Thus, to show that \mathscr{H} is not Π_{3}^{0} it is enough to construct a continuous function $\varphi: 2^{\omega} \rightarrow \mathscr{K}(\mathbf{T})$ such that:

$$
\begin{aligned}
& \text { if } \alpha \in \mathbf{W} \text {, then } \varphi(\alpha) \in \mathscr{H} \text {; } \\
& \text { if } \alpha \notin \mathbf{W} \text {, then } \varphi(\alpha) \notin \mathscr{H} \text {. }
\end{aligned}
$$

This is what we shall do in the next two sections.

2. Countable Helson Sets

In this section we show that \mathscr{H} is true Σ_{3}^{0} "inside the countable sets". In other words, we construct a continuous reduction φ such that $\varphi(\alpha)$ is countable for each $\alpha \in \mathbf{2}^{\omega}$. The advantage of considering only countable sets is that several "arithmetic" conditions are known for a countable set to be Helson.

In the sequel, \mathbf{T} will be identified with the interval [$0,1[$ whenever it seems more appropriate.

Definitions. (a) A subset A of \mathbf{T} is said to be independent if for every $x_{1}, \ldots, x_{k} \in A$ the equation $\sum_{i=1}^{k} m_{i} x_{i}=0$ has no non-trivial integer solution.
(b) If k is a positive integer, an arithmetic progression of length k is a set of the form

$$
\{a, a+1 / l, \ldots, a+k / l\}
$$

for some $a \in \mathbf{T}$ and some positive integer l.
The following facts are well known (see [5]):
(1) If $E \in \mathscr{K}(\mathbf{T})$ is countable and is the union of finitely many independent closed sets, then E is a Helson set.
(2) If $E \in \mathscr{K}(\mathbf{T})$ contains arbitrarily long arithmetic progressions, then E is not a Helson set.

Remark. It follows from the work of G. Pisier [18] that one can characterize completely the countable Helson sets by means of a very simple arithmetic property. The two preceding facts are of course immediate consequences of this characterization.

THEOREM 1. There is a continuous map $\varphi: \mathbf{2}^{\omega} \rightarrow \mathscr{K}(\mathbf{T})$ such that $\varphi(\alpha)$ is countable for each $\alpha \in \mathbf{2}^{\omega}$ and:
if $\alpha \in \mathbf{W}, \varphi(\alpha)$ is a finite union of closed independent sets;
if $\alpha \notin \mathbf{W}, \varphi(\alpha)$ contains arbitrarily long arithmetic progressions.
Corollary. There is no $\mathbf{\Pi}_{3}^{0}$ subset of $\mathscr{K}(\mathbf{T})$ containing the countable Helson sets and contained in \mathscr{H}. In particular \mathscr{H} is a true Σ_{3}^{0} set.

In the proof of Theorem 1 we will need the following Lemma. Recall that a class $\mathscr{C} \subseteq \mathscr{K}(\mathbf{T})$ is said to be hereditary if any (closed) subset of an element of \mathscr{E} still belongs to \mathscr{E}.

Lemma 1. Let \mathscr{F} be the class of independent compact subsets of T. Then:
(a) \mathscr{I} is \mathbf{G}_{δ}, hereditary, and dense in $\mathscr{K}(\mathbf{T})$;
(b) if $E \in \mathscr{I}$, the set $\mathscr{I}_{E}=\{F \in \mathscr{K}(\mathbf{T}) ; E \cup F \in \mathscr{I}\}$ is a dense \mathbf{G}_{δ} of $\mathscr{K}(\mathbf{T})$.

Proof. Part (a) is easy and implies that \mathscr{I}_{E} is \mathbf{G}_{δ} by continuity of the map $(E, F) \mapsto E \cup F$. To prove the density in part (b) it is clearly enough to show that given a non empty open set V there exists a point $x \in V$ such that $E \cup\{x\} \in \mathscr{I}$. So let us fix $E \in \mathscr{I}, V \subseteq \mathbf{T}$ open, and consider the subset A of

T defined by

$$
\begin{array}{r}
x \in A \Leftrightarrow \forall m \neq 0 \forall m_{1}, \ldots, m_{k} \text { not all } 0 \forall x_{1}, \ldots, x_{k} \in E \sum_{i=1}^{k} m_{i} x_{i} \neq m x \\
\left(m, m_{1}, \ldots, m_{k} \text { are integers }\right) .
\end{array}
$$

Since E is independent, A contains all the rational numbers, hence A is dense in T. Moreover A is clearly \mathbf{G}_{δ} (because E is closed). So, by Baire category theorem, we can find an irrational x in $A \cap V$. Then $E \cup\{x\}$ is independent by definition of A. This proves (b).

It follows from (b) (by Baire's theorem again) that given independent sets F_{1}, \ldots, F_{k} and a non empty open set $V \subseteq \mathbf{T}$ there is a point $x \in V$ such that $\{x\} \cup F_{i}$ is independent for $i=1, \ldots, k$.

We now turn to the proof of Theorem 1. Let us first fix some notations. Let $2^{<\omega}$ be the set of all finite sequences of 0 's and 1 's; for any integer n, $2^{\leq n}$ is the set of sequences of length $\leq n$. If $s \in 2^{<\omega},|s|$ is the length of s, $s_{[n}$ is the restriction of s to $\{0, \ldots, n-1\}$ (for $n \leq|s|$), and for $s, t \in 2^{<\omega}$, $s \precsim t$ means that t is an extension of s (that is, $|s| \leq|t|$ and $t_{[|s|}=s$). If $s \in 2^{<\omega}, s \neq \varnothing$, we denote by s^{\prime} the sequence $s_{[|s|-1}$.

Since \mathscr{J} is \mathbf{G}_{δ} and hereditary, we can choose a decreasing sequence $\left(\mathscr{U}^{n}\right)_{n \geqslant o}$ of open, hereditary subsets of $\mathscr{K}(\mathbf{T})$ such that $\mathscr{I}=\bigcap_{n \geq o} \mathscr{U}^{n}$. The open sets \mathscr{U}^{n} are obtained as follows: write $\mathscr{G}=\cap_{n \geq o} \mathscr{W}^{n}$, where the \mathscr{W}^{n} are open with $\mathscr{W}^{n+1} \subseteq \mathscr{W}^{n}$. Then let

$$
\mathscr{U}^{n}=\left\{K \in \mathscr{W}^{n} ; L \in \mathscr{W}^{n} \text { for every } L \subseteq K\right\} .
$$

\mathscr{U}^{n} is obviously hereditary and it is easy to check that it is also open. Finally, since \mathscr{G} is hereditary one has $\mathscr{G} \subseteq \mathscr{U}^{n} \subseteq \mathscr{W}^{n}$ for all n, hence $\mathscr{G}=\bigcap_{n \geq o} \mathscr{U}^{n}$.

Finally, we fix a point $x_{o} \in \mathbf{T}$ such that $\left\{x_{o}\right\} \in \mathscr{F}$ (that is, an irrational x_{o}).
Now we shall construct for each $s \in 2^{<\omega}$ a closed subset $E(s)$ of T. If $s \neq \varnothing, E(s)$ will be written as

$$
E(s)=\bigcup_{m=0}^{|s|-1} E^{m}(s)
$$

where the $E^{m}(s)$ are pairwise disjoint and satisfy the following requirements:
(1) $E^{m}(s)=I_{o}^{m}(s) \cup \cdots \cup I_{(m)_{o}}^{m}(s)$
where the $I_{j}^{m}(s)$ are pairwise disjoint non trivial closed intervals of center $x_{j}^{m}(s)$ and of length $\leq 2^{-|s|}$.
(2) $\left.\left.E^{m}(s) \subseteq\right] x_{o}, x_{o}+2^{-m}\right]$.
(3) If $t \precsim s$ then $I_{j}^{m}(s) \subseteq I_{j}^{m}(t)(m<|t|)$.
(4) If $|s|=n+1, m<n$ and $(m)_{o}<(n)_{o}$ then $x_{j}^{m}(s)=x_{j}^{m}\left(s^{\prime}\right)$.
(5) If $|s|=n+1$ and p is any (nonnegative) integer, then for every $j \leq p$,

$$
\begin{aligned}
& \left\{x_{o}\right\} \cup\left\{x_{j}^{m}(s), m \leq n,(m)_{o}=p\right\} \text { is independent } \\
& \left\{x_{o}\right\} \cup\left(\bigcup_{\substack{m \leq n \\
(m)_{o}=p}} I_{j}^{m}(s)\right) \in \mathscr{U}^{n}
\end{aligned}
$$

(6) If $|s|=n+1$ and $s(n)=0$, then

$$
\begin{aligned}
& \left\{x_{o}^{n}(s), \ldots, x_{(n)_{o}}^{n}(s)\right\} \text { is an arithmetic progression, } \\
& x_{j}^{m}(s)=x_{j}^{m}\left(s^{\prime}\right) \text { if } m<n, j \leq(m)_{o}
\end{aligned}
$$

(7) If $|s|=n+1$ and $s(n)=1$ and if we let $A=\left\{m \leq n\right.$; $\left.(m)_{o} \geq(n)_{o}\right\}$, then

$$
\left\{x_{o}\right\} \cup\left(\bigcup_{\substack{m \in A \\ j \leq(m)_{o}}} I_{j}^{m}(s)\right) \in \mathscr{U}^{n}
$$

We first let $E(\varnothing)=\mathbf{T}$ and now describe the inductive step.
Assume the sets $E^{m}(t)$ have been constructed for each $t \in 2^{\leq n}$ and let s be a sequence of length $n+1$. We distinguish two cases.

Case 1. $s(n)=0$. We first define $E^{m}(s)$ for $m<n,(m)_{o} \neq(n)_{o}$. So (if there is any) fix $p \in \omega$ with $p \neq(n)_{o}$ and such that $A_{p}=\left\{m<n ;(m)_{o}=p\right\}$ is non empty. Let also j be an integer $\leq p$.

By induction hypothesis, the set $\left\{x_{o}\right\} \cup\left\{x_{j}^{m}\left(s^{\prime}\right), m \in A_{p}\right\}$ is independent, hence belongs to \mathscr{U}^{n}. Since \mathscr{U}^{n} is open, we can choose intervals $I_{j}^{m}(s)$, $m \in A_{p}$ with center $x_{j}^{m}\left(s^{\prime}\right)$ and length $\leq 2^{-n}$, such that $\left\{x_{o}\right\} \cup$ $\left(\cup_{m \in A_{p}} I_{j}^{m}(s)\right) \in \mathscr{U}^{n}$. Then (1), ...,(5) and one half of (6) are satisfied for $m \in A_{p}$.

Now we define $E^{m}(s)$ for those $m \leq n$ with $(m)_{o}=(n)_{o}$. Let $A=\{m<n$; $\left.(m)_{o}=(n)_{o}\right\}$. If $j \leq(n)_{o}$, the set $F_{j}=\left\{x_{o}\right\} \cup\left\{x_{j}^{m}\left(s^{\prime}\right) ; m \in A\right\}$ is independent. Thus, by Lemma 1 , we can choose $\left.x_{o}^{n}(s) \in\right] x_{o}, x_{o}+2^{-n}[$ such that $\left\{x_{o}^{n}(s)\right\} \cup F_{j}$ is independent for all $j \leq(n)_{o}$. Next let p be a positive integer such that $\left.\left.\left[x_{o}^{n}(s), x_{o}^{n}(s)+(n)_{o} / p\right] \subseteq\right] x_{o}, x_{o}+2^{-n}\right]$ and let $x_{j}^{n}(s)=x_{o}^{n}(s)+$
 $j \leq(n)_{o}$. Then obviously $\left\{x_{j}^{n}(s)\right\} \cup F_{j}$ is independent for each j. So, letting $x_{j}^{m}(s)=x_{j}^{m}\left(s^{\prime}\right)$ if $m \in A$, we just take for $I_{j}^{m}(s)$ some sufficiently small interval around $x_{j}^{m}(s)$ to ensure (1), ..., (6).

Case 2. $s(n)=1$. By (5) we have no freedom in the choice of $E^{m}(s)$ if $(m)_{o}<(n)_{o}$, and we argue as in case 1 .

Now let $A=\left\{m<n ;(m)_{o} \geq(n)_{o}\right\}$ and $X=\left\{I_{j}^{m}\left(s^{\prime}\right) ; m \in A, j \leq(m)_{o}\right\}$. Using Lemma 1, we find a set $F \in \mathscr{I}$ such that $x_{o} \in F$ and $F \cap I \neq \varnothing$ for all $I \in X$. Choosing one point x_{I} in each $I \cap F$ and putting some small interval around it, we get the sets $E_{j}^{m}(s)$ for $m \in A$ and $j \leq(m)_{o}$. If the intervals are well chosen, conditions (1),.., (7) are then satisfied for $m \neq n$.

Finally we define $E^{n}(s)$. Actually (in case $s(n)=1$) $E^{n}(s)$ is not really essential in the proof: we define it only because it is more convenient to have n blocks at the n^{\prime}-th step. Nevertheless $E^{n}(s)$ is easily constructed using Lemma 1 once more.

This concludes the inductive step.
Now we first claim that for each $\alpha \in \mathbf{2}^{\omega}$ the sets $E\left(\alpha_{\text {In }}\right)$ converge in $\mathscr{K}(\mathbf{T})$ to some countable (closed) set $E(\alpha)$, and that the map $\alpha \rightarrow E(\alpha)$ is continuous. To see this, observe that by (1) and (3) the sequence $\left(E^{m}\left(\alpha_{[n}\right)\right)_{n>m}$ converges to some finite set $E^{m}(\alpha)$ (for any $m \in \omega$). By (2), $E^{m}(\alpha) \subseteq$
$\left[x_{o}, x_{o}+2^{-m}\right]$ (in fact $\left.] x_{o}, x_{o}+2^{-m}\right]$). Hence

$$
E(\alpha)=\left\{x_{o}\right\} \cup\left(\bigcup_{n=0}^{\infty} E^{m}(\alpha)\right)
$$

is a countable closed set and clearly $E\left(\alpha_{\mid n}\right) \rightarrow E(\alpha)$ as $n \rightarrow \infty$.
Next we show that the map $\alpha \rightarrow E(\alpha)$ is continuous.
Let V be an open set with $E(\alpha) \cap V \neq \varnothing$. Then $E(\alpha) \cap V \neq\left\{x_{o}\right\}$ as well, so pick $x \in E(\alpha) \cap V, x \neq x_{o}$. Then $x \in E^{m}(\alpha)$ for some m, hence there is a $j \leq(m)_{o}$ such that $x \in \bigcap_{n>m} I_{j}^{m}\left(\alpha_{\Gamma n}\right)$. If n is big enough, say $n \geq N$, then $I_{j}^{m}\left(\alpha_{[n}\right) \subseteq V$. Thus, If $\beta_{I N}=\alpha_{I N}$ one has

$$
\bigcap_{n>m} I_{j}^{m}\left(\beta_{I n}\right) \subseteq V \cap E(\beta)
$$

by (3), and so $E(\beta) \cap V \neq \varnothing$.
On the other hand, if $E(\alpha) \subseteq V$, then for large m and all $\beta \in \mathbf{2}^{\omega}$ one has

$$
E^{m}(\beta) \subseteq\left[x_{o}, x_{o}+2^{-m}\right] \subseteq V
$$

The diameter condition in (1) now implies that $E(\beta) \subseteq V$ if $\beta_{[n}=\alpha_{\text {In }}$ and n is big enough. This shows that the map $\alpha \mapsto E(\alpha)$ is continuous.

It remains to check that this map satisfies the conclusion of Theorem 1. So we fix $\alpha \in \mathbf{2}^{\omega}$ and, of course, distinguish two cases.

