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A RESTRICTION THEOREM FOR FLAT MANIFOLDS
OF CODIMENSION TWO

LAURAD CARLI AND ALEX IOSEVICH

Introduction

Let M denote a submanifold of Rn+2 of codimension 2. Let ’ denote a
restriction operator

.f(rl) fe-i<x">f(x) dx, rl M, f ’(R’+2).

We wish to find an optimal range of exponents p such that

(1.2)

where dr is a compactly supported measure on M.
Let [dcr] denote the Fourier transform of dr. By a theorem of

Greenleaf (see [G]), the inequality (1.2) holds for

2(2 + y)
4+T

(1.3) 12r[ do" ](Rff )1 -< C(1 + R)-r, ff Sn+ 1.

The purpose of this paper is to use Greenleaf’s result to establish a restric-
tion theorem for a class of degenerate submanifolds of R" /2 of codimension
2. We shall assume that our manifold is given as a joint graph of two
homogeneous functions, where the first graphing function is homogeneous of
degree 1 and the second graphing function is homogeneous of degree m.
Under the appropriate curvature assumption we will show that (1.3) holds
with 3’ n/m.
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An application of Greenleaf’s result yields a restriction theorem with

2(2m + n)
4mWn

We shall need the following definitions.

Nonvanishing Gaussian curvature. Let X be a submanifold of RN+I of
codimension 1 equipped with a smooth compactly supported measure
Let J: X SN be the usual Gauss map taking each point on X to the
outward unit normal at that point. We say that X has everywhere nonvanish-
ing Gaussian curvature if the differential of the Gauss map dJ is always
nonsingular.

Strong curvature condition. Let S be a submanifold of RN+2 of codimen-
sion 2 equipped with a smooth compactly supported measure dz. Suppose
that S is a joint graph of smooth functions gl and g2, where gj" R

N ---, R. Let
x0(S) denote the two dimensional space of normals to S at a point x0. We
say that S satisfies the strong curvature condition (SCC) if for all x0 S in
some neighborhood of support(dz),

det D2(lga(x) + 292(x)) : 0, V Fx0

where D2 denotes the Hessian matrix.
One can check that the above definitions

parametrization. Our main result is the following:
are independent of the

MAIN THEOREM. Let M ((x, Xn+ 1, Xn+ 2) E Rn+2. Xn+ l(X),
Xn+ 2 qz(X)}, n > 2, where di (Rn\ {0}), 41 is homogeneous of
degree 1, and t)2 is homogeneous of degree m > 2. Let Ej {x" 4j(x) 1}.
Assume also that l)2 only vanishes at the origin and that 2 has everywhere
nonvanishing Gaussian curvature. Let

F( sc, *1, *2) fRnei((’x)+hdpl(X)+h2qb2(x))x(x) dX,

where X 0(Rn)
(a) Suppose that the restriction of cka to the set where 2

constant. Then

(1.4) IF(, *1, ’2)1 c(ll + Ixll + IAI2) -n/m

when m > 2n.
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(b) Let Mltx,+2=a) denote the restriction ofM to the hyperplane (Xn+ 2 1}./f
Mlt,+=l (viewed as a submanifold of codimension 2 of {Xn+ 2 1}) satisfies
the strong curvature condition, then (1.4) holds for m > 2.

The conclusions of part (a) do not in general hold if m < 2n. Let
bl(x) [xl, bz(x)= Ixl m. Let sc (0, 0,..., 0). Then, in polar coordinates,

F(0, ha,/’2) Cfo ei(har+h2rm)rn-lx(r) dr.

It is not hard to see that the best isotropic decay for this integral cannot
exceed

Hence the restriction m > 2n is necessary.

Remarks. (1) It is known that isotropic decay estimates for the Fourier
transform of the surface-carried measure cannot be expected to yield an
optimal restriction theorem (see e.g., [C]). We shall apply a homogeneity
argument due to Knapp to the class of manifolds considered in the theorem
above.

Let ’ denote the restriction operator defined above. Let (X, Xn+ ,
Xn + 2 ) h( 6-1x, 6-1Xn + 1, -mXn + 2 ), where h is the characteristic function of
a rectangle in Rn+2 with sides of lengths (1, 1,..., 1, C, C), C large.
Then

Ill, lip (1-1/p)(n+m+l) and Ikfllp 8 n/2.

Hence (1.2) can only hold if

p< 2(n +m + 1)
n+2(m+l)"

If we apply Greenleaf’s result (1.3) to the Main Theorem, we see that (1.2)
holds for

2(2m + n)
4mWn

The gap between this exponent and the exponent given by Knapp’s
homogeneity argument suggests that the restriction theorem (1.2) may hold
for a wider range of exponents. The result obtained using the Main Theorem
is not sharp. In order to obtain a sharp result one would probably have to
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obtain precise non-isotropic estimates for the Fourier transform of the
surface carried measure using the techniques of M. Christ (see [C]).

