A RESTRICTION THEOREM FOR FLAT MANIFOLDS OF CODIMENSION TWO

LAURA DE CARLI AND ALEX IOSEVICH

Introduction

Let *M* denote a submanifold of \mathbf{R}^{n+2} of codimension 2. Let \mathcal{R} denote a restriction operator

(1.1)
$$\mathscr{R}f(\eta) = \int e^{-i\langle x, \eta \rangle} f(x) \, dx, \quad \eta \in M, \quad f \in \mathscr{S}(\mathbf{R}^{n+2}).$$

We wish to find an optimal range of exponents p such that

(1.2)
$$\|\mathscr{R}f\|_{L^{2}(M, d\sigma)} \leq C_{p} \|f\|_{L^{p}(\mathbf{R}^{n+2})},$$

where $d\sigma$ is a compactly supported measure on *M*.

Let $\mathscr{F}[d\sigma]$ denote the Fourier transform of $d\sigma$. By a theorem of Greenleaf (see [G]), the inequality (1.2) holds for

$$p=\frac{2(2+\gamma)}{4+\gamma}$$

if

(1.3)
$$|\mathscr{F}[d\sigma](R\zeta)| \leq C(1+R)^{-\gamma}, \quad \zeta \in S^{n+1}.$$

The purpose of this paper is to use Greenleaf's result to establish a restriction theorem for a class of degenerate submanifolds of \mathbb{R}^{n+2} of codimension 2. We shall assume that our manifold is given as a joint graph of two homogeneous functions, where the first graphing function is homogeneous of degree 1 and the second graphing function is homogeneous of degree m. Under the appropriate curvature assumption we will show that (1.3) holds with $\gamma = n/m$.

Received June 22, 1993.

¹⁹⁹¹ Mathematics Subject Classification. Primary 42B; Secondary 26B.

^{© 1995} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

An application of Greenleaf's result yields a restriction theorem with

$$p=\frac{2(2m+n)}{4m+n}.$$

We shall need the following definitions.

Nonvanishing Gaussian curvature. Let Σ be a submanifold of \mathbb{R}^{N+1} of codimension 1 equipped with a smooth compactly supported measure $d\mu$. Let $J: \Sigma \to S^N$ be the usual Gauss map taking each point on Σ to the outward unit normal at that point. We say that Σ has everywhere nonvanishing Gaussian curvature if the differential of the Gauss map dJ is always nonsingular.

Strong curvature condition. Let S be a submanifold of \mathbb{R}^{N+2} of codimension 2 equipped with a smooth compactly supported measure $d\mu$. Suppose that S is a joint graph of smooth functions g_1 and g_2 , where $g_j: \mathbb{R}^N \to \mathbb{R}$. Let $\mathcal{N}_{x_0}(S)$ denote the two dimensional space of normals to S at a point x_0 . We say that S satisfies the strong curvature condition (SCC) if for all $x_0 \in S$ in some neighborhood of support $(d\mu)$,

det
$$D^2(\nu_1 g_1(x) + \nu_2 g_2(x)) \neq 0, \quad \forall \nu \in \mathcal{N}_{x_0},$$

where D^2 denotes the Hessian matrix.

One can check that the above definitions are independent of the parametrization. Our main result is the following:

MAIN THEOREM. Let $M = \{(x, x_{n+1}, x_{n+2}) \in \mathbb{R}^{n+2}: x_{n+1} = \phi_1(x), x_{n+2} = \phi_2(x)\}, n \ge 2$, where $\phi_i \in \mathscr{C}^{\infty}(\mathbb{R}^n \setminus \{0\}), \phi_1$ is homogeneous of degree 1, and ϕ_2 is homogeneous of degree $m \ge 2$. Let $\Sigma_j = \{x: \phi_j(x) = 1\}$. Assume also that ϕ_2 only vanishes at the origin and that Σ_2 has everywhere nonvanishing Gaussian curvature. Let

$$F(\xi,\lambda_1,\lambda_2) = \int_{\mathbf{R}^n} e^{i(\langle \xi, x \rangle + \lambda_1 \phi_1(x) + \lambda_2 \phi_2(x))} \chi(x) \, dx,$$

where $\chi \in \mathscr{C}_0^{\infty}(\mathbf{R}^n)$.

(a) Suppose that the restriction of ϕ_1 to the set where $\phi_2 = 1$, $\phi_1|_{\Sigma_2}$, is constant. Then

(1.4)
$$\left|F(\xi,\lambda_1,\lambda_2)\right| \le C(|\xi|+|\lambda|_1+|\lambda|_2)^{-n/m}$$

when $m \geq 2n$.

(b) Let $M|_{\{x_{n+2}=1\}}$ denote the restriction of M to the hyperplane $\{x_{n+2}=1\}$. If $M|_{\{x_{n+2}=1\}}$ (viewed as a submanifold of codimension 2 of $\{x_{n+2}=1\}$) satisfies the strong curvature condition, then (1.4) holds for $m \ge 2$.

The conclusions of part (a) do not in general hold if m < 2n. Let $\phi_1(x) = |x|, \phi_2(x) = |x|^m$. Let $\xi = (0, 0, ..., 0)$. Then, in polar coordinates,

$$F(0, \lambda_1, \lambda_2) = C \int_0^\infty e^{i(\lambda_1 r + \lambda_2 r^m)} r^{n-1} \chi(r) dr.$$

It is not hard to see that the best isotropic decay for this integral cannot exceed

$$O\left(\left(\sqrt{\lambda_1^2+\lambda_2^2}\right)^{-1/2}\right).$$

Hence the restriction $m \ge 2n$ is necessary.

Remarks. (1) It is known that isotropic decay estimates for the Fourier transform of the surface-carried measure cannot be expected to yield an optimal restriction theorem (see e.g., [C]). We shall apply a homogeneity argument due to Knapp to the class of manifolds considered in the theorem above.

Let \mathscr{R} denote the restriction operator defined above. Let $\hat{f}_{\delta}(x, x_{n+1}, x_{n+2}) = h(\delta^{-1}x, \delta^{-1}x_{n+1}, \delta^{-m}x_{n+2})$, where h is the characteristic function of a rectangle in \mathbb{R}^{n+2} with sides of lengths $(1, 1, \dots, 1, C, C)$, C large.

Then

$$\|f_{\delta}\|_{p} \approx \delta^{(1-1/p)(n+m+1)}$$
 and $\|\mathscr{R}f_{\delta}\|_{p} \approx \delta^{n/2}$.

Hence (1.2) can only hold if

$$p \leq \frac{2(n+m+1)}{n+2(m+1)}.$$

If we apply Greenleaf's result (1.3) to the Main Theorem, we see that (1.2) holds for

$$p\leq \frac{2(2m+n)}{4m+n}.$$

The gap between this exponent and the exponent given by Knapp's homogeneity argument suggests that the restriction theorem (1.2) may hold for a wider range of exponents. The result obtained using the Main Theorem is not sharp. In order to obtain a sharp result one would probably have to

obtain precise non-isotropic estimates for the Fourier transform of the surface carried measure using the techniques of M. Christ (see [C]).

(2) The curvature conditions of the Main Theorem are not entirely satisfying because there is no natural transition between parts (a) and (b).

We hope to address these difficulties in a subsequent paper.

Proof of the main result

Notation. (1) Given a, b > 0 we say that $a \approx b$ (a comparable to b) if there exist $c_1, c_2 > 0$ such that $c_1a \leq b \leq c_2a$. We say that $a \gg b$ (a much larger than b) if the inequality $a \leq Cb$ is not satisfied for any C > 0. The notion $a \ll b$ is defined similarly.

(2) We denote by C a generic constant which may change from line to line.

Proof of part (a) *of the Main Theorem.* Let $\Psi(x) = \langle \xi, x \rangle + \lambda_1 \phi_1(x) + \lambda_2 \phi_2(x)$. Then

$$\nabla \Psi(x) = \xi + \lambda_1 \nabla \phi_1(x) + \lambda_2 \nabla \phi_2(x).$$

Since $\phi_1|_{\Sigma_2}$ is constant by assumption, then $\phi_1 \neq 0$ away form the origin. Hence, $\nabla \phi_1(x) \neq 0$ away from the origin by the Euler homogeneity relation, and since every component of $\nabla \phi_1(x)$ is homogeneous of degree zero, we have $|\nabla \phi_1(x)| \geq C$ for all $x \in \text{support}(\phi_1)$.

Suppose that $|\xi| \ll |\lambda_2| \ll |\lambda_1|$ or $|\lambda_2| \ll |\xi| \ll |\lambda_1|$. Then $|\nabla \Psi(x)| \ge C|\lambda_1|$ and so an integration by parts argument (see Theorem 1 in the appendix) shows that

$$\left|F(\xi,\lambda_1,\lambda_2)\right| \leq C(1+|\lambda_1|)^{-N} \quad \forall N>0.$$

Similarly, if $|\lambda_1| \ll |\lambda_2| \ll |\xi|$, or $|\lambda_1| \approx |\lambda_2| \ll |\xi|$, then

$$\left|F(\xi,\lambda_1,\lambda_2)\right| \le C(1+|\xi|)^{-N} \quad \forall N>0.$$

If we rewrite F using polar coordinates with respect to Σ_2 and assume that χ is radial with respect to Σ_2 , we get

$$F(\xi,\lambda_1,\lambda_2)=\int_0^{+\infty}r^{n-1}\chi(r)\int_{\Sigma_2}e^{i(r\langle\xi,\omega\rangle+r\lambda_1+r^m\lambda_2)}\,d\sigma(\omega)\,dr,$$

where $d\sigma$ is the Lebesgue measure carried by Σ_2 . Let $I(\xi)$ denote the

Fourier transform of the surface-carried measure on Σ_2 ,

$$I(\xi) = \int_{\Sigma_2} e^{i\langle \xi, \omega \rangle} d\sigma(\omega).$$

Since the Gaussian curvature on Σ_2 never vanishes, we can use the method of stationary phase (see theorem (3) in the appendix) to write $I(\xi) = b(\xi)e^{iq(\xi)}$, where ξ belongs to a cone Γ containing the normal directions to Σ_2 on the support of $d\sigma$, and where $b(\xi)$ is a symbol of order -(n-1)/2, $q(\xi)$ is homogeneous of degree 1, and $q(\xi) \approx |\xi|$. Away from Γ , $I(\xi)$ decays rapidly in $|\xi|$.

Suppose that we are in one of the cases where $|\xi|$ dominates:

(1) $|\lambda_2| \ll |\lambda_1| \approx |\xi|$, (2) $|\lambda_1| \ll |\lambda_2| \approx |\xi|$, (3) $|\lambda_1| \ll |\lambda_2| \ll |\xi|$, (4) $|\lambda_2| \ll |\lambda_1| \ll |\xi|$, (5) $|\lambda_1| \approx |\lambda_2| \approx |\xi|$.

Using our observation about $I(\xi)$, we write

$$F(\xi,\lambda_1,\lambda_2)=\int_0^{+\infty}r^{n-1}e^{i(rq(\xi)+r\lambda_1+r^m\lambda_2)}b(r\xi)\chi(r)\,dr.$$

Then

$$\left|F(\xi,\lambda_1,\lambda_2)\right| \leq C \int_0^2 r^{n-1} |b(r\xi)| dr.$$

Let $s = r|\xi|$, and define $\tilde{\xi} = \xi |\xi|^{-1}$. The integral above is bounded by

$$C|\xi|^{-n} \int_0^{2|\xi|} s^{n-1} |b(s\xi)| ds$$

= $C|\xi|^{-n} \int_0^N s^{n-1} |b(s\xi)| ds + C|\xi|^{-n} \int_N^{2|\xi|} s^{n-1} |b(s\xi)| ds$,

where N is large. The first integral is $O(|\xi|^{-n})$ and the second integral is bounded by

$$C|\xi|^{-n}\int_{N}^{2|\xi|}s^{(n-1)/2}\,ds\leq C(1+|\xi|)^{-(n-1)/2}.$$

Note that $(n-1)/2 \ge n/m$ when $m \ge 2n/(n-1)$.

580

We are left to consider the cases where λ_2 dominates:

(1) $|\xi| \approx |\lambda_1| \ll |\lambda_2|$, (2) $|\xi| \ll |\lambda_1| \approx |\lambda_2|$, (3) $|\xi| \ll |\lambda_1| \ll |\lambda_2|$, (4) $|\lambda_1| \ll |\xi| \ll |\lambda_2|$.

As before, let

$$F(\xi,\lambda_1,\lambda_2)=\int_0^{+\infty}r^{n-1}e^{i(rq(\xi)+r\lambda_1+r^m\lambda_2)}b(r\xi)\chi(r)\,dr.$$

Let $s\lambda_2^{-1/m} = r$. Then

$$F(\xi, \lambda_1, \lambda_2) = \lambda_2^{-n/m} \int_0^{+\infty} s^{n-1} e^{i(q(s\lambda_2^{-1/m}\xi) + s\lambda_2^{-1/m}\lambda_1 + s^m)} b(s\lambda_2^{-1/m}\xi) \chi(s\lambda_2^{-1/m}) ds.$$

Let

$$G(\xi,\lambda_1,\lambda_2) = \int_0^{+\infty} s^{n-1} e^{i(\lambda_2^{-1/m} sq(\xi) + s\lambda_2^{-1/m}\lambda_1 + s^m)} b(s\lambda_2^{-1/m}\xi) \chi(s\lambda_2^{-1/m}) ds.$$

It suffices to show that $|G(\xi, \lambda_1, \lambda_2)|$ is uniformly bounded. When

$$\left|\frac{\lambda_1 + |\xi|}{\lambda_2^{1/m}}\right|$$

is sufficiently small, then |G| is bounded by $C|\int_0^{+\infty} e^{it^m} t^{n-1} dt|$. An integration by parts argument shows that this integral converges. In particular the above integral equals

$$e^{2\pi i/m}\,\frac{1}{m}\Gamma\Big(\frac{n}{m}\Big).$$

Thus we may assume that

$$\left|\frac{\lambda_1+|\xi|}{\lambda_2^{1/m}}\right|\geq C.$$

Let

$$\Phi(s) = s \frac{\lambda_1 + q(\xi)}{\lambda_2^{1/m}} + s^m.$$

Then

$$\Phi'(s) = 0$$
 if $s = C\left(\frac{\lambda_1 + q(\xi)}{\lambda_2^{1/m}}\right)^{1/(m-1)}$,

and

$$\Phi''(s) = m(m-1)s^{m-2}.$$

If we apply the van der Corput Lemma (see Theorem 2 in the appendix) in the case k = 2, and recall that in particular |b| is uniformly bounded, we see that |G| is bounded by

$$C \left| \frac{\lambda_1 + |\xi|}{\lambda_2^{1/m}} \right|^{-(m-2)/2(m-1)+(n-1)/(m-1)}$$

The power of $|(\lambda_1 + |\xi|)/\lambda_2^{1/m}|$ in the expression above is non-positive if $m \ge 2n$, and so $G(\xi, \lambda_1, \lambda_2)$ is uniformly bounded. This completes the proof of part (a) of the Main Theorem.

Proof of part (B) *of the Main Theorem.* As before, we rewrite F using polar coordinateds associated to Σ_2 . We get

$$F(\xi,\lambda_1,\lambda_2) = \int_0^{+\infty} \int_{\Sigma_2} e^{i(r\langle \omega,\xi\rangle+r\lambda_1\phi_1(\omega)+\lambda_2r^m)} r^{n-1}\xi(r) \, d\omega \, dr,$$

where, as before, ξ is a smooth cutoff function which is radial with respect to the polar coordinates associated to Σ_2 . Let

$$I(\xi,\lambda_1)=\int_{\Sigma_2}e^{i(\langle \,\omega,\,\xi\,\rangle+\lambda_1\phi_1(\omega))}\,d\,\omega.$$

Using the implicit function theorem we can parametrize Σ_2 near a point s_0 by a smooth function $\psi: \mathbb{R}^{n-1} \to \mathbb{R}$. Without loss of generality, we can assume that $\nabla \phi_1(s_0) = 0$ and that $\nabla \phi_2(s_0) = (0, 0, \dots, 0, 1)$. Thus, we can locally write $\Sigma_2 = \{(\omega', \omega_n): \omega_n = \psi(\omega')\}$. The restriction of M to the hyperplane $\{x_{n+2} = 1\}$ can thus be locally parametrized by the functions $\psi(\omega')$ and $\phi_1(\omega', \psi(\omega'))$. If we let $\xi = (\xi', \xi_n)$, we can write $I(\xi, \lambda_1)$ as a finite sum of terms of the form

(1.5)
$$\int_{\mathbf{R}^{n-1}} e^{i(\langle \omega', \xi' \rangle + \xi_n \psi(\omega') + \lambda_1 \phi_1(\omega', \psi(\omega')))} \chi_1(\omega') d\omega',$$

582

where χ_1 is a smooth cutoff function supported in a neighborhood of s_0 . It was observed by M. Christ (see [C]) that the strong curvature condition (see the introduction) implies the following result.