Case 1. $\quad \alpha_{p_{o}}$ is infinite for some $p_{o} \in \omega$. We have to show that $E(\alpha)$ is a finite union of independent closed sets. First we note that for any $p \in \omega$ and
each $j \leq p$ the set

$$
E_{p, j}=\left\{x_{o}\right\} \cup\left(\bigcup_{\substack{m \in \omega \\(m)_{o}=p}} E_{j}^{m}(\alpha)\right)
$$

is (closed and) independent. Indeed, by (3), (5) and the fact that the \mathscr{U}^{n} are hereditary, every finite subset of $E_{p, j}$ is independent.

Now if $\alpha_{p_{o}}$ is infinite, then (3) and (7) imply that $E_{p_{o}}=\left\{x_{o}\right\} \cup$ $\left(\cup_{(m)_{o} \geq p_{o}} E^{m}(\alpha)\right)$ is independent. Then we are done since $E(\alpha)=E_{p_{o}} \cup$ $\left(\bigcup_{j \leq p<p_{o}} E_{p, j}\right)$.

Case 2. α_{p} is finite for every p. Let p_{o} be a non negative integer. We show that $E(\alpha)$ contains an arithmetic progression of length $p_{o}+1$.

Choose q_{o}^{\prime} such that $\alpha(\langle p, q\rangle)=0$ for $p \leq p_{o}$ and $q>q_{o}^{\prime}$ (such a q_{o}^{\prime} exists by our hypothesis). Then pick $q_{o}\left(>q_{o}^{\prime}\right)$ so large that $\left.\left\langle p_{o}, q_{o}\right\rangle\right\rangle$ $\operatorname{Max}\left\{\langle p, q\rangle, p \leq p_{o}, q \leq q_{o}^{\prime}\right\}$ and let $n_{o}=\left\langle p_{o}, q_{o}\right\rangle$.

By the choice of $q_{o}^{\prime} \alpha\left(n_{o}\right)=0$, hence by (6) $E^{n_{o}}\left(\alpha_{\left[n_{o}+1\right.}\right)$ contains an arithmetic progression of length $p_{o}+1$.

Let j be an integer $\leq p_{o}$. We claim that $x_{j}^{n_{o}}\left(\alpha_{[n+1}\right)=x_{j}^{n_{o}}\left(\alpha_{\left[n_{o}+1\right.}\right)$ for each $n>n_{o}$. Indeed if $n>n_{o}, n=\langle p, q\rangle$ then:

Either $p>p_{o}$ and then $x_{j}^{n_{o}}\left(\alpha_{[n+1}\right)=x_{j}^{n_{o}}\left(\alpha_{[n}\right)$ by (4);
Or else $p \leq p_{o}$ in which case $q>q_{o}^{\prime}$ by the choice of q_{o}. Then $\alpha(n)=0$ by the choice of q_{o}^{\prime} and $x_{j}^{n_{o}}\left(\alpha_{[n+1}\right)=x_{j}^{n}\left(\alpha_{[n}\right)$ by (6).

In any case the claim follows by induction. Condition (1) now implies that $E^{n_{o}}(\alpha)$ is an arithmetic progression of length $p_{o}+1$ (the one already contained in $\left.E^{n_{o}}\left(\alpha_{\left[n_{o}+1\right.}\right)\right)$. This concludes case 2 and the proof of Theorem 1.

Remark. A closed set $E \subseteq \mathbf{T}$ is called a set of analyticity if the only functions operating on the algebra $\mathbf{A}(E)$ (the restrictions to E of absolutely convergent Fourier series) are the analytic functions. The still open dichotomy conjecture (see [4], [5], [6]) asserts that any closed subset of \mathbf{T} is either a Helson set or a set of analyticity (the two cases are of course exclusive). It is known (see [5]) that if $E \in \mathscr{K}(\mathbf{T})$ contains arbitrarily long arithmetic progressions, then E is a set of analyticity. Thus Theorem 1 shows that the class \mathscr{A} of sets of analyticity in \mathbf{T} cannot be Σ_{3}^{0} in $\mathscr{K}(\mathbf{T})$. In other words, if the dichotomy conjecture is not true, this is not because \mathscr{A} is "too simple". It can be shown that \mathscr{A} is a Π_{1}^{1} (coanalytic) set
but it does not seem obvious that it should be Borel. This is rather surprising, since if the dichotomy conjecture is true, then the Borel class of \mathscr{A} must be very small $\left(\boldsymbol{\Pi}_{3}^{0}\right)$.

3. Perfect Helson sets

The preceding result is not really satisfactory because it says nothing about perfect Helson sets. In this section, we show that the latter also form a true $\boldsymbol{\Sigma}_{3}^{0}$ subset of $\mathscr{K}(\mathbf{T})$.

First we must introduce some other classes of sets.
If $S \in \mathbf{P M}$ we let $R(S)=\overline{\lim }_{n \rightarrow \infty}|\hat{S}(n)|$.
For $E \in \mathscr{K}(\mathbf{T})$ define

$$
\begin{aligned}
& \eta_{o}(E)=\inf \left\{\frac{R(\mu)}{\|\mu\|_{P M}}, \mu \in \mathbf{M}_{+}(E), \mu \neq 0\right\} \\
& \eta_{2}(E)=\inf \left\{\frac{R(\mu)}{\|\mu\|_{P M}}, \mu \in \mathbf{M}(E), \mu \neq 0\right\} \\
& \eta_{1}(E)=\inf \left\{\frac{R(S)}{\|S\|_{P M}}, S \in \mathbf{N}(E), S \neq 0\right\} \\
& \eta(E)=\inf \left\{\frac{R(S)}{\|S\|_{P M}}, S \in \mathbf{P M}(E), S \neq 0\right\}
\end{aligned}
$$

(here $\mathbf{N}(E)$ denotes the w^{*} closure of $\mathbf{M}(E)$ in $P M$; the other notations are self-explanatory).

Then E is called a U_{i}^{\prime} set if $\eta_{i}(E)>0$ and a U^{\prime} set if $\eta(E)>0$. Evidently $U^{\prime} \subseteq U_{1}^{\prime} \subseteq U_{2}^{\prime} \subseteq U_{o}^{\prime}$, and it is well known that $\eta_{1}(E)>0$ for all Helson sets, that is, $\mathscr{H} \subseteq U_{1}^{\prime}$ (see [4], [5]). On the other hand, there are Helson sets which are not sets of uniqueness, hence with $\eta(E)=0$: this is a deep result, due independently to R. Kaufman and T.W. Körner ([8], [12]). We should also add that $\eta(E)=0$ for countable sets (which may fail to be Helson): this is a consequence of the fact that pseudomeasures with countable support are almost periodic (Loomis [15]).
E is said to be without true pseudomeasures (WTP) if every pseudomeasure supported by E is actually a measure. Equivalently E is $W T P$ if and only if it is a Helson set and a set of synthesis. In particular, $W T P \subseteq \mathscr{H} \cap U^{\prime}$.

Finally, E is said to be a Kronecker set if the characters of \mathbf{T} are uniformly dense in

$$
\mathbf{U}(E)=\{f \in \mathbf{C}(E) ;|f(x)|=1 \forall x \in E\}
$$

We shall use the following results about Kronecker sets.
(1) Finite unions of Kronecker sets are WTP. This is a consequence of two celebrated results of N. Varopoulos: Kronecker sets are WTP, and Helson
sets (as well as WTP sets) are closed under finite unions. Proofs of these results can be found in [4], [13] and [19].
(2) For any perfect set $P \subseteq \mathbf{T}$, the class of Kronecker subsets of P is \mathbf{G}_{δ} hereditary and dense in $\mathscr{K}(P)$ (see [7] or [10] p. 337).

