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NORM STRUCTURE FUNCTIONS AND EXTREMENESS
CRITERIA FOR OPERATORS ON Lp(p <_ 1) OR ONTO C(K)

CHARN-HUENRAN

Introduction

For a Banach or Lp space E and a Banach space F, let ff /(E, F) be the
unit ball of the Banach space =(E, F)of bounded linear operators T
from E to F. We study the extreme points of ff when either (i) E is an Lp
spce (p < 1) or (ii) F is a C-space, i.e., a Banach space C(K) of continuous
functions on a compact Hausdorff space K. Extremeness criteria are ob-
tained partly in terms of norm structure functions 3a(T) and 6=(T) for the
cases (i) and (ii) respectively. The first function 61(T) generalizes the func-
tion TI "1 for the case where E and F are L1 spaces, and the second, 6(T),
generalizes TI 1 for the case where both spaces are C-spaces. Some of their
basic properties are studied that are used in tackling the extremeness
problems. The scalar field may be the reals or the complexes. The proofs are
given for the complex case; the real case follows by minor adjustments.

In the case (i)we obtain, among other things, complete description of
extreme contractions in (Lp(lZ) Lq(u)) when 0 < p < 1 < q < in a
rather unified manner (Theorem 2.8). Some of our extremeness results for
the case E L(/z) have points of contact with some results of [Sh2, 2] but
the approach and formulation are different. When the scalars are the reals,
special cases for E=L(/x) and F=L(u) have been considered in
[I, Theorem 2] and, implicitly, in [Ki, Theorem 2]. Concerning case (ii) the
problem of characterizing an extreme contraction T between C-spaces E
C(H) and F C(K) have been studied by several researchers. The most
desirable criterion for T to be extreme seems to be that T be a composition
operator modulated by a unimodular function, which is just criterion ()’ in
Theorem 3.7. This is equivalent, as is not difficult to show, to T* mapping all
extreme points of the unit ball of F’ to those of that of E’; such a T is said to
be nice. (The extreme points mentioned are unimodular scalar multiples of
evaluation maps.) The criterion, clearly sufficient, is not always necessary
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532 CHARN-HUEN KAN

[Sh3], [Sh4] but it indeed is for close to ten independent known cases, each
case with its own conditions imposed on the underlying topological spaces or
the operator or boththe scene is a mosaic. See [Shl], [Ge], the lists in
them, and [B]; see also [AL], [BLP] and [CL] for those listed results. See
[Gr3] for a related development. Most cases are for both real and complex
scalars, but a few are known only for real scalars, the corresponding complex
cases being undecidable yet. Our contribution to this intriguing problem,
Theorem 3.7 (with B F), treats a new case in which T has a linear
modulus, