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NORM STRUCTURE FUNCTIONS AND EXTREMENESS
CRITERIA FOR OPERATORS ON L,(p < 1) OR ONTO C(K)

CHARN-HUEN KAN

Introduction

For a Banach or L, space E and a Banach space F, let = Z(E, F) be the
unit ball of the Banach space ¥ =_#(E,F) of bounded linear operators T
from E to F. We study the extreme points of # when either () E is an L,
spece (p < 1 or (ii) F is a C-space, i.e., a Banach space C(K) of continuous
functions on a compact Hausdorff space K. Extremeness criteria are ob-
tained partly in terms of norm structure functions 8,(T) and 8(T) for the
cases (i) and (ii) respectively. The first function §,(7) generalizes the func-
tion |T|*1 for the case where E and F are L, spaces, and the second, 8(T),
generalizes |T|1 for the case where both spaces are C-spaces. Some of their
basic properties are studied that are used in tackling the extremeness
problems. The scalar field may be the reals or the complexes. The proofs are
given for the complex case; the real case follows by minor adjustments.

In the case (i) we obtain, among other things, complete description of
extreme contractions in #(L,(p), L,(v)) when 0 <p<1<qg<® in a
rather unified manner (Theorem 2.8). Some of our extremeness results for
the case E = L,(u) have points of contact with some results of [Sh2, §2] but
the approach and formulation are different. When the scalars are the reals,
special cases for E=L(u) and F=L,(v) have been considered in
[I, Theorem 2] and, implicitly, in [Ki, Theorem 2]. Concerning case (ii) the
problem of characterizing an extreme contraction 7' between C-spaces E =
C(H) and F = C(K) have been studied by several researchers. The most
desirable criterion for T to be extreme seems to be that 7 be a composition
operator modulated by a unimodular function, which is just criterion (%)’ in
Theorem 3.7. This is equivalent, as is not difficult to show, to T* mapping all
extreme points of the unit ball of F’ to those of that of E’; such a T is said to
be nice. (The extreme points mentioned are unimodular scalar multiples of
evaluation maps.) The criterion, clearly sufficient, is not always necessary
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[Sh3], [Sh4] but it indeed is for close to ten independent known cases, each
case with its own conditions imposed on the underlying topological spaces or
the operator or both—the scene is a mosaic. See [Shl], [Gel, the lists in
them, and [B]; see also [AL)}, [BLP] and [CL] for those listed results. See
[Gr3] for a related development. Most cases are for both real and complex
scalars, but a few are known only for real scalars, the corresponding complex
cases being undecidable yet. Our contribution to this intriguing problem,
Theorem 3.7 (with B = F), treats a new case in which T has a linear
modulus, a consequent condition in fact of T being a modulated composition
operator. This case generalizes three established cases, namely (1) when K is
Stonean or equivalently F is order complete, in [SH1, Theorems 2 and 4] (see
also [Ge, Theorem 1.3(ii)] with a different proof), (2) when K is quasi-Stonean
and H is metric, in [Ge, Theorem 1.4] and (3) when T is compact, in [BLP,
pp: 751-752]. This can be seen from Theorem 3.10 and Remark 3.8(b).

We also consider the related problem of characterizing the extreme points
of the set of positive contractions. The criteria turn out to be analogous to
those for general contractions in the corresponding cases, with similar proofs
that require only very little extra effort.

One may note that virtually all our extremeness results are still valid if the
sets of contractions being considered are restricted to those of compact ones;
this is evident from the proofs. By the same token we may restrict to weakly
compact contractions. (If E or F is reflexive these are just ordinary contrac-
tions [C, Proposition 5.2].)

For related results on extreme contractions between L, spaces see [H],
[K], [Gr1], [Gr2], [Gr4], [Kan3], [Kan4].

1. Norm structure function 5,(7)

Let F be an s-normed space (0 <s < 1). That is, F is a vector space
equipped with a translation-invariant metric ||| f — g [I(f, g € F), for which
the associated functional ||| - |l, called an s-norm, satisfies ||| cglll =
[cl*lllgll (g €F, ¢ a scalar) [K6, §15.10]. On F define the formal norm
-1l =1l -I1"* which is a true norm if s = 1. Similarly let E be an
r-normed space (0 < r < 1) with an r-norm || - ||". The space ¥ =Z(E, F) of
all linear operators T: E — F with ||T|| = sup{l|Tfll: f€ E, |Ifll =1} < o is
s-normed by T — ||T|I°. . is complete or in particular a Banach space if
accordingly so is F. Let # = #(E,F) = (T €%: ||IT|| < 1}, the unit ball of .#
consisting of all contractions from E to F, and ext %, the set of extreme points
of 7. This will be the standing setting in the paper. All true or formal norms
will be denoted by || - || when the reference is clear from the context.

E=L(w)=LS(X,% pn) (0<p<w), a usual Lebesgue space, is
min{1, p}-normed, with [Ifll = (fIfI” dw)'/? (p <) or esssuplf| (p = ). For
p < ® we always assume that (X, %, u) for L,(w) is a direct union of finite
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measure spaces, without loss of generality; see [Kan3, p. 615] or [L, Corollary
to Theorem 15.3]. Then every sub-family 2 of (&, w) has a lattice supremum
supZ (modulo w-null sets). For p = c this assumption would imply that
L.(w) is the dual space (L,(u))’ of L,(w) and an order complete lattice (a
property needed to define §,(T)). For each 4 € ¥ and each measurable
function f on (X,%, u) let f, be f on A and 0 on A°, the complement of
A. (We can allow for f not defined on A°.) Let E, = {f € E: supp f C A}
where supp f = {f # 0}, the support of f.

E, is identified with L, (A, ), and f, or 1,f with fl,. When p < « for
each T €.% define o(T) = sup{4 € #: TE, = {0}} and s(T) = (o(T))".

(1.1) PrROPOSITION. Let 0 <p <, E = Lp( w), F be an s-normed space
(s<1Dand T €% Then TE,z) = {0} and TE, # {0} if & + A € 7 ns(T).

Proof. The result on s(T') follows from definition. For the result on o(T')
let 0 # f € E,y,. There exist A', 4°,... € Fwith TE,. = {0} (n = 1,2,...),
such that supp f € U 4". Hence

If = Tf p + TfAZ\Al + . +TfAn\(A1U couanty o
—0+4+0+ =0. O

Let p<s <1, E=L,(u),F=an s-normed space and T €.#. Define
A(T) ={06<L(p):IITfll < ll6fll Vf € E}.

Then 8(T) = inf .#(T) € L{(u) exists and is majorized by LTI €
#(T), by Proposition 1.1. The L. ) norm, for §,(T) and related functions,
will be denoted by |l - |l.. An element of L u) is considered also a
multiplication operator that it induces. Denote by /,(n) the n-dimensional
L, space over the counting measure on n points.

(1.2) THEOREM. Let p <s <1, E =L (u), F = an s-normed space and
T €. Then:

(@ 8(T) €x(T),i.e., |Tfl < I6(T)fll Vf € E.

(b) supp §(T) = s(T).

© VneLfw), @) §(Te°mn) = Inl8(T) and (i) lIné (Tl = T o mll.

(@ 8F() is sub-additive on Z.

For E=L,(uw), F=L,/(v) and T EZ even in the finite-dimensional case
18Tl < ITIl may occur when p > min{l, g} = s instead.

Proof. Observe that since p/s < 1 we have

ey lg + AP < (Igl* + Al < ligh” + InlP, (g, h € F).
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We first prove (d). Let § €., ¢ €.#(S) and ¢ € Z(T). By (1),

(S + TYAIP < ISAIP + ITAIP < UEFIP + WZAP = Il(€P + ) P AP

for all f € E. So 6P(S + T) < &7 + {P. From this, property (d) follows.
If £, €#(T) and A € F then for all f € E by inequality (1) again,

) NTAP < NP+ NTFgell? < WELN + N uell? = NELS + Sae 1P
Taking A = {£ < ¢} in (2) we obtain that £ A { = &, + {,c €#(T). Thus
3) M (T) is closed under formation of finite lattice infima.

Assume first that (X, 7, u) is o-finite. Fix some f, € E with supp F, = X.
For some &, &,,... €#(T) we have

&, foll > m = inf{l£foll: & €(T)}.

By property (3), 6, = &, A - A &, €#(T) (n > 1). By virtue of the domi-
nated convergence theorem applied on || 6, fI| for any f € E and in particular
for f=f, we get 6, =inf{0,} €#(T) and |6,f,ll = m. For each 6=
#(T), 0 A , €#(T)by (3) and as || - f,l is strictly monotone on L ( ), 8 A
6, = 6,. Thus 6, = 6,(T). This proves (a) in the o-finite case. To prove (a) in
the general case we first show that (c)(i) holds when restricted to n =1,
(A €5). Indeed if ¢E€#(To1,) then ¢> ¢, =60, €#(T-1,) fora 6 €
MH(T), eg., 0 =&, + 1,IT| by argument (2) with ¢ = ||T||. Conversely if
0 €.#(T) then 0, €.#(T -1,). From these,

4 8(To1,)=inf{£&,: E€#(T-1,)} = inf{6,: 6 €#(T)}

= 1A61(T)‘

Given 0 #f € E by (4) and the previous case 1,8(T)€#(T-1,) for
A = supp f. This implies (a) (apply the norm inequality for 7 -1, on f).

Property (a) and &,(T) < 1,4, ITIl (by Proposition 1.1) imply (b) and
equation (c)(ii) for n = 1. The latter implies (c)(ii) in general if c(i) proved.

Equation (c)() is true for n = 1,(A4 € %) by (4) and trivially also for n a
scalar. Hence by an easy argument (cXi) holds for n a simple function. The
general case of (c)(i) follows by approximations as both sides of the equation
are norm-continuous on € L (u). To see this for the L.H.S. note that for
all n,n’ € L) by (d) and (c)(ii) for n = 1 applied to T (n — n"),

18P(T om) — 8P(Teonw < 18P(To(n — n"))le = 1T o(n — 9" )I”
< ITI”lim = n'l%.
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For a non-example when p > 1let T € 2(/,(2),1,(1)) map (x, y) to x + y.
Given & > 0, by simple calculus (1 + &,1,),(¢,,1 + &) €#(T) for some ¢,,
1<t, <o As 8(T) = (1,1) so equality holds. Since p = |T(1, DIl /1I(1, Dl
=21"V?> 150 Tl > |18,(T)ll.. When p > g the same arguments apply
to T = diag(1, 1) € £(1,(2),1,(2)), for which p = 2/4"/? > 1. O

(1.3) CorOLLARY. With A™ = {||T|I(k — 1)/2" < §(T) < Tlk/2",

2'!
8(T) = Llim ¥ 1mlIT o1l

n—-o k=1

—inf(1, 1T e LIl + Ll T o1ll: A € 7).

Proof. The first equality follows readily from Theorem 1.2(c)(ii), by which
the sum of the R.H.S. differs from §,(7) by not more than ||T|| /2". For the
second equality the defining set of functions for d = the stated infimum is a
subset of .#(T) by the argument in (2) with ¢ = [T o1,|l and { = [T o1 4.
So §(T) < d. But d < the displayed limit; note that T-1, = O for A =
{6,(T) = 0}. The result follows. O

Explicit expressions for 8,(T) in some cases will be given in (1.4), (1.6) and
(2.2). Define the atomic segment @( u) of a measure space (X, %, u) to be
the supremum of all its atoms (identified as singletons). If E = L (X, %, u)
and 4 € % we identity the dual space (E,)’ with {A € E": AE ;. = {0}}.

The main part of Theorem 1.4 below has a close analog [Kan4, Theorem
2.2] for, instead of Z, a o-subalgebra

F(T)={AeF:|Tfl A |Tgl =0Vf€E,, g €E,}
inthe case E=L (), F=L,(»),1<p<qg<eand O #T €Z.

(1.4) THEOREM. Let p <s <1, E =L (), F be an s-normed space and
O # T €Z. Then (¥ N s(T), w) is purely atomic, i.e, T =T °1g,,, and

8(T)(x) = IT 1,0l = IT1I /1]l Vx € supp 8,(T) = s(T) € @( p).
In particular (cf. [D1]),
E' = (Eg)’

= {function gon@(w): Il = sup () /(w{x})P7 < 00}.

xe@(p)
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Here a member & of the last set acts on f € E g, according to the equation

6= ¥ f(x)é(x)n{x},

re@(p)

with operator norm || -, £ || = ||€ll’. The sum converges absolutely.

Proof. Assume to the contrary D = s(T)\ @(p) # . Thereisan f € E,
with [Ifll = 1 and 7f # 0. Let A° = supp f. Now [|Tf,|l" is subadditive and
llf,II” is additive, in fact a finite diffuse measure, on # N A . Soif J+Ae
F N A° is partitioned into non-null subsets B,C € % then

p(A) = IITf I’ /1If4 I < max{ p(B), p(C)}.

Also any such A4 can be split into two parts of equal diffuse measure (see
e.g., [W, p. 100]). Hence there exist inductively 4}, A%,... € & with A"*! C
A" |If g IIP = NIf 4=1IP /2 and p(A"*1) = p(A"), (n = 0). We have

ITI° = NTFll” /Nfanlls = p(A") /I 4ull* ™7 = p(A°)2"C~PYP p oo,

a contradiction. Thus & N s(T) is purely atomic. The description of &,(T)
then follows easily from Theorem 1.2(b) and (c)(ii).

For the second part the main result with F = [,(1) gives E' = (Eg,))".
Further given A € (E@(u))/ let £(x) = Al,/u{x} (x € @(w)). Then

&l

sup AL /11,1l = Al <o
X

and

{f, &)

Y f(x)A1, = Af(f € Eg,)

by continuity of A and by f having o-finite support. The inverse correspon-
dence is £ > A = (-, ). Toshow (-, £) € (Eg,)) note that terms of the
displayed sum form an element of /,(@(w)) (L, space over counting mea-
sure on @(w)) with formal norm < [[£]l'lIfll. As (-)? is countably sub-
additive on non-negative numbers this implies absolute convergence of that

sum. Moreover ||+, &)1l < [I€ll" = sup,I<{1,, £>[lI1,]l and so equality holds
here. O

An s-normed (vector) lattice is a vector lattice equipped with an s-norm
that is monotone on the positive cone and invariant under modulus taking.
When E and F are r- and s-normed lattices with positive cones E* and F*,
the (linear) modulus |T|, if it exists, of a T €. is a Positive operator S €.&
(i.e., one mapping E* to F*) for which sup{|7g|:|g| < f} = Sf exists for each
feE
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Note that Banach lattices F satisfying the requirement in Theorem 1.5 on
norm bounded increasing sequences include reflexive ones due to a theorem
of Ogasawara [S, Theorem I1.5.11]. Also the requirement on J is satisfied if F
has order continuous norm [S, Theorem II.5.10], or in particular is an Lq
space (1 < g < ).

For an element f in a function lattice (normed lattice whose elements are
measurable functions) define its signum function sgn f to be f/|f| in supp f
and 0 elsewhere. Denote sgn f by sgn f.

(1.5) THEOREM. Let p <s <1, E=L,(u) and F be an order-complete
vector lattice with a complete, strictly monotone s-norm in which every s-norm
bounded increasing sequence is s-norm convergent. Then:

(@) &Z is a complete s-normed vector lattice under the operator s-norm and the

linear modulus. Moreover, §,(IT|) = 8(T) for each T € %.

(b) In the case p =1 =s for each T €%, |T*| also exists. Further, when

either the canonical imbedding J: ¥ — ¥" preserves arbitrary suprema or
F is a function lattice |T*| = |T|*.

For E =L, (), F=L,v) and T €2 even in the finite-dimensional case

T > IITIl may occur when q < © and p > min{1, g} = s instead.

Proof. (a) For the lattice part it suffices to show that any given T €. has
a linear modulus of norm [|T||. Let f& E*. For a (finite, measurable)
partition & of (X, %, u) by inequality (1) in the proof of Theorem 1.2,

| ZA741: 4 €2)]| < (T 4 €2))”
< ”T”(Z{”fA”p A EQ})VP = ”T” . ”f”

The L.H.S. has a finite supremum over all such & and the sum there
increases as & gets finer. So any maximizing sequence of partitions can be
refined to a progressively finer (p.f.) one {2"}, for which X{|Tf,|: 4 €2"}
converges by the given condition to a limit, designated |T|f, in F* with
I T|fll = the said supremum < ||T|| - [Ifll. As the formal norm of F is strictly
monotone on F, {joint refinement of 2" and 2} for any given 9 is a like
sequence inducing the same limit | 7|f. Thus |T|f = sup{Z(|Tf,|: A €2} @
is a partition}. Positive linearity of |7| on E* is easy to prove when applied
on simple functions; for two such functions use a common p.f. maximizing
sequence {2"} for which each 2" refines the partitions due to their sets of
constancy. The general case follows by approximating g € E* from below by
simple 4, € E*. Observe that

+(Tly - |TIh,) < IT(g ~ h,),
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since +(|Tg 4| — |T(h,), ) < 1T(g — hy),l (A € F). We can prove |Tg| <
IT||gl (g € E) likewise by approximation (Re g)*, (Im g)* and hence |g|
from below by simple functions. Now {|7g|: |g| < f} is majorized by |T|f and
so has a supremum Sf as F is order complete. On the other hand given a
partition {A4!, 42,..., AN} we have by [S, p. 134] (or [L, p. 9],

Y ITf | = ) supRe(e®Tf,n) = sup Re(TZe“’"fA,.) < Sf.
0, 0,... 60

It follows that |T|f = Sf. Hence |T| extended linearly to an element of & is
indeed the modulus of T and has norm ||T}.

From the equality |T|f = Sf we deduce that for any A € 7, |T|-1, =
|T -1,]. Hence 8,(|T|) = §,(T) by Corollary 1.3.

(b) |T*| exists by [S, Theorem IV.1.5(i)]. For each f € E* and g € F/,

(£ilT*gl) = {fnT*g) = (T (nf), 8> < ITIf, Igl> = {f.ITI*Igl),

where 1 = sgn T*g. It follows that |T|*|g| > |T*gl|. So |T|* > |T*|.
Conversely for each h € E* and g € (F)*, letting j,: E > E” be the
canonical imbedding of E into its bidual E” we get for each angle 6,

(Re(e'’Th), g> = Re(h, e®T*g) < (h,|T*|g) = {g,|T*|*J,h).
If J preserves arbitrary suprema this implies

|T*|*J,h > supJ Re(e'®Th) = JsupRe(e'*Th) = J|Th|.
0 o

Hence
(IThl, g> = (g, JITh|) < {g,|T*|*J1h) = {(h,|T*|g>.

If F is a function lattice the net result {|Th|, g < {(h,|T*|g) can be directly
proved via using a signum function as in the last paragraph. Consider further
each f € E* and any partition {4, ..., A"} of (X,.7, w). Applying the result
just obtained we get

(1T wl,8) = LU wl, 8) < LI T*lg) = {£,IT*Ig).

Since |Tf| is a sequential limit as described in the proof of (a) this implies
TV, g) < {f,|T*|g>. So |T|*g < |T*|g. It now follows that |T|* = |T*|.

For the non-example part let 7 €.2(1,(2),1,(2)) map f = (x,y) to (x +
ty, y — tx) for some ¢ > 0. Then ||Tf]l < ITITI IfIll if xy # 0. As T attains its
norm it remains to get.

max{||7(0, DI, IT(1,0)lI} < ITI(L, DI /I, DI
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say, i.e., (1 +¢9)29/7 < 2(1 + t)%. When p > 1 this is true for ¢ =1 and
when p > g, for ¢ small enough. O

(1.6) CorOLLARY. For each T € L(L(w), L(v), §(T) = |T|*1 =
| T*|1.

Proof. For all fe L(w), lITIfll < <ITIIfl, 1) = {Ifl, ITI*1) =
If1T1*1]. Equality holds if f> 0. So |T*|1 = |T|*1 = §,(|T|) = 8,(T) (The-
orem 1.5(a)b)). O

(1.7) LemMA. Let 0 #f€ E=L,(n) (0 <p < ») and A = supp f. Then
span{f.: C € s N A} = E,.

Proof. let0 #g € E,.

h=(g/f), as an element of L,(IfI” du) is the limit of a sequence
{h, = X,c, 1,4} of simple functions supported in A. (Approximate (Re h)*
and (Im #)* from below by non-negative simple functions.) So X, ¢, fmn =
h,f — hf = g in the metricof E,. O

(1.8) ProposITION. Let p <5 <1, E =L (u), F be an s-normed space,
TeZand 0 # f € E. Then with A = supp f,

IT o141l = sup{IlTfll / lIfcll: & # C € 7N A).

Proof. Let g = Yc,f4 be a finite sum with disjoint 4” € 7 N A\ {Z}
and scalars ¢, # 0. By inequality (1) in the proof of Theorem 1.2, ||Tgll” <
Lle, "I Tf 4 1P while ligl” = Xlc,IPlIf4-IIP. Hence

I Tgll” / lgh” < I Tf,4ull” / NIf 411" for some .

So ITgll /ligll < stated supremum < ||T >1,||. These g are dense in E, by
Lemma 1.7. The result follows. O

(1.9) CorOLLARY. There exists a sequence of countable, measurable parti-
tions &" of A that are progressively more refined such that

1,8/(T) = L lim Y {1NTf N /Nfcll: € € &7).

n-—o

Proof. By Proposition 1.8 and transfinite induction with notation in Corol-
lary 1.3 applied to T °1, (in place of T), each non-empty A"* admits a
countable, well-ordered measurable partition "% with

WTFe /el + 1/n = 1T o1c
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(C € &, C" = A" \ sup{members of #"* preceding C}), so that
ITf: N /Nfcll and 6,(T) differ by not more than ||T<1,|l /2" + 1/n on C.
Now let " = U ,&"* ("% ={@)} if A" = ). For n =2,3,... the con-
struction can be modified so that 4"% N #"~! c "% also. The result fol-
lows. O

Let E=L,(u), F=L,(v) and TEZ. For A €% and b €% define
Ty €Z by Ty, f = (Tf)p(f € E).

(1.10) THEOREM. Let 0 < g <%, p < min{l,q}, E = L,(n), F = L (»)
and T €Z. Then 8{(1.,T) is additive on & .

Proof. Let & + B € £ be given. We need only prove that
(1) 8{(T) = 87(15T) + 8{(15:T).

(Replace T by 1,T (D € %) to get the theorem.) Let 0 # f € E and
A=suppf. Take any G #Z €F NA and &> 0. Repeated relativized
applications of Proposition 1.8 on 157 in a transfinite induction process
yield a well-ordered countable decomposition & of Z, such that for all
Ceg,

| Tgec £1I*
IIfcli®

(where the infimum is taken over A) by Theorem 1.2(c)(ii). Here C' = Z \
sup(members of & preceding C}. Also

2 IpeTolcl? = & 2 int8{(1,T) — &,

Tl /Nfcll = W Tg fll /lIf2 |l for some C € &

(extend the argument in the proof of Proposition 1.8 to f, = L{f.: C € &)).
To1 |7 AR _ (1 Tgc A ! N I Tpec Il
AT = Il lIfcll Ifcll

1T, 1
= (‘uﬁzzr

q
) + inf84(15T) — e.
A

Hence by Theorem 1.2(c)(ii) and Proposition 1.8 again this gives
(2) 11, 88(THllw = IT 1,01 = 1T, 17 + igf‘o‘{’(chT)

> 1,89(1,T) + inf, 88(15.T).
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Conversely g-additivity of the formal norm on F and the same theorem imply

(3) 1,80(T) < 1T o1 11" < 1T, 1% + [ Tpe 11
= 11, 89(15T )l + 11,88 (1peT)llce.

As A is arbitrary albeit of o-finite measure inequalities (2) and (3) imply
equation (1) by approximations. Indeed given integer n > 1 partition X into
finitely many subsets wherein each of all three terms in (1) has u-essential
oscillations < 1/n. Partition each subset into further subsets A4 of finite
measures. By (2) and (3) considered at points of such A, the two sides of
equation (1) differ by not more than 2/n a.e. on X. So they are equal a.e.
(Note that the special case p < min{qg, 1} also follows from Theorem 1.4, and
the case p = 1 = ¢ follows from Corollary 1.6.) O

2. Extreme contractionson L, p <1

(2.1) THEOREM. Letp<s <1, E = Lp( w), F be an s-normed space and
T € ext %. Then:

(@ Teol, €ext#%(A,F) foreachd + A € F.

(b) 6(T) =1whenp =1.

Proof. (a) Let R e Z(E,,F) with T-1, + R € Z(E,,F). Extend R to
R, €% with R ~1,. = O. We have by Theorem 1.2(c)(),

S(T+R,) =1,6(Tol, +R) + 1,8,(Tol,).
So T + R, € Z by Theorem 1.2(c)(ii). Thus R, = O = R.

(b) We use Theorem 1.2 freely. We have 6 = §,(T) < 1. Let g € F with
ligll =1and § = (-,1)g. Then §,(S) =1 and

S(T+Se(1-8)) <8+ (1-8)=1.

SoT +S°(1—8) e %, whence Sc(1 —8)=0and1—86=58(S-(1—38))
=0. O

Call an extreme point of the unit ball of an s-normed space F an extreme
unit vector of F.

(2.2) THEOREM. Let (X, pn) be a o-finite measure space, E = L,(n), G
a Banach space and T € Z(E,G'), where either G or TE is separable. Then
there exists a u-essentially unique weak* measurable function ¢(T) on (X, F, u)
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to G' such that (g, o(T)X:)) € L ) Vg € G) and

(& Tf) = f(g, e(T)(x)>f(x) du(x) (VfEE, g €G).

Moreover, ||T|| = esssuplle(T))| and §(T) = ||o(T)()I|.
Further T € ext % only if ||e(TX)|| = 1 p-a.e. Conversely either G or E is
separable T € ext Z if o(TXx) is for u-a.e. x an extreme unit vector of G'.

Proof. The unique existence of the specified ¢(7) and the formula for
IT|l are given in [DS, VI.8.6-7] (see also [S, Theorem IV.7.6]). The displayed
representation equation shows that for each 4 €%, To1, is similarly
induced by 1,¢(T) as T is by ¢(T). It follows that §,(T) = [|e(T)()|| since
by Theorem 1.2(c)(ii), for all 4 € 7,

11,8, (THlle = IT1,]l = esssuplle(T)(x)Il.

x€A

The necessary condition for extremeness then follows by Theorem 2.1(b).
For the sufficiency part let R €. with T + R € %. When E is separable T
and T + R all have separable ranges. So under the given conditions all three
operators have their respective representations as described in the theorem.
By the expression for §,(-) again and Theorem 1.2(c)(ii) we get for u-a.e. x,

le(TY(O =1 = lle(T £ R)(X) = lle(T)(x) £ e(R)(X).

As @o(TXx) is for u-a.e. x an extreme unit vector, ¢(R}x) =0 € G’ for
p-a.e. x. So R = O and T is extreme. O

(2.3) THEOREM. Let E = L,(u) and ¥ be a normed space with strictly
convex bidual ¥". Then a T € % is extreme if and only if 5(T) = 1.

Proof. By Theorem 2.1(b) we need only prove the sufficiency. So assume
8,(T) = 1. We use results in §3. By Corollary 3.2, §(T*) = §(T) = 1. By
Theorem 3.3 applied to T*, T* is extreme and so is 7. O

In view of Theorems 2.2 and 2.3 we posit a conjecture below, which is true
when u is purely atomic (Corollary 2.6) or when T is a dual operator
(Theorem 3.4 and Corollary 3.2). Note that a strictly convex (s.c.) normed
space F may not have a s.c. bidual F”. Indeed /,, being separable, can be
equivalently renormed (e.r.) to be a s.c. space F [K0, p. 362, item (5)] but its
dual [, cannot be e.r. to be smooth [D2, Theorem 9]. So F” is not s.c., or else
F’ would be smooth by [AB, Footnote 13] (or [K0, p. 346, item (2)]). Another
example is F =e.x. ¢y(A) (A any uncountable index set) [D2, p. 517,
comment (ii)].
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(2.4) CONJECTURE. For a strictly convex normed space F, a T €
#(L( ), F) is extreme if and only if §(T) = 1.

In the general setting of r- and s-normed spaces E and F respectively, for
each t € Z define AT) = {f € E: ||ITfll = |Ifll} and

MT) ={f€E: f+0 o Tf/Ifll =an extreme unit vector of F}.

One can see that T€ extZ if E = span./l;(T) The following two results
clarify this situation when E = L () and F is a normed space. Note also that
T € ext % only if 1, €/(T) (x € @(p)) by Theorem 2.1(a).

(2.5) THEOREM. Let E = L(u), F be a normed space and T € % with
MT) # {0}). Then JT) = U{/l/(T) N E .} for a unique disjoint family { A%}
c A\ D) with sup{supp f: f € AT) N E 4} = A* for each index a.
Moreover for each index o there exists (£ g,) € E' X F with |{,| = 14«
and g, an extreme unit vector of F such that

TolA" = <' 7za>ga

and consequently
A(T) NE 4« =/l7(T) NE o= {ch{,:h €E}.cascalar}.
Proof. Let f€4(T), ||fl =1.Let BEFN supp f. Then

ITAl < Tl + 1 Tfpell < NIfpll + Wlfpell = 1.

Thus equalities hold. Hence f; €#(T) and as Tf is an extreme unit vector,

Ifp = ”TfB“Tf= ”fB“Tf= <fB’§g—n_f>Tf-

So Tolg,,, ;=<"-,sgnf)Tf by Lemma 1.7.

Define an equwalence relation ~ on unit vectors in A(T) by: fi ~f, if
and only if Tf, and Tf, differ by a scalar factor. It induces a partition {#,} of
these vectors into equivalence classes mod ~ . Let A% = sup{supp f: f €4,}.
Well order {supp f: f €.4,} as {supp 4,,} for some £, €.7,. Inductively for
each ordinal B let B*~ = A4* \sup{supp fap: B < B} (B*° = A%) and let
fap be the normalized first (with reference to y) non-zero (4, )as, until B*?
becomes . Each f,, €.#, and by the result of the last paragraph, {supp f, }
partitions A% Let g, = Tfao. Then Tf,; = c,p38, for a unimodular scalar
Cap- Let ¢, =,z sgn f,; on supp f,, for each B;let ¢, = 0 on (A%)°. Now
each pair (¢, g,) is defined. The assertions can then be routinely verified.

a
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(2.6) COROLLARY. Z = sup{supp f: f €M)} = sup{A4*), spans(T) =
E, and 1,6(T) = 1,. Furthermore T o1, € ext Z(E,, F).

Proof. The first statement is an easy consequence of last theorem. For the
extremeness part, if R € Z(E,,F)issuch that T + R € #(E,,F) then R = O
on JAT), whence on E,. O

(2.7) THEOREM. Let p <s <1, E=L,(u), F be an s-normed space and
T € %. Then /(T) cH(T) C {cl,:ca scalar x € @(w)).

Further 8(T) = 14, if and only if the last two sets are equal, while all three
sets are equal if and only if T € exp #. In particular T € ext %

(i) for F a strictly convex normed space if and only if §(T) = 14, or

(ii) for F M-normed with unit 1 if and only if |T1,| /11l = 1 Vx € @( w).

Proof. Let f €s(T), |Ifll = 1. For each B € % N supp f,

ITAIP < (1T 05 + NTFpell))™ < (Ifll* + fpell®)?”
< ”fB“p + ”ch”p =

So equalities hold. As p/s < 1, |Ifzll or l|fz.ll is 0. Thus supp f is an atom of
&. This proves the second inclusion the first is trivial. The last two sets are
equal if and only if 8,(T) = 14, by Theorem 1.4. All three sets are equal if
and only if 1, € /AT Xx € @(p)), which implies T € ext % as R = Ro lacu
VR eZ (Theorem 1.4). The converse holds by Theorem 2.1(a) apphed to
each atom A = {x}.

The result (ii) follows as g = T1,//|1,/| € F is an extreme unit vector if
and only if |g| = 1. (Necessity: 1g + (1 — |gl)| < 1. For sufficiency, imbed F
into F", a space C(K) [S, Theorem I1.7.4]) (i) is easy. O

Let E=L,(u) and F =L (v). T €% is said to be codisjunctive if for
each B € Z there is an 4 €% such that Tg, = O = T .. (This was
introduced in [Kan2].) Dually T is disjunctive (also called Lamperti in [Kan1]
due to a theorem of J. Lamperti [La)) if |Tf] A |Tg| = O for all f, g € E with
Ifl A lgl = 0. When » is a direct sum of finite measures (recall our conven-
tion in §1) this is equivalent to requiring that given A4 € 7 there exists
B € & such that again Ty, = O = Ty .. It is routine to prove that for
1 <p, q <o, T e is codisjunctive if and only if 7* is disjunctive. (See also
[Kan4, Theorem 2.1].)

When E = L (), F =L (v)and T €% is disjunctive we have

(Property D) T = (T1)®* and |Tf] = |T|If| (f € E).

(See Remark 4.1 and Theorem 3.1 in [Kan1].) Here ®* is the unique linear
operator €.¥ induced by a Boolean ring homomorphism ®: (%, u) - (£, v)
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satisfying ®*1, = 15, (A4 €%). We may in face define ®4 = supp T'1,
(4 € &) if A has finite measure.

®* is positive and preserves L, convergence. Note that |®*f] = ®#|f]
(f € E) and so in Property D, |T| = |T1|®*. Also, ®* preserves sequential
a.e., not necessarily L,, convergence if ® is a Boolean ¢-ring homomor-
phism. (See also [M, p. 159] or [Do, pp. 453-454].) Such a ®* has the formal
properties of a composition operator induced by a measurable transforma-
tion and in some cases simplifies to one.

(2.8) THEOREM. Letp <1<q <x, E=L,(u) and F =L (v). Then a
T € % is extreme if and only if:

(171%) inthe casep <1 < q,8(T) = 1@(#)’

(11%) inthecasep =1 < gq, §(T) =

(171) inthecasep <1 =gq,8(T) = 1@ w and T is codisjunctive;

(11) inthecasep=1=¢q,8(T) =1 and T is codisjunctive.
Moreover, criterion (1™ 1) is equivalent to (1-1)', and (11) to (11)' below:

(171" T=Telgy, and T1, = £, [EX] = I10/111,,I(x €
@( ) fora ﬁmctzon & on @( ) and a mapping : @( w) = @(v).

11y  T* = hV* foran h € L (p) with |h| = 1 and a o-algebra homo-
morphism V: (Z, v) - (F, p).

Proof. The first two parts follow from Theorems 2.7(i) and 2.3. Consider
the other two, where g = 1.