It is easy to check as we did for \mathscr{H}, that $U^{\prime}, U_{o}^{\prime}, U_{2}^{\prime}$ and $W T P$ are Σ_{3}^{0} subsets of $\mathscr{K}(T)$ (on the other hand, because of the complexity of the notion of spectral synthesis, it seems reasonable to think that U_{1}^{\prime} is not even Borel, see [11]). We shall prove below that they are all true Σ_{3}^{0} sets. This will follow from a somewhat more general result whose statement unfortunately requires still more definitions.

A measure $\mu \in \mathbf{M}(\mathbf{T})$ is said to be a Rajchman measure if $\hat{\mu}(n) \rightarrow 0$ as $|n| \rightarrow \infty$. For $E \in \mathscr{K}(\mathbf{T})$, we denote by $\mathbf{P}(E)$ the set of all probability measures on E and by $\mathscr{R}(E)$ the set of probability Rajchman measures supported by E (also letting $\mathscr{R}=\mathscr{R}(\mathbf{T})$). $\mathbf{P}(E)$ will always be equipped with the w^{*} topology induced by $\mathbf{M}(E)$.

A closed set $E \subseteq \mathbf{T}$ is said to be an M_{o} set if it supports a non zero Rajchman measure. By a result of Kechris and Louveau [10, p. 274] also obtained independently by Debs and Saint-Raymond [3] E is an M_{o} set if and only if it cannot be covered by countably many U_{o}^{\prime} sets. E is said to be an M_{o}^{p} set if for every open set V such that $E \cap V \neq \varnothing$ the set $\overline{E \cap V}$ is in M_{o}. It is equivalent to say (if $E \neq \varnothing$) that E is the support of a Rajchman probability measure, or that $\mathscr{R}(E)$ is dense in $\mathbf{P}(E)$ (see [2], Lemma 8.3).

The following remark will be useful later: if E is M_{o}^{p}, then the set

$$
\mathscr{R}^{\prime}(E)=\{\mu \in \mathscr{R}(E) ; \operatorname{supp}(\mu)=E\}
$$

is dense in $\mathbf{P}(E)$. To see this take $\mu_{o} \in \mathscr{R}$ such that $\operatorname{supp}(\mu)=E$. Then if $\mu \in \mathscr{R}(E)$ and α is any positive number,

$$
\mu_{\alpha}=\frac{1}{1+\alpha}\left(\mu+\alpha \mu_{o}\right)
$$

is in $\mathscr{R}^{\prime}(E)$. Since $\mu_{\alpha} \rightarrow \mu$ as $\alpha \rightarrow 0$ we are done by density of $\mathscr{R}(E)$ in $\mathbf{P}(E)$.

We can now state our main result.
Theorem 2. Let $E \in \mathscr{K}(\mathbf{T})$ be a non empty M_{o}^{p} set and let $\mathscr{G} \subseteq \mathscr{K}(E)$ be G_{δ} hereditary and dense in $\mathscr{K}(E)$. Then there is a continuous map $\varphi: \mathbf{2}^{\omega} \rightarrow \mathscr{K}(\mathbf{T})$ such that for each $\alpha \in \mathbf{2}^{\omega}, \varphi(\alpha)$ is a perfect subset of E and:
if $\alpha \in \mathbf{W}$, then $\varphi(\alpha)$ is a finite union of (perfect) \mathscr{G} sets;
if $\alpha \notin \mathbf{W}$, then $\varphi(\alpha) \notin U_{o}^{\prime}$.
In particular, there is no Π_{3}^{0} subset \mathscr{A} of $\mathscr{K}(E)$ such that $\mathscr{A} \subseteq U_{o}^{\prime}$ and \mathscr{A} contains all the finite unions of perfect \mathscr{G} sets.

Of course this result is interesting only if $\mathscr{G} \subseteq U_{o}^{\prime}$.
If \mathscr{G} is the class of Kronecker sets (which is dense in $\mathscr{K}(E)$ because M_{o}^{p} sets are perfect) we get the following

Corollary 1. Let E be a non empty M_{o}^{p} set (e.g., $E=\mathbf{T}$). Then there is no Π_{3}^{0} set in $\mathscr{K}(E)$ containing the finite unions of perfect Kronecker subsets of E and contained in U_{o}^{\prime}.

Since every M_{o} set contains a not empty M_{o}^{p} set this implies:
Corollary 2. For any M_{o} set E, the classes of perfect $W T P, \mathscr{H}, U^{\prime}, U_{o}^{\prime}, U_{2}^{\prime}$ sets are true Σ_{3}^{0} in $\mathscr{K}(E)$, and U_{1}^{\prime} is not Π_{3}^{0}.

Remarks. (1) One cannot hope to get the same result as in Theorem 1 for the countable Helson subsets of a given M_{o} set, because there exist independent M_{o} sets (they are called Rudin sets, see [4] or [13]) and all countable independent sets are Helson.
(2) In [14], T. Linton shows that the so-called H-sets (which are not at all the same as the Helson sets) also from a true Σ_{3}^{0} set in $\mathscr{K}(\mathbf{T})$. In fact, by, results of N . Bary [1, Théorème V], it follows from his proof that the classes U_{i}^{\prime} are not Π_{3}^{0}.
(3) It can be shown (see [4]) that every non U_{1}^{\prime} set is a set of analyticity. Thus it follows from Theorem 2 that \mathscr{A} is not Σ_{3}^{0} within any M_{o} set.

To make the proof of Theorem 2 more readable it is better to state first some preliminary results.

Lemma 2. Let E be a compact metrizable space and $\mathscr{U} \subseteq \mathscr{K}(E)$ be open and dense in $\mathscr{K}(E)$. Also, let W_{1}, \ldots, W_{k} be non empty open subsets of E and $\mathscr{V}_{1}, \ldots, \mathscr{V}_{k}$ be open subsets of $\mathscr{K}(E)$ such that $\bar{W}_{i} \in \mathscr{V}_{i}$ for all $i \leq k$.

Then there exists non empty open subsets V_{1}, \ldots, V_{k} of E such that

$$
\begin{aligned}
& V_{i} \subseteq W_{i} \quad(i \leq k) \\
& \bar{V}_{i} \in \mathscr{V}_{i} \quad(i \leq k) \\
& \bigcup_{i \leq k} \bar{V}_{i} \in \mathscr{U} .
\end{aligned}
$$

Proof. For each $i \leq k$, choose non empty open subsets of E, say $W_{i 1}, \ldots, W_{i K_{i}}$ with $\bar{W}_{i} \cap W_{i j} \neq \varnothing$ for all j, such that every (compact) subset F of \bar{W}_{i} with $F \cap W_{i j} \neq \varnothing$ for all $j \leq K_{i}$ belongs to \mathscr{V}_{i}. Now each $W_{i} \cap W_{i j}$ is a non empty open set in E, so by density we can find a set F in \mathscr{U}, $F \subseteq \cup_{i \leq k} W_{i}$, such that $F \cap W_{i} \cap W_{i j} \neq \varnothing$ for all $i \leq k$ and $j \leq K_{i}$. Then, since \mathscr{U} is open, choose an open set $V \subseteq \cup_{i \leq k} W_{i}$ containing F such that $\bar{V} \in \mathscr{U}$ and let $V_{i}=V \cap W_{i}$.