LEMMA. Let Ω be a submanifold of \mathbf{R}^{N+2} of codimension 2 locally parametrized by smooth functions g_1 and g_2 , where $g_j: \mathbf{R}^N \to \mathbf{R}$. Let $d\sigma$ denote a smooth measure on Ω . Suppose that Ω satisfies the strong curvature condition. Then

$$|\mathscr{F}[d\sigma](R\eta)| \leq C(1+R)^{-N/2}.$$

The proof of the lemma shows that the integral in (1.5) can be written as $b(\xi, \lambda_1)e^{iq(\xi, \lambda_1)}$, where (ξ, λ_1) belongs to a cone containing the normal directions to $M|_{\{x_{n+2}=1\}}$ on the support of $d\sigma$, $b(\xi, \lambda_1)$ is a symbol of order -(n-1)/2, $q(\xi, \lambda_1)$ is homogeneous of degree 1, and $|q(\xi, \lambda_1)| \approx (|\xi| + |\lambda_1|)$.

We must analyze the integral

(1.6)
$$\int_0^{+\infty} r^{n-1} e^{i(rq(\xi,\lambda_1)+r^m\lambda_2)} b(r\xi,r\lambda_1) \chi(r) dr.$$

We may assume that $|q(\xi, \lambda_1)| \le C|\lambda_2|$, since if $|q(\xi, \lambda_1)| \ge c|\lambda_2|$ for a sufficiently large c > 0, then the integral in (1.6) decays rapidly in $|\xi| + |\lambda_1|$. (See Theorem 1 in the appendix.)

Let $s = r\lambda_2^{1/m}$. Then, the integral in (1.6) can be written as

$$\lambda_2^{-n/m}\int_0^{+\infty}s^{n-q}e^{i(s\lambda_2^{-1/m}q(\xi,\lambda_1)+s^m)}b(s\lambda_2^{-1/m}\xi,s\lambda_2^{-1/m}\lambda_1)\chi(s\lambda_2^{-1/m})\,dr.$$

Let

$$G(\xi,\lambda_1,\lambda_2) = \int_0^{+\infty} s^{n-1} e^{i(s\lambda_2^{-1/m}q(\xi,\lambda_1)+s^m)} b(s\lambda_2^{-1/m}\xi,s\lambda_2^{-1/m}\lambda_1) \chi(s\lambda_2^{-1/m}) dr.$$

As before, it suffices to show that $|G(\xi, \lambda_1, \lambda_2)|$ is uniformly bounded. When $|(|\lambda_1| + |\xi|)/\lambda_2^{1/m}|$ is sufficiently small, then |G| is bounded by $C|\int_0^{+\infty} e^{it^m} t^{n-1} dt|$. Hence we can assume

$$\left|\frac{|\lambda_1|+|\xi|}{\lambda_2^{1/m}}\right| \ge C.$$

We can write

$$G(\xi, \lambda_1, \lambda_2) = \int_0^N + \int_N^{C|\lambda_2|^{1/m}}, N \text{ large.}$$

The first integral is uniformly bounded. In order to handle the second integral let

$$\Phi(s) = s\lambda_2^{-1/m}q(\xi,\lambda_1) + s^m.$$

Then

$$\Phi'(s) = 0$$
 if $s = c_m (\lambda_2^{-1/m} q(\xi, \lambda_1))^{1/(m-1)}$,

and

$$\Phi''(s) = m(m-1)s^{m-2}.$$

If the critical point is smaller then N the integral has rapid decay, so we may assume that $|\lambda_2^{-1/m}q(\xi, \lambda_1)|$ is large. If we recall that $|q(\xi, \lambda_1)| \approx |\xi| + |\lambda_1|$, then by the van der Corput lemma (see Theorem 2 in the appendix) we get

(1.7)
$$\int_{N}^{C|\lambda_{2}|^{1/m}} \leq \left| \frac{|\lambda_{1}| + |\xi|}{\lambda_{2}^{1/m}} \right|^{-(m-2)/2(m-1) + (n-1)/(m-1) - (n-1)/2(m-1) - (n-1)/2}$$

Note that the third and the fourth terms in the power of $|(|\lambda_1| + |\xi|)/\lambda_2^{1/m}|$ arise from the fact that b is a symbol of order -(n-1)/2, and $|(|\lambda_1| + |\xi|)/\lambda_2^{1/m}|$ is large.