Necessity. The part on §,(T) is by Theorems 2.1(b) and 2.7. Given B € &
let £ = 8,(1,T),{ = 8(15T)and R = 1,To{ — 1, To £ Then0 < £, < 1
and T+ R=1T (1 £ {) + 15T (1 F £). By Theorems 1.10 (or Theorem
1.4 and Corollary 1.6) and 1.2(c)(),

S(T £ R) = 8,(1,T>(1 £ {)) + 8,(1pT (1 F £))

=(L+0)é+(1F &) =¢+1=8(T) <1

So T + R € Z (Theorem 1.2(c)(ii)) and R = O, i.e., 13T o { =0 = 15T o £.
By Theorem 1.2(cXi), £/ = 0. By Theorem 1.2(b), T is codisjunctive.

Sufficiency. Assume (171). As T is COdlS]uIlCthC, for each x €
@( w),supp T1, is an atom of (Y, &, »). So via Theorem 1.4, 1, €.4(T). By
Theorem 2.7, T is extreme.

Assume (11). Let R € with T + R € %. Then |T* + R*|1 = §(T + R)
< 1 by Corollary 1.6 and Theorem 1.2(c)(ii), while |T*|1 = §(T) = 1. But
2|T*| < |T* + R*| + |T* — R*|. It follows that equalities hold for all three
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inequalities. So by Property D for T*,

2|T*gl=2[T*||gl = |T* — R*|Igl + |T* — R*||g|
> |T*g + R*g| + |T*g — R*g|
> 2|R*g|, (g € F).

This implies that T7* + R* and R* are disjunctive, since T7* is. From
[T*|1 =1=|T* &£ R*|1, we get by Property D again |T*1| =1 = |T*1 +
R*1], implying 0 = |R*1] = |R*|1. Hence R* =0, or R=0. Thus T is
extreme.

Clearly (17 1)" implies (1~ 1) and (11)" implies (11). Condition (1~ 1) implies
(171)' by Theorem 1.4; see also the pertinent sufficiency part. Condition (11)
implies (11)' by Property D and Corollary 1.6; ¥ preserves countable unions
as |T*| = |T|* is sequentially order-continuous (see e.g. [G, p. 34]). O

(2.9) Remark. One can also consider p < g < 1. The case p < q < 1 has
the same extremeness criteria as for p <1 =¢q. When p=g <1, T €ext%
if and only if both 8,(T) = 1, y, and T is codisjunctive, where

s(E,F) = (sup{4 € 7: Z(E,,F) = {0}})".

The proofs of these cases especially the latter are more elaborate but partly
resemble those for the cases p <1 =g¢q. (To show a T €extZ to be
codisjunctive change R in the proof of Theorem 2.8 to R = 1,T o ¢'79¢ —
15T o €177 and get 8{(T + R) < 8{(T) < 1 via Theorem 1.10 and Jensen’s
inequality for (-)7.) These cases p < g < 1 are less intriguing as % here is
generally not convex.

3. 8/(T) and extreme contractions into C(K)

We follow the terminology of [S] on M-normed and AM-spaces. Let E be a
normed space, F an M-normed space and T €.%. Define

7(T) ={ITfl: fe E, lIfl < 1}

and 8(T) = sup 7 (T) provided that this exists in F; it exists for all T €%
when F has a unit and is order complete, or in particular when F is replaced
by F”. Recall that for each subset HC F,H*={g € F: |g| A |h| =0Vh
H} and so (TE)* * is the band in F generated by TE.

An AM-space (complete M-normed space) F with unit is represented by
C(K), the Banach lattice with supremum norm, of continuous functions on a
compact Hausdorff space K. In this context we consider multiplication to be
defined in F and elements of F also as multiplication operators on F.

Some properties of 8,(-) in Theorem 1.2 have dualized analogs for 8,(-).
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(3.1) THEOREM. Let E be a normed space, F an M-normed space with unit
1 and T €% for which 6(T) exists in F*.
(@) 8,T) is a weak order unit of (TE)* * and 18(T)Il = IIT].
(b) When F is complete ¥ € F. (i) there exists §(nT) = |m|8(T) and (ii)
IméLD)Il = lInTI.

Proof. Let d = 8(T).

(a) By [S, Proposition I1.1.5], d A g = sup{h A g: h € 7(T)} = 0 for each
g E€(TE)*. So d € (TE)* *. Then the definition of d implies that d is a
weak order unit of (TE)* * . We have d < ||T||1 and obviously [|d|| > ||T]|.
Hence [|d|| = ||IT]|.

(b)() Let o € F* majorize #(nT) = |n|7(T). As lInll1 = Inl so
a+ (11 = [nl)d = sup{lnlg + (11 — Inl)g=tg: g €w(T)} =,

where ¢ = ||9ll. Thus a > |nld. As |nld majorizes 7 (nT) so 8(nT) = |nld.
(b)(ii) This follows by (b)(i) and the equation in (a) for n7. m

(3.2) CoroLLARY. Let E = L (), F be a normed space and T €.%. Then ,
8(T*) = 8,(T).

Proof. Let A € %. Then by Theorems 3.1(b)(ii) and 1.2(c)(ii),
” 1A aw(T*)”w = “1AT* “ = ”T ° 1A “ = “1,4 81(T)"w
Since A is arbitrary, §(T*) = 6,(T). O

We have an extremeness criterion dual to Theorem 2.5.

(3.3) THEOREM. Let E be a normed space and ¥ an M-normed space with
unit 1. Then a given T € % is an ext % only if, and with F complete and E’
strictly convex if, there exists 8T) = 1.

Proof. Necessity. Assume T € ext %. 1 majorizes Z(T'). So does d A 1 for
any majorant d € F*. Let R = (-, h)(A —d A 1) with h € E’ of norm 1. If
f€ Eand |fll =1 then

ITf+ Rfl < |Tfl + 1 —d A1) <d A1+ (1-dAl)=1
Thus T+ R % Hence R=0.S01=d A1 <d and 8(T) = 1 exists.

Sufficiency. Assume the last three conditions given. Represent F as C(K)

for a compact Hausdorff space K. The pointwise supremum ¢ of #(T) is a

lower semicontinuous function on K. 8(7T) = 1 means that 0 < £(y) < 1Vy
and 1 is the least majorant in F* of £. LetU” ={¢é>1 - 1/n}(n =1,2,...).
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Given y, & U” there is 1> y, € F* with y,(y,) =1 and x,(U") = {0}
(Urysohn’s Lemma), whence £ <1 — x,/n € F', a contradiction. So each
U" is open and dense in K. Hence {£ = 1} + N U" is dense in K by Baire’s
category theorem. For each S €% there is a weak* continuous function
0(S): K — E’ such that Sf(y) = (f, 0(SYW)Nf€E,yeK) and [S| =
sup, [l 0(S)(Y)Il [DS, Theorem VIL.7.1] (replace E if necessary by its comple-
tion and extend S thereto, as this will not change E’ or for S = T, §(T));
0(S)(y) is the S*-image of the evaluation map at y. So (£(y) = [l6(TXy)Il.
Let Re¥ with T+ Re #. Then [|6(TXy) + 0(RXWI <1 Vy as @ is
linear on .%. Since E' is strictly convex this implies 8(R) = 0 on {& = 1}. As
{é£=1}isdense so R = O and T is extreme. O

(3.4) THEOREM. Let E, F be normed spaces with ¥' an L,-space and
T €. Then 8{JT) = 8(T**) for the canonical imbedding J: F — ¥'. If
either side is the unit 1 of ¥" and E' is strictly convex then T* is extreme.