Lemma 3. Let E be a non empty M_{o}^{p} set and let $\mathscr{U} \subseteq \mathscr{K}(E)$ be open and dense in $\mathscr{K}(E)$. Let $\mathscr{R}_{\mathscr{U}}$ be the subset of $\mathscr{K}(E) \times \mathbf{P}(E)$ defined by

$$
\begin{aligned}
(F, \mu) \in \mathscr{R}_{\mathscr{U}} \Leftrightarrow & \mu \in \mathscr{R} \wedge \operatorname{supp}(\mu)=F \\
& \wedge F \in \mathscr{U} \text { is the closure of an open set in } E .
\end{aligned}
$$

Then $\mathscr{R}_{\mathscr{U}}$ is dense in $\{(F, \mu) \in \mathscr{K}(E) \times \mathbf{P}(E) ; \operatorname{supp}(\mu) \subseteq F\}$.
Proof. Let us fix $\left(F_{o}, \mu_{o}\right)$ such that $\operatorname{supp}\left(\mu_{o}\right) \subseteq F_{o}$ and an elementary neighbourhood $\mathscr{U}_{o} \times N_{o}$ of $\left(F_{o}, \mu_{o}\right)$ in $\mathscr{K}(E) \times \mathbf{P}(E)$. We may assume that $\mathscr{U}_{o}=\left\{F \in \mathscr{K}(E) ; F \subseteq V_{o}, F \cap V_{i} \neq \varnothing, i=1, \ldots, k\right\}$ where $V_{o}, V_{1}, \ldots, V_{k}$ are open in E and $V_{i} \subseteq V_{o}$ for $\mathrm{i} \geq 1$.

Choose a finite set $\left\{x_{1}, \ldots, x_{p}\right\} \subseteq F_{o}$ and positive numbers $\lambda_{1}, \ldots, \lambda_{p}$ such that $\sum_{i=1}^{p} \lambda_{i}=1$ and $\mu_{1}=\sum_{i=1}^{p} \lambda_{i} \delta_{x_{i}} \in N_{o}\left(\delta_{x}\right.$ is the Dirac measure at $\left.x\right)$. By adding small masses at points of V_{i} (and normalizing), we can also assume that $p \geq k$ and $x_{i} \in V_{i}$ for $1 \leq i \leq k$.

Now choose for each $i \leq p$ an open (in E) neighbourhood W_{i} of x_{i} such that:

$$
\left\{\begin{array}{l}
W_{i} \subseteq V_{i} \text { if } i \leq k \\
\text { if one takes a point } y_{i} \text { in each } W_{i}, \text { then } \sum_{i=1}^{p} \lambda_{i} \delta_{y_{t}} \in N_{o}
\end{array}\right.
$$

Next, by density, take F in \mathscr{U} such that $F \subseteq V_{o}$ and $F \cap W_{i} \neq \varnothing$ for all i. Then $F \in \mathscr{U} \cap \mathscr{U}_{o}$. Since $\mathscr{U} \cap \mathscr{U}_{o}$ is open, we can find an open set $W \supseteq F$ such that $\bar{W} \in \mathscr{U} \cap \mathscr{U}_{o}$. Now \bar{W} is an M_{o}^{p} set, so the probability Rajchman measures with support \bar{W} are dense in $\mathbf{P}(\bar{W})$. Thus, picking $y_{i} \in F \cap W_{i}$ for $1 \leq i \leq p$ and approximating $\sum_{i=1}^{p} \lambda_{i} \delta_{y_{i}}$, we can find a $\mu \in \mathscr{R}$ such that $\mu \in N_{o}$ and $\operatorname{supp}(\mu)=\bar{W} \in \mathscr{U} \cap \mathscr{U}_{o}$. This proves the lemma.

Corollary. Let E_{1}, \ldots, E_{k} be disjoint non empty M_{o}^{p} sets supporting probability measures μ_{1}, \ldots, μ_{k}. Let \mathscr{U} be a dense open subset of $\mathscr{K}(E)$, where $E=\bigcup_{i=1}^{k} E_{i}$. Let also $\mathscr{V}_{1}, \ldots, \mathscr{V}_{k}$ be open sets in $\mathscr{N}(E)$ such that $E_{i} \in \mathscr{V}_{i}$, $i \leq k$.

Then for any $\varepsilon>0$ and any finite set $\mathscr{F} \subseteq \mathbf{C}(\mathbf{T})$ there exist probability Rajchman measures ν_{1}, \ldots, ν_{k} such that:
$\operatorname{supp}\left(\nu_{i}\right) \in \mathscr{V}_{i}$ and $\operatorname{supp}\left(\nu_{i}\right)$ is the closure of an open subset of E_{i};
$\left|\left\langle\nu_{i}, f\right\rangle-\left\langle\mu_{i}, f\right\rangle\right|<\varepsilon$ for every $f \in \mathscr{F} ;$
$\bigcup_{i=1}^{k} \operatorname{supp}\left(\nu_{i}\right) \in \mathscr{U}$.
Proof. We first choose continuous functions $\varphi_{1}, \ldots, \varphi_{k}$ with $\varphi_{i} \geq 0$, $\varphi_{i}=1$ on E_{i} and $\varphi_{i}=0$ on E_{j} if $j \neq i$. We also fix an $\alpha>0$.

Since E is an M_{o}^{p} set, we can apply Lemma 3 to approximate $\mu=\sum_{i=1}^{k} \mu_{i}$ and get a positive Rajchman measure ν such that:

```
\(\|\nu\|_{M}=k ;\)
\((1-\alpha)<\int \varphi_{i} d \nu<(1+\alpha)\) for \(i \leq k\);
\(\operatorname{supp}(\nu)\) is the closure of an open subset of \(E\) and belongs to \(\mathscr{U}\);
\(\left|\int \varphi_{i} f d \mu-\int \varphi_{i} f d \nu\right|<\varepsilon\) for \(f \in \mathscr{F}\).
```

Then if we let $\nu_{i}=\varphi_{i} \nu /\left\|\varphi_{i} \nu\right\|$, the measures ν_{i} will work provided α is small enough.

Lemma 4. Let E be a compact metrizable space and $\mathscr{G} \subseteq \mathscr{K}(E)$ be \mathbf{G}_{δ}. Let F, F_{o}, F_{1}, \ldots be closed subsets of E such that:
$F_{n} \rightarrow F$ as $n \rightarrow \infty$;
for every $N \in \omega, F \cup\left(\cup_{n \leq N} F_{n}\right) \in \mathscr{G}$.
Then $F \cup\left(\cup_{n=o}^{\infty} F_{n}\right)$ is the union of two elements of \mathscr{G}.
This is a particular case of (the proof of) Lemma 4.1 in [9].
Definition. Let N be an integer ≥ 1. A K-sequence of order N is a finite sequence

$$
\left(\left(\bar{\mu}^{o}, \bar{n}^{o}\right), \ldots,\left(\bar{\mu}^{p}, \bar{n}^{p}\right)\right)
$$

where $\bar{\mu}^{i} \in \mathscr{R}^{N}, \bar{n}^{i} \in \omega^{N}$, such that:
(i) $\left|\hat{\mu}_{j}^{i+1}(r)-\hat{\mu}_{j}^{i}(r)\right|<2^{-N i-j-1}$ if $|r| \leq n_{j-1}^{i+1} \quad$ or $|r| \geq n_{j}^{i+1} \quad$ (we let $n_{-1}^{i+1}=n_{N-1}^{i}$);
(ii) $0<n_{o}^{o}=n_{1}^{o}=\cdots=n_{N-1}^{o}<n_{o}^{1}<\cdots$.

The letter " K " stands for Kechris because such sequences are used in [9] (see also [3] and [10]). As usual, if S and T are K-sequences $T \preceq S$ means that S is an extension of T. Finally, an infinite K-sequence (of order N) is a $\Sigma \in\left(\mathscr{R}^{N} \times \omega^{N}\right)^{\omega}$ such that $\Sigma_{\mid p}$ is a K-sequence for every $p \in \omega$.