(2) The curvature conditions of the Main Theorem are not entirely satisfy-
ing because there is no natural transition between parts (a) and (b).
We hope to address these difficulties in a subsequent paper.

Proof of the main result

Notation. (1) Given a, b > 0 we say that a = b (a comparable to b) if
there exist cm, c2 > 0 such that cma < b < c2a. We say that a >> b (a much
larger than b) if the inequality a < Cb is not satisfied for any C > 0. The
notion a << b is defined similarly.

(2) We denote by C a generic constant which may change from line to
line.

Proof of part (a) of the Main Theorem.
/22(x). Then

Let q(x)= (:,x) + Aa4m(x)+

Va/’(X) + A1 7#1(X) + A2 72(X)"

Since 1 ]X2 is constant by assumption, then b :/: 0 away form the origin.
Hence, X7bl(X) 4:0 away from the origin by the Euler homogeneity relation,
and since every component of X7bm(x) is homogeneous of degree zero, we
have IX7b(x)[ > C for all x support(b).
Suppose that I:l << [A2[ << IAll or [Azl << [:l << JAil. Then [V(x)l >_

CI,I and so an integration by parts argument (see Theorem 1 in the
appendix) shows that

IF(C,/1,  2)1 c(1 + IAml) -N VN > 0.

Similarly, if Aal << A2l << Il, or All A2l << Il, then

IF(:, Aa,  2)1 c(1 + I1) -N VN > 0.

If we rewrite F using polar coordinates with r6spect to 2 and assume that
X is radial with respect to X2, we get

F( , Am, A2) fo rn-mx(r) fr, ei(r(’w)+rl+rm2) do’((1)) dr,

where do- is the Lebesgue measure carried by X2 Let I( : ) denote the
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Fourier transform of the surface-carried measure on 2,

Since the Gaussian curvature on 2 never vanishes, we can use the method
of stationary phase (see theorem (3) in the appendix) to write I(sc)
b( )eiq(), where sc belongs to a cone F containing the normal directions to

2 on the support of dr, and where b() is a symbol of order -(n 1)/2,
q(s) is homogeneous of degree 1, and q(:)= I:1, Away from F,
I(:) decays rapidly in I:1.

Suppose that we are in one of the cases where 1:[ dominates:

(5) I,11--I,21--I:1.

Using our observation about I(), we write

F( sc, /1, a2) Fn-lei(rq()+r*x+rmh2)b(F),(F) dr.

Then

F( , , ) <_ Cfr b(rsc ) dr.

Let s rl :1, and define :1 :1-1. The integral above is bounded by

Cll-n f021 1 -1S Ib(s )ldS

Cl[-n fsn_llb(s )lds + Cll-n f,l,]sn-11b(s )lds

where N is large. The first integral is O(]l-) and the second integral is
bounded by

C[[ f;lls(n-1)/2 ds C(1 + 1:1)-(n-1)/2

Note that (n 1)/2 > n/m when rn > 2n/(n 1).
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We are left to consider the cases where h2 dominates:

(2) I:1 << I&l IA21,

As before, let

F( , ’1, ’2) fo rn-lei(rq()+raa+rnaz)b(r)x(r) dr.

Let sh- 1/m r. Then

Let

G( ,/1,/2) fo sn-lei(hl/msq()+sAl/mAl+Sm)b(stl/m )x(Sll/m) ds.

It suffices to show that G(sc,/1, A2)l is uniformly bounded. When

is sufficiently small, then ]GI is bounded by Clf-eitmtn dtl. An integra-
tion by parts argument shows that this integral converges. In particular the
above integral equals

e2rri/m 1F(n)
Thus we may assume that

Let

al +q() Smo
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Then

’(s) =0 ifs=C(Aa+q())
1/(m-1)

and

dp" (s) m(m 1)sm-2.

If we apply the van der Corput Lemma (see Theorem 2 in the appendix) in
the case k 2, and recall that in particular bl is uniformly bounded, we see
that GI is bounded by

C] /’1 -+- I1
x/,n

-(m-2)/2(m-1)+(n-1)/(m-1)

The power of I(A + Il)/A/ml in the expression above is non-positive if
rn > 2n, and so G( sc, a1, a2) is uniformly bounded. This completes the proof
of part (a) of the Main Theorem.

Proof of part (B) of the Main Theorem.
polar coordinateds associated to E2. We get

As before, we rewrite F using

fo+Wf i(r(’)+rAlbl()+A2rm)rn-l(r) dco dr,F( :, A1, A2) e

where, as before, sc is a smooth cutoff function which is radial with respect to
the polar coordinates associated to E2. Let

I( , al) f ei((w’ }+A14)1(w)) dco.

Using the implicit function theorem we can parametrize E2 near a point so
by a smooth function q: Rn- R. Without loss of generality, we can
assume that 7bl(s0) 0 and that 7b2(s0) (0,0,...,0, 1). Thus, we can
locally write 2--{(CO’, (-On): COn "--I]/(CO’)}. The restriction of M to the
hyperplane {Xn+2--1} can thus be locally parametrized by the functions
q(CO’) and 4’1(CO’, q(CO’)). If we let sc (sc’, Sen), we can write I(sc, A1) as a
finite sum of terms of the form

(1.5) f ei((9’’e’)+nq*(’)+aldpl(’ ’(’’)))X (CO’) dCO’
n-1R
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where X1 is a smooth cutoff function supported in a neighborhood of s0. It
was observed by M. Christ (see [C]) that the strong curvature condition (see
the introduction) implies the following result.

LEMMA. Let f be a submanifold of RN+2 of codimension 2 locally
parametrized by smooth functions g and gz, where gj: R

N R. Let dr denote
a smooth measure on f. Suppose that f satisfies the strong curvature condition.
Then

do" ](Rrt) <_ C(1 + R)-N/2.
The proof of the lemma shows that the integral in (1.5) can be written as

b(, ,l)eiq(’l), where (sc, 1) belongs to a cone containing the normal
directions to Ml/xn+2=ll on the support of dr, b(sc, ’1) is a symbol of order
-(n 1)/2, q(sc,)tl) is homogeneous of degree 1, and [q(sc, 11)[ --(11 / IAll).
We must analyze the integral

(1.6) fo
+

rn-lei(rq(’l)+rm’2)b(r, ril) X(r) dr.

We may assume that ]q(:, ,1)1 < CIA2[, since if Iq(z, A1)I clA2l for a
sufficiently large c > 0, then the integral in (1.6) decays rapidly in [scl + I/ I.
(See Theorem 1 in the appendix.)

Let s rA2/ m. Then, the integral in (1.6) can be written as

in/m fo sn-qei(sZl/mq("l)+Sm)b(s/l/m’ sil/mll)X(Sll/m) dr.

Let

G( ,/1,/2) fo sn-lei(s’i/mq(’Al)+Sm)b(sll/m’ st’l/m}kl)X(S}kl/m) dr.

As before, it suffices to show that ]G(:, A1,/2)1 is uniformly bounded. When
I(1,11 / I])!’/ml is sufficiently small, then G] is bounded by
C] f-eitmtn-1 dt[. Hence we can assume

We can write

G(: A1,A2), foN-I- fNYIAz I1/m N large.
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The first integral is uniformly bounded. In order to handle the second
integral let

(S) SA1/mq( , A1 ) + Sm.
Then

’(s) 0 if s Cm(,l/mq( , }[1))1/(m-l),
and

"(s) m(m 1)sm-2.

If the critical point is smaller then N the integral has rapid decay, so we may
assume that I)ta/mq(,Aa)l is large. Ifwe recall that Iq(:,,Xl)l--I:1 /

then by the van der Corput lemma (see Theorem 2 in the appendix)we get

(1.7) fgyIA211/m
-(m- 2)/2(m )+ (n- )/(m- )-(n- )/2(m- )-(n- )/2

Note that the third and the fourth terms in the power of I(IAI +
arise from the fact that b is a symbol of order -(n 1)/2, and I(I;hl /

II)!,X2/ m is large.
The power of I(IAll / IsCl)/A/ml in (1.7) is nonnegative provided that

m > 2. Hence, IG(sc, A1, A2)[ is bounded and the proof is complete.

Appendix

In this section we recall a few classical results that we used to prove the
Main Theorem. The first two theorems, which deal with oscillatory integrals,
can be found for example in [St].

THEOREM 1. Suppose ch (R") and suppose that qt is a real-valued and
smooth function which has no critical point on the support of d. Then

ei’’(x)p( X ) dx

as h - , for every N >_ O.

THEOREM 2. Suppose that is real-valued and smooth and that qb is
complex-valued and smooth in a, b ]. If b k)(x) 1, then

lab iAd/(x)(e (x) dx < Ck i-l/k I (b)l / (t)ldt
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holds when
(1) k > 2.

OF

(2) k 1, if in addition it is assumed that g’(x) is monotonic.

THEOREM 3. Let S be a smooth hypersurface in R with nonvanishing
Gaussian curvature, and let d tr be a measure on S. Then

Moreover suppose that F c Rn\ {0} is the cone consisting of all which are
normal to some point x S belonging to some compact neighborhood K of
support(d/x). Then,

d.( +

d/x(:) Ea.( )ei(x,’), if F,

where the finite sum is taken over all points xj Ahaving as a normal and

O()
d/x() < C,(1 + Il) -(n-1)/2-

Proof See [So], pp. 50-51.
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