Proof. For the stated equality let g € (F')* and h € E” with [|&] <1,
we have by [S, Corollary 3 to Theorem IV.1.8],

(g,IT**h|) = sup{I<y, T**h)|: y € F', |yl <g} = lim [{T*y,, ),
n—ow

where each vy, € F' and |v,| < g. The unit ball of E is weak* dense in that of
E". So for some f, € E with |If,ll <1(n=1,2,...),

(g, |T**h|) = nli_1)130|<f,,,T*7,,>| = J%l(vn,JTfn>| <<g, &(JT)).

It follows that 8(7T**) < §(JT). Equality holds as JT = T**|g.

For the last part, JT is extreme by Theorem 3.3 applied on JT. Now
Z(E,F") is linearly isometric to #(F’,E’) with JT corresponding to T*
(forward correspondence: R — S = R*J; and reverse: S — R = S*J, using
the canonical imbedding J;: F' — F"). So T* is extreme. O

We have an analog of Corollary 1.6.

(3.5) THEOREM. Let E be a normed lattice, F an M-normed space and
T €. for which |T| exists. Then:
@) 8T = 8(T) if either side exists in F*.
(b) For E M-normed with unit 1, (i) there exists 8(T) = |T|1 and (ii) when
E is also complete there exist |T o a| = |T|°|a| and 8T - @) = |T||al
for all « € E.

Proof. (a) Majorants of #(T) majorize #(T; f) = {|Tgl: g € E, Igl < f}
and so supZ(T; f) = |TIf, if f€ E* and ||fll < 1. So they are majorants of
#(|T|), and clearly vice versa. The result follows.
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(b)) This follows as Z(T) = 7 (T;1).

(b)(ii) The second equality follows from the first one and (b)(i) applied to
T o a. The first equality follows since Z(T o a; fXf € E*) is an order dense
subset of Z(T; |alf). To show the denseness represent E as C(H) for a
compact Hausdorff space H. Given g € E with |g| < |al|f, for each n =
1,2,..., there exists by Ursohn’s Lemma 1 > y, € E* for which y, is 1 on
{lgl = 1/n} and 0 on {a = 0}. Define g, to be x,g/a on {a # 0} and 0 on
{a = 0}. Then g, € C(H), Ig,| < x,f <f and ag, = x,8- Hence

HT(ag,)l — |Tgll < ITI1- llx,g — gl < ITI1/n N\ 0. o

The concept of a disjunctive T €.% in §2 extends to the case where E and
F are normed vector lattices. Given topological spaces 4, K, a subset Z C K
and a mapping ¢: Z — H define for all functions f on H,

opg_ |fop onZ
'f {O on Z°.
(Note. Z = J = ¢ is the empty mapping = ¢°f = 0.)
We have an extension of Property D (in §2):

(3.6) LEMMA. (a) Let H and K be compact Hausdorff spaces. Then T €
AC(H),C(K)) is disjunctive if and only if T = (T1)¢° for a continuous
mapping ¢: {T1 + 0} - H.

(b) Let E,F be Banach lattices and T €.% order bounded. Then T is
disjunctive if and only if |T| exists and satisfies |Tf| = |T||f| for all f € E.

Proof. (a) See [A, Example 2.2.1]. (¢ has been modified.)

(b) See [A, Theorem 2.4(iXv)]. The original statement in [A] mentions
|Tfl = |[ITIfl = |T||f] but actually the middle term is not essential. (See also
[Kanl1, Theorem 3.1] for the case of L, spaces E,F.) O

We have an extended dualized analog of Theorem 2.8 part (11).

(3.7) THEOREM. Let E,F be AM-spaces with unit, denoted by 1 for either
space, and T € % for which |T| €% exists. Suppose TE,|T|E CB for a
subalgebra B of F containing 1. Then T € ext %, where %, = {S € #Z: SE C B}
if and only if

(o00) 8(T) = ITI1 = 1 and T is disjunctive.
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Further, apart from the requirements on B:
(a) If we have the representations E = C(H) and F = C(K) for compact
Hausdorff spaces H and K then () is equivalent to

()" T =he¢° foranh € C(K) with |h| = 1 and a continuous
mapping ¢: K — H;

) If E=L(X,F, 1) and ¥ = LY, Z, v) then () is equivalent to

(o00)” T = h®* foranh € L(v) with |h| = 1 and a Boolean
algebra homomorphism ®: (¥, u) = (€, v).

Proof. For the equivalence in (a) and (b) clearly each of the conditions
(o) and (ox)” implies condition (»). The converse implication for (a)
follows from Lemma 3.6(a) and that for (b), from [Kan1, Remark 4.1].

Necessity. Let T € ext #,. By Theorems 3.5(b)(i) and 3.1(a), |TI1 =
8{T) < 1. |T|1 = 1 by the proof of Theorem 3.3—change d A 1to |T|1 and
% to #%,. Let a, B € E* with |lall = |Bll =1 and @ A B =0. T is disjunc-
tive if &£ =10, where £ = |T|a and (= |T|B. Let R={(Toa— £T-B.
Then

T+R=(1+)Toa+(1FE)ToB+To(l—a—B).
Nowa+ B<land §£,(<|TI1=1.Soif f€E |fll <1 then
(TER)fl<A+)E+AFE+HITIA-a—-B)=ITIL=1.

SoT + R € %, and R = O. Represent E as in (a). There exists 1 > y, € E*
(n =1,2,...) with values 1 on {a > 1/n} and 0 on {a = 0} > {8 # 0}. Then
O=Royx,={(Toayx, > {Te°a. So by Theorem 3.5(b)ii) and 3.1(b)(,
(E=08Tea)=8({T-a)=35§(0)=0 as wanted.

Sufficiency. Assume (o). Represent E and F as in part (a). So (cc0)’
holds. Let R€.¥ with T+ R € %, c %. Consider any fixed y € K. It
follows from (o)’ that Rf(y) = 0 for any f e C(H) with [f(e(y)| = |Ifll.
But all such f span C(H): if g € (C(H))* then with m = g(¢(y)),

g=gAm+ligll—(Igl — (g=m)").
And as y is arbitrary, R = O. So T is extreme. O
(3.8) Remark. (a) Automatically, |T| = T exists if T is a positive opera-
tor.