The power of $|(|\lambda_1| + |\xi|)/\lambda_2^{1/m}|$ in (1.7) is nonnegative provided that $m \ge 2$. Hence, $|G(\xi, \lambda_1, \lambda_2)|$ is bounded and the proof is complete.

Appendix

In this section we recall a few classical results that we used to prove the Main Theorem. The first two theorems, which deal with oscillatory integrals, can be found for example in [St].

THEOREM 1. Suppose $\phi \in \mathscr{C}_0^{\infty}(\mathbb{R}^n)$ and suppose that ψ is a real-valued and smooth function which has no critical point on the support of ϕ . Then

$$\left|\int_{\mathbf{R}^n} e^{i\lambda\psi(x)}\phi(x)\,dx\right| = O(\lambda^{-N})$$

as $\lambda \to \infty$, for every $N \ge 0$.

THEOREM 2. Suppose that ψ is real-valued and smooth and that ϕ is complex-valued and smooth in [a, b]. If $|\psi^{(k)}(x)| \ge 1$, then

$$\left|\int_{a}^{b} e^{i\lambda\psi(x)}\phi(x)\,dx\right| \leq C_{k}\lambda^{-1/k}\left[\left|\phi(b)\right| + \int_{a}^{b} \left|\phi'(t)\right|\,dt\right]$$

584

holds when (1) $k \ge 2$.

or

(2) k = 1, if in addition it is assumed that $\psi'(x)$ is monotonic.

THEOREM 3. Let S be a smooth hypersurface in \mathbb{R}^n with nonvanishing Gaussian curvature, and let $d\sigma$ be a \mathscr{C}^{∞} measure on S. Then

$$\left|\widehat{d\mu}(\xi)\right| \le C(1+|\xi|)^{-(n-1)/2}$$

Moreover suppose that $\Gamma \subset \mathbf{R}^n \setminus \{0\}$ is the cone consisting of all ξ which are normal to some point $x \in S$ belonging to some compact neighborhood \mathcal{N} of support $(d\mu)$. Then,

$$\frac{\partial^{\alpha}}{\partial \xi} \widehat{d\mu}(\xi) = O((1+|\xi|)^{-N}), \quad \forall N, \text{ if } \xi \notin \Gamma,$$
$$\widehat{d\mu}(\xi) = \sum a_j(\xi) e^{i\langle x_j, \xi \rangle}, \quad \text{if } \xi \in \Gamma,$$

where the finite sum is taken over all points $x_i \in \mathcal{N}$ having ξ as a normal and

$$\left|\frac{\partial^{(\alpha)}}{\partial\xi}\,\widehat{d\mu}(\,\xi\,)\right|\leq C_{\alpha}(1+|\xi|)^{-(n-1)/2-\,|\alpha|}.$$

Proof. See [So], pp. 50–51.

REFERENCES

- [C] M. CHRIST, Restriction of the Fourier transform to submanifolds of low codimension, thesis, University of Chicago, 1982.
- [DC] L. DE CARLI, Unique continuation for higher order elliptic operators, thesis, UCLA, 1993.
- [G] A. GREENLEAF, Principal curvatures in harmonic analysis, Indiana Univ. Math. J. 30 (1981), 519–537.
- [H] L. HORMANDER, *The analysis of linear partial differential operators I*, Springer-Verlag, New York, 1990.
- [I1] A. IOSEVICH, Maximal operators associated to families of flat curves and hypersurfaces, thesis, UCLA, 1993.
- [I2] _____, Maximal Operators associated to families of flat curves in the plane, Duke Math. J. 76 (1994), 533–544.
- [L] W. LITTMAN, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766–770.
- [So] C.D. SOGGE, Fourier integrals in classical analysis, Cambridge University Press, Cambridge, 1993.
- [St] E.M. STEIN, Harmonic analysis, Princeton University Press, Princeton, 1993.

UNIVERSITA DI NAPOLI: FEDERICO II NAPLES, ITALY

WRIGHT STATE UNIVERSITY DAYTON, OHIO