The following observations are essential in the proof of Lemma 2.1 in [9].
Lemma 5. (a) If

$$
S=\left(\left(\bar{\mu}^{o}, \bar{n}^{o}\right), \ldots,\left(\bar{\mu}^{p}, \bar{n}^{p}\right)\right) \quad(p \geq 1)
$$

is a K-sequence of order N and if we let

$$
\mu^{o}(S)=\frac{1}{N}\left(\sum_{j=o}^{N-1} \mu_{j}^{o}\right), \mu^{p}(S)=\frac{1}{N}\left(\sum_{J=o}^{N-1} \mu_{j}^{p}\right)
$$

then

$$
\left\|\mu^{o}(S)-\mu^{p}(S)\right\|_{P M} \leq \frac{3-2^{-N p}}{N}
$$

(b) If $\Sigma=\left(\left(\bar{\mu}^{i}, \bar{n}^{i}\right)\right)_{i \in \omega}$ is an infinite K-sequence of order N, then for all $j \leq N-1$ the sequence $\left(\mu_{j}^{i}\right)_{i \in \omega}$ converges ω^{*} to a probability measure μ_{j}. If we let

$$
\mu=\frac{1}{N}\left(\sum_{j=o}^{N-1} \mu_{j}\right),
$$

then $R(\mu) \leq 3 / N$.
Proof. (b) is an immediate consequence of (a). Indeed, it follows from the definition of a K-sequence that $\left(\mu_{j}^{i}\right)_{i \geq o}$ converges in $\mathbf{P}(\mathbf{T})$, and part (a) gives the desired inequality because $\mu^{o}=\mu^{o}\left(\Sigma_{[1}\right)$ is a Rajchman measure.

To prove (a), let us fix $r \in \mathbb{Z}$. We can write

$$
\begin{aligned}
\mu^{p}-\mu^{o} & =\frac{1}{N} \sum_{j=o}^{N-1}\left(\mu_{j}^{p}-\mu_{j}^{o}\right) \\
& =\frac{1}{N} \sum_{j=o}^{N-1} \sum_{i=o}^{p-1}\left(\mu_{j}^{i+1}-\mu_{j}^{i}\right)
\end{aligned}
$$

Hence

$$
\left|\hat{\mu}^{p}(r)-\hat{\mu}^{o}(r)\right| \leq \frac{1}{N} \sum_{j=o}^{N-1} \sum_{i=o}^{p-1}\left|\hat{\mu}_{j}^{i+1}(r)-\hat{\mu}_{j}^{i}(r)\right|
$$

Now properties (i) and (ii) imply that $\left|\hat{\mu}_{j}^{i+1}(r)-\hat{\mu}_{j}^{i}(r)\right|$ is $<2^{-N i-j-1}$ except for at most one pair (i, j), and in any case it is bounded by 2 . Therefore we obtain

$$
\left|\hat{\mu}^{p}(r)-\hat{\mu}^{o}(r)\right| \leq \frac{1}{N}\left(2+\sum_{j=o}^{N-1} \sum_{i=o}^{p-1} 2^{-N i-j-1}\right)
$$

and we are done because the sum in the right-hand side is exactly $\sum_{k=1}^{N p} 2^{-k}$.

We can now turn to the proof of Theorem 2. This proof looks very much like that of Theorem 1, but is a little more technical. The arithmetic progressions will be replaced by sets constructed by Kechris in [9], which are
finite unions of sets in \mathscr{G} whose η_{o} is arbitrarily small. To be precise, beginning with a Rajchaman probability measure μ and an integer $N \geq 1$, Kechris constructs an infinite K-sequence of order $N, \Sigma=\left(\left(\bar{\mu}^{i}, \bar{n}^{i}\right)\right)_{i \in \omega}$ with $\bar{\mu}^{o}=(\mu, \ldots, \mu)$, such that for all $i \in \omega, j \leq N-1$,

$$
\begin{aligned}
& \operatorname{supp}\left(\mu_{j}^{i+1}\right) \subseteq \operatorname{supp}\left(\mu_{j}^{i}\right) \\
& \operatorname{supp}\left(\mu_{j}^{i}\right) \in \mathscr{U}^{i} \quad\left(\text { where } \mathscr{G}=\cap \mathscr{U}^{i}, \mathscr{U}^{i} \text { open hereditary }\right) .
\end{aligned}
$$

By Lemma 5 the result is then a probability measure

$$
\nu=\frac{1}{N} \sum_{j=o}^{N-1} \mu_{j}
$$

where $\operatorname{supp}\left(\mu_{j}\right) \in \mathscr{G}$ and $R(\nu) \leq 3 / N$. Thus $F=\operatorname{supp}(\nu)$ is a finite union of \mathscr{G} sets and $\eta_{o}(F) \leq 3 / N$.

This construction plays a key role in the proof below.
Let us fix our notations. E is the given M_{o}^{p} set and we let $\mathscr{G}=\bigcap_{n \geq o} \mathscr{U}^{n}$ where the \mathscr{U}^{n} are open, hereditary subsets of $\mathscr{K}(E)$ and $\mathscr{U}^{n+1} \subseteq \mathscr{U}^{n}$ for all n (see the remarks before the proof of Theorem 1).

The class \mathscr{P} of perfect subsets of E is G_{δ} in $\mathscr{K}(E)$, hence it is a Polish space. Thus we can choose some complete metric δ on \mathscr{P}. Of course, δ is not the Hausdorff metric (but it defines the same topology on \mathscr{P}).

Finally, if $s \in 2^{<\omega},|s| \geq 1$, recall that s^{\prime} is the sequence $s_{[|s|-1}$.
Now for each $s \in 2^{<\omega}$ and $m<|x|$ we construct
a closed set $E^{m}(s)=E_{o}^{m}(s) \cup \cdots \cup E_{(m)_{o}}^{m}(s)$ where the $E_{j}^{m}(s)$ are closed (but not necessarily disjoint),
an integer $p^{m}(s)$,
a K-sequence $S^{m}(s)$ of order $(m)_{o}$ and of length $1+p^{m}(s)$,
a non empty open set $V(s) \subseteq E$,
satisfying the following conditions:
(1) $\operatorname{diam}(V(s)) \leq 2^{-|s|}$.
(2) $V(s) \cap\left(\cup_{m<|s|} E^{m}(s)\right)=\varnothing$;

The $E^{m}(s)$ are pairwise disjoint.
(3) Each $E_{j}^{m}(s)$ is the closure of a non empty open subset of E.
(4) $\bar{V}(s) \subseteq V\left(s^{\prime}\right)$,

$$
E^{n}(s) \subseteq V\left(s^{\prime}\right) \text { if }|s|=n+1
$$

(5) If we denote by $\left(\left(\mu_{o}^{m}(s), \ldots, \mu_{(m)_{o}}^{m}(s)\right), \bar{n}^{m}(s)\right)$ the last coordinate of $S^{m}(s)$ (i.e., that of index $\left.p^{m}(s)\right)$ then $E_{j}^{m^{o}}(s)=\operatorname{supp}\left(\mu_{j}^{m}(s)\right)$.
(6) If $t \preceq s, m<|t|$ and $j \leq(m)_{o}$ then

$$
\begin{aligned}
& E_{j}^{m}(s) \subseteq E_{j}^{m}(t) \\
& \delta\left(E_{j}^{m}(s), E_{j}^{m}(t)\right)<2^{-|t|}
\end{aligned}
$$

(7) If $|s|=n+1$ and $(m)_{o}<(n)_{o}$, then

$$
\begin{aligned}
& p^{m}(s)=1+p^{m}\left(s^{\prime}\right), \\
& S^{m}\left(s^{\prime}\right) \leqq S^{m}(s)
\end{aligned}
$$

(8) If $|s|=n+1$ and p is any integer, then

$$
\left(\bigcup_{\substack{m \leq n \\(m)_{o}=p}} E_{j}^{m}(s)\right) \cup \bar{V}(s) \in \mathscr{U}^{n} \quad \text { for any } j \leq p
$$

(9) If $|s|=n+1$ and $s(n)=0$, then

$$
\begin{aligned}
& p^{n}(s)=0 \\
& p^{m}(s)=1+p^{m}\left(s^{\prime}\right) \text { and } S^{m}\left(s^{\prime}\right) \leqq S^{m}(s) \text { for } m<n .
\end{aligned}
$$

(10) If $|s|=n+1$ and $s(n)=1$, then

$$
\begin{aligned}
& p^{m}(s)=0 \text { if }(m)_{o} \geq(n)_{o}, \\
& \left(\bigcup_{p \geq(n)_{o}} \bigcup_{(m)_{o}=p} E_{j}^{m}(s)\right) \cup \bar{V}(s) \in \mathscr{U}^{n} .
\end{aligned}
$$

We first let $E(\varnothing)=E$. Assume $E^{m}(t), S^{m}(t)$ have been constructed for $|t| \leq n, m<n, j \leq(m)_{o}$, and let $s \in 2^{<\omega}$ be a sequence of length $n+1$. As usual we distinguish two cases.