(b) |T| exists when T is compact. Indeed represent F as C(K), K compact
Hausdorff. By [DS, Theorem VL7.1] for each § €.% there is a weak*
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continuous function 6(S): K — E’ such that Sf(y) = (f, 0(S)y)) (f€E,y
€ K) and ||IS|| = sup, | 6(SXy)|l. Further S is compact if and only if 6(S) is
continuous with the norm topology in E’. All this implies (using [S, Corollary
3 to Theorem IV.1.8]) that |T| exists and is compact with a norm continuous
o0(IT)) = |6(T)| and |IIT||| = |IT|l. Note that a compact T in condition
(o)’ has to satisfy further requirements on ¢; see [Ka, Theorem A(1)] in the
setting E = F. Also in Theorem 3.7 we may replace %, by {S € %,: S is
compact}, since the operators R used in the necessity part of the proof are
then compact also. When B = F this modified Theorem 3.7 is equivalent to
[MP, Theorem 4.5] and comes with a simpler proof. (In Theorem 3.3, % can
likewise be replaced by {S € #: S is compact}.)

(3.9) QUESTION. In connection with Theorem 3.7, what conditions on com-
pact Hausdorff spaces H and K will make #(C(H),C(K)) a Banach lattice
(relative to the operator norm and the linear modulus)?

Recall that C(A), A compact Hausdorff, is order complete, countably
order complete or separable according as A is respectively Stonian, quasi-
Stonian or metrizable [S, Propositions 11.7.7, Corollary 7.5]. In the light of
this the following theorem gives some answers to the interesting question’
above. (There are likely to be more answers.)

(3.10) THEOREM. Let E and F be AM-spaces with unit. Then £ is a
Banach lattice if (1) F is order complete, or (ii) E is separable and ¥ is countably
order complete, or (iii) E is finite-dimensional.

Proof. (i) This is given in [S, Theorem IV.1.5(1), 1.8 Corollary 2].

(ii) Let T € %. It suffices to show that |T| exists; by Theorems 3.5(b)(i) and
3.1@), LTI = IITI1l = 18LT)Il = |IT|l. Here 1 denotes the unit of E, as
well as that of F. Represent E as C(H) for a compact Hausdorff space H.
For |T| to exist it suffices that sup{|7gl|: |g| < f} = |TIf (f € EY) exists, as
this implies that |7 is positive linear on E*. (Clearly |T|(cf) = ¢|TIf for any
constant ¢ > 0. Also f,f, € E* and |g| <f, +f, imply g, + g, =g and
lg,| <f, where g, = (Igl A f,)sgn g € C(H), (n = 1,2), whence |T| is sub-
additive. It is easy to deduce that |T| is additive.) As |T| is continuous on E*
by [S, Theorem IL.5.3], linearly extended |T| €. So now let {e,} be a
countable dense subset of E. Given 0 # f € E™, let

h, = (le,| Af)sgne, € C(H).

If |g| <f then |g — h,| < |g — e,| (by elementary trigonometry in the com-
plex plane) while |[|Tg| — |Th,|| < [IT(g — A)I1 < |IT] - llg — h,II1.
Hence {|Th,|} is an order dense subset of {|7gl: |gl < f}. Thus sup{|Tgl:
lgl < f} = sup{|Th,|} exists in F* as wanted.

(iii) This is easy; cf. Remark 3.8(b). O
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4. Extreme positive contractions

When E and F are also vector lattices our extremeness results on Z or %,
have analogs for #*={S € #Z: Se*C F*}, %, N %" or some further subset.
We may also restrict these to compact operators; cf. Remark 3.8(b).

The following is a Z* analog of Theorem 2.8.

(4.1) THEOREM. Letp <1<q <, E=L,(p) and F =L (v). Then a
Te#" isinext#" if and only if:

(1719* inthecasep <1<gq,8(T) =1, and A Cc @(p);

(119*  inthecasep=1<¢q,8(T)=1,, A€ F

(1~D* inthecasep <1 =gq,8(T) =1,, A C @(w) and T is codisjunc-

tive:

an* inthe casep =1 =¢q,8(T) =1,, A € Fand T is codisjunctive.
Moreover, the criterion (117)* is still valid when Lq(v) is generalized to a
normed lattice with a strictly convex bidual space.

Proof.  Necessity. We have
6=6(T)<1andT+T-(1-6)e%*
as 8(T+T-(1-68)=6+801-6)<1. So
To(1-8)=0and 6(1-28)=26(T°(1-28))=26(0)=0,

whence & =1, where A4 = supp 8 = s(T') (Theorem 1.2(b)). The part on
@( p) is from Theorem 1.4. The codisjunctiveness part follows from the
proof of Theorem 2.8; just change % to #*.

Sufficiency. Let R €% be such that T + R € #*. We have 4 = s(T). By
Proposition 1.1, +Ro1, = (T + R)°1,. € #* and so Re1, = O. By Theo-
rems 2.8 and 2.3 each of the given conditions implies 7 -1, € ext Z(E 4, F).
So Rel, =0 also. Thus R=0Oand T €ext*. O

(4.2) Remark. The part of Theorem 2.8 on equivalence to the criteria
(171) and (11)’ has an analog here too. In (171)' just change @(u) to
A = s(T) with s(T) € @(p) and |£] to &. Change (11)' to

T* = V* fora o-ring homomorphism V: (2,v) - (&, n).

(Note that ¥Y = s(T) since 1y, = ¥*1 equals T*1 = §(T) = 1)

We have an extended Z* analog of Theorem 3.3. Note that §,(7T') exists in
F* if F is order complete, if E is separable and F is countably order
complete, or if E is an AM-space with unit (Theorem 3.5(b)(1)).
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(4.3) THEOREM. Let E be a normed lattice, F an AM-space with unit 1 and
B a subalgebra of F containing 1. Then a given T € %, ={S € #*: SE C B}
for which there exists 6,(T) € B N ¥~ is in ext Z; only if, and with E’ strictly
convex if, 8{T) is an idempotent element of F*.

Proof. Represent F as C(K), K compact Hausdorff. The criterion means
8T) = 1, for a clopen (closed and open) set Z C K. The proof is similar to
that of Theorem 4.1, with #* changed to %7, §,(-) to 8,(), and order of
composition reversed. Also change 1, to 1,, 1, to 1,, Z(E,,F) to
#(E, C(2)), Proposition 1.1 to Theorem 3.1(a) and Theorem 2.8 and 2.3 to
Theorem 3.3. O

Likewise we have an extended #* analog of Theorem 3.7. (Case (ii)
corresponds to [Ph, Theorem 2.1].)

(4.4) THEOREM. Let E,F be AM-spaces with unit, denoted by 1 for both
spaces, B a subalgebra of F containing 1, and T an element of either (i)
(Sew: SEcCB}or (i) {Se%": SECB, S1=1}. Then T is an extreme
point of that set if and only if

(cc00)* T is disjunctive and, in case (i), (T1)* = T1.

Further, apart from the requirement TE C B:
(a) With the representations E = C(H) and F = C(K) for compact Haus-
dorff spaces H and K, (x)* is equivalent to

T = ¢° for a continuous mapping ¢: Z - H

were Z = K in case (ii) and Z is a clopen subset of K with 1, € B in case (i);
) If E=LSX,%, 1) and F =LY, %, v) then (00)* s equivalent to

T = ®* for a Boolean ring homomorphism ®: (7, u) - (Z, v).

Proof. The necessity is by Theorem 4.3 for the part on T1 in case (i) and
by the proof of Theorem 3.7 for disjunctiveness. The sufficiency follows from
Theorem 3.7 via the same argument as for Theorem 4.3. O
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