Case 1. $\quad s(n)=0$. Let us first modify the $E^{m}\left(s^{\prime}\right)$ for $m<n$ and $(m)_{o} \neq$ $(n)_{o}$. So fix $p \neq(n)_{o}$ such that $(m)_{o}=p$ for at least one $m \leq n$ and let $A_{p}=\left\{m<n ;(m)_{o}=p\right\}$.

We will define $p^{m}(s), S^{m}(s), E_{j}^{m}(s)$ for $m \in A_{p}, j \leq p$, and a non empty open set V_{p} of diameter less than 2^{-n-1} in such a way that

$$
\begin{aligned}
& E_{j}^{m}(s) \subseteq E_{j}^{m}\left(s^{\prime}\right), \\
& \delta\left(E_{j}^{m}(s), E_{j}^{m}(t)\right)<2^{-|t|} \quad \text { for each } t \preceq s^{\prime} \\
& p^{m}(s)=1+p^{m}\left(s^{\prime}\right) \\
& S^{m}\left(s^{\prime}\right) \preceq S^{m}(s) \\
& \bar{V}_{p} \subseteq V\left(s^{\prime}\right) \\
& \bar{V}_{p} \cup\left(\bigcup_{m \in A_{p}} E_{j}^{m}(s)\right) \in \mathscr{U}^{n} \text { for every } j \leq p
\end{aligned}
$$

We begin with $j=0$. Take a non empty open set V such that $\bar{V} \subseteq V\left(s^{\prime}\right)$ and with diameter less than 2^{-n-1}. By (2) and (3), the sets $E_{o}^{m}\left(s^{\prime}\right), m \in A_{p}$ are pairwise disjoint M_{o}^{p} sets, disjoint from \bar{V}, and \mathscr{U}^{n} is dense in $\mathscr{K}\left(\left(\cup_{m \in A_{p}} E_{o}^{m}\left(s^{\prime}\right)\right) \cup \bar{V}\right)$. Moreover, by (5), $E_{o}^{m}\left(s^{\prime}\right)=\operatorname{supp}\left(\mu_{o}^{m}\left(s^{\prime}\right)\right)$ (the notation is that of (5)).

Let $k^{m}\left(s^{\prime}\right)$ be the last integer occurring in $S^{m}\left(s^{\prime}\right)$ (that is, $k^{m}\left(s^{\prime}\right)=$ $\left.n_{(m)_{o}}^{m}\left(s^{\prime}\right)\right)$. Then, since all the sets involved are perfect, it follows at once from the corollary to Lemma 3 that one can choose probability Rajchman measures $\mu_{o}^{m}(s), m \in A_{p}$ and a non empty open set $V_{p, o}$ such that $E_{o}^{m}(s)=$ $\operatorname{supp}\left(\mu_{o}^{m}(s)\right)$ is the closure of an open set and
$\hat{\mu}_{o}^{m}(s)$ approximates "closely" $\hat{\mu}_{o}^{m}\left(s^{\prime}\right)$ on $\left\{r \in \mathbb{Z} ;|r| \leq k^{m}\left(s^{\prime}\right)\right\}$,
$V_{p, o}$ and $E_{o}^{m}(s)$ satisfy the conditions above (with $V_{p, o}$ in place of V_{p}).
Since $\mu_{o}^{m}(s)$ and $\mu_{o}^{m}\left(s^{\prime}\right)$ are Rajchman measures, we can choose for each $m \in A_{p}$ an integer $l^{m}(s)$ such that $\left|\hat{\mu}_{o}^{m}(s)(r)\right|$ and $\left|\hat{\mu}_{o}^{m}\left(s^{\prime}\right)(r)\right|$ are "small" for $|r| \geq l^{m}(s)$. Then $\left|\hat{\mu}_{o}^{m}(s)(r)-\hat{\mu}_{o}^{m}\left(s^{\prime}\right)(r)\right|$ will be small as well for $|r| \geq l^{m}(s)$. At this point, we have constructed for $m \in A_{p}$ the first "coordinate" of $S^{m}(s)\left(p^{m}(s)\right)$, namely ($\left.\mu_{o}^{m}(s), l^{m}(s)\right)$, the sets $E_{o}^{m}(s)$ and an auxiliary open set $V_{p, o}$. By repeated applications of Lemma 3 we can now get the K-sequence $S^{m}(s)$, the sets $E_{j}^{m}(s), j \leq p$ and open sets $V_{p, o} \supseteq V_{p, 1} \supseteq \cdots \supseteq V_{p, p}$ such that for all $j \leq p$,

$$
\bar{V}_{p, j} \cup\left(\bigcup_{m \in A_{p}} E_{j}^{m}(s)\right) \in \mathscr{U}^{n}
$$

If we let $V_{p}=V_{p, p}$ then since \mathscr{U}^{n} is hereditary, we do have

$$
\bar{V}_{p} \cup\left(\bigcup_{m \in A_{p}} E_{j}^{m}(s)\right) \in \mathscr{U}^{n} \quad \text { for all } j
$$

Treating in the same way all the $p \neq(n)_{o}$ such that $A_{p} \neq \varnothing$, we get the K-sequence $S^{m}(s)$ and the sets $E_{j}^{m}(s), j \leq(m)_{o}$ for each $m<n$ with $(m)_{o} \neq(n)_{o}$. Then (3), (5), (6), (7), (8), (9) and one half of (2) are satisfied if $(m)_{o} \neq(n)_{o}$. We also obtain a non empty open set U disjoint from the $E_{j}^{m}(s)$ such that (8) is true with U for all $p \neq(n)_{o}$.

Now we define $S^{m}(s), E^{m}(s)$ for $m \leq n$ and $(m)_{o}=(n)_{o}$. We first choose disjoint non empty sets $V, W \subseteq U$. Then $S^{m}(s)$ and $E^{m}(s)$ are obtained exactly as before, using $(n)_{o}+1$ times the corollary to Lemma 3. $E^{n}(s)$ is constructed inside \bar{W} and we define

$$
S^{n}(s)=((\mu, \ldots, \mu),(1, \ldots, 1))
$$

where μ is any probability Rajchman measure such that $\operatorname{supp}(\mu)=E^{n}(s)$; if $m<n, E^{m}(s)$ is constructed inside $E^{m}\left(s^{\prime}\right)$. As before, we also construct open
sets $V=V_{o} \supseteq V_{1} \supseteq \cdots \supseteq V_{(m)_{o}}$ and we let $V(s)=V_{(m)_{o}}$. Then conditions (1), ..., (9) are satisfied.

Case 2. $s(n)=1$. We first construct, as in case $1, E_{j}^{m}(s), S^{m}(s)$ for $(m)_{o}<(n)_{o}$ (and $j \leq(m)_{o}$). Then (7) is true. We also get an auxiliary open set U disjoint from all the $E^{m}(s),(m)_{o}<(n)_{o}$, with $\bar{U} \subseteq V\left(s^{\prime}\right)$ and $\operatorname{diam}(U)$ $<2^{-|s|}$, such that (8) is satisfied for $p<(n)_{o}$. Finally, we choose disjoint non empty open sets $V, W \subseteq V$ and put $E_{j}^{n}\left(s^{\prime}\right)=\bar{W}$ for $j \leq(n)_{o}$.

Now let $A=\left\{m \leq n ;(m)_{o} \geq(n)_{o}\right\}$. Using Lemma 2 and properties (3), (6) for s^{\prime} we can find closed sets $E_{j}^{m}(s), m \in A, j \leq(m)_{o}$ and a non empty open set $V(s) \subseteq V$ such that:
each $E_{j}^{m}(s)$ is the closure of an open subset of E;
$E_{j}^{m}(s) \subseteq E_{j}^{m}\left(s^{\prime}\right) ;$
$\delta\left(E_{j}^{m}(s), E_{j}^{m}(t)\right)<2^{-|t|}$ for every $t \preceq s^{\prime} ;$
$\bar{V}(s) \cup\left(\cup_{m \in A} E_{j}^{m}(s)\right) \in \mathscr{U}^{n}$.

$$
j \leq(m)_{o}
$$

Then properties (1), (2), (3), (4), (6), (10) are satisfied, as well as (8) for $p \geq(n)_{o}$ because \mathscr{U}^{n} is hereditary.

Finally we define $S^{m}(s)=\left(\left(\mu_{o}^{m}(s), \ldots, \mu_{(m)_{o}^{m}}^{m}(s)\right),(1, \ldots, 1)\right)$ where the $\mu_{j}^{m}(s)$ are Rajchman probability measures such that $\operatorname{supp}\left(\mu_{j}^{m}(s)\right)=E_{j}^{m}(s)$.

This concludes the inductive step.
Now if $\alpha \in \mathbf{2}^{\omega}$, it follows from (6) that for every $m \in \omega$ and $j \leq(m)_{o}$, the sequence $\left(E_{j}^{m}\left(\alpha_{[n}\right)\right)_{n>m}$ converges in $\mathscr{K}(\mathbf{T})$ to a perfect set $E_{j}^{m}(\alpha)$. For $m \in \omega$ we let

$$
E^{m}(\alpha)=U_{j \leq(m)_{o}} E_{j}^{m}(\alpha)
$$

By (1) and (4) there is a unique point $x(\alpha)$ in $\cup_{n \in \omega} \bar{V}\left(\alpha_{[n}\right)$ and (4) implies that $E(\alpha)=\left(\cup_{m \in \omega} E^{m}(\alpha)\right) \cup\{x(\alpha)\}$ is a closed subset of E. Since the $E^{m}(\alpha)$ are perfect, $E(\alpha)$ is perfect as well. Furthermore, (1), (4) and (6) together imply that the map $\alpha \mapsto E(\alpha)$ is continuous.

It remains to show that the map just defined is the reduction we are looking for. So we fix $\alpha \in \mathbf{2}^{\omega}$ and, for the last time, distinguish two cases.

Case 1. α_{p} is finite for every $p \in \omega$. Let p_{o} be a non negative integer. We show that $\eta_{o}\left(E_{\alpha}\right) \leq 3 /\left(p_{o}+1\right)$. Since p_{o} is arbitrary, this will imply that $E(\alpha) \notin U_{o}^{\prime}$. As in the proof of Theorem 1, there is a $q_{o}>0$ such that if we let $n_{o}=\left\langle p_{o}, q_{o}\right\rangle$ then

$$
\forall n>n_{o} \quad(n)_{o} \leq p_{o} \Rightarrow \alpha(n)=0
$$

Using (7) if $(n)_{o}>p_{o}$ and (9) if $\alpha(n)=0$ we deduce that

$$
S^{n_{o}}\left(\alpha_{\Gamma n+1}\right) \succ S^{n_{o}}\left(\alpha_{[n}\right) \text { for every } n>n_{o}
$$

Thus it follows from Lemma 5 (together with (5)) that $\eta_{o}\left(E^{n_{o}}(\alpha)\right) \leq 3 /$ ($p_{o}+1$). This concludes case 1 since $E(\alpha) \supseteq E^{n_{o}}(\alpha)$.

Case 2. $\alpha_{p_{o}}$ is infinite for some $p_{o} \in \omega$. Let $\mathscr{G}_{f} \subseteq \mathscr{K}(\mathbf{T})$ be the class of all finite unions of elements of \mathscr{G}. First we note that for any integer p and each $j \leq p$

$$
E_{j, p}=\{x(\alpha)\} \cup\left(\bigcup_{\substack{m \in \omega \\(m)_{o}=p}} E_{j}^{m}(\alpha)\right) \in \mathscr{G}_{f}
$$

Indeed, for any $N \in \omega$,

$$
\{x(\alpha)\} \cup\left(\bigcup_{\substack{m \leq N ; \\(m)_{o}=p}} E_{j}^{m}(\alpha)\right)
$$

is in \mathscr{G} by (6), (8), the definition of $x(\alpha)$ and the fact that each \mathscr{U}^{n} is hereditary. Thus we can apply Lemma 4.

It follows that for each $p \in \omega$,

$$
E_{p}=\{x(\alpha)\} \cup\left(\bigcup_{\substack{m \in \omega \\(m)_{o}=p}} E^{m}(\alpha)\right) \in \mathscr{G}_{f}
$$

Now if $\alpha_{p_{o}}$ is infinite, we deduce from (10) (using Lemma 4 again) that the set

$$
\{x(\alpha)\} \cup\left(\bigcup_{(m)_{o} \geq p_{o}} E^{m}(\alpha)\right)
$$

is in \mathscr{G}_{f}. So

$$
E(\alpha)=\{x(\alpha)\} \cup\left(\bigcup_{(m)_{o} \geq p_{o}} E^{m}(\alpha)\right) \cup\left(\bigcup_{p<p_{o}} E_{p}\right)
$$

is indeed a finite union of \mathscr{G} sets.
This concludes the proof of Theorem 2.

References

1. N. Bary, Sur l'unicité du développement trigonométrique, Fund. Math 9 (1927), 62-115.
2. G. Debs, Polar σ-ideals of compact sets, Trans. Amer. Math. Soc., to appear.
3. \qquad , J. Saint-Raymond, Ensembles d'unicité et d'unicité au sens large, Ann. Inst. Fourier Grenoble 37 (1987), 217-239.
4. C.C. Graham and O.C. McGehee, Essays in commutative harmonic analysis, Grandlehren Math. Wissen, vol. 238, Springer-Verlag, New York, 1979.
5. J.P. Kahane, Séries de Fourier absolument convergentes, Springer-Verlag, New York, 1970.
6. Y. Katznelson, An introduction to harmonic analysis, Dover, New York, 1976.
7. R. Kaufman, A functional method for linear sets, Israel J. Math. 5 (1967), 185-187.
8. \qquad , M sets and distributions, Asterisque 5 (1973), 225-230.
9. A. Kechris, Hereditary properties of the class of closed sets of uniqueness for trigonometric series, Israel J. Math. 73 (1991), 189-198.
10. A. Kechris and A. Louveau, Descriptive set theory and the structure of sets of uniqueness, London Math. Soc. Lecture Note Ser., no. 128, Cambridge University Press, Cambridge, 1987.
11. A. Kechris, A. Louveau and V. Tardivel, The class of synthesizable pseudomeasures, Illinois J. Math. 35 (1991), 107-146.
12. T. W. KÖrner, A pseudofunction on a Helson set, Asterisque 5 (1973).
13. L.-A. Lindahl and F. Poulsen, Thin sets in harmonic analysis, Marcel Decker, New York, 1971.
14. T. Linton, The H-sets in the unit circle are properly $\mathbf{G}_{\delta \sigma}$, Real Analysis Exchange, to appear.
15. L. Loomis, The spectral characterization of a class of almost periodic functions, Ann. Math. 72 (1960), 362-368.
16. R. Lyons, A new type of sets of uniqueness, Duke Math. J. 57 (1988), 431-458.
17. Y.N. Moschovakis, Descriptive set theory, North Holland, Amsterdam, 1980.
18. G. Pisier, Arithmetic characterizations of Sidon sets, Bull. American Math. Soc. (new series) 8 (1983), 87-89.
19. N. Th. Varopoulos, Sur la réunion de deux ensembles de Helson, Comptes-rendus Acad. Sci. Paris 271 (1970), 251-253.
```
Universite Paris VI
    PARIS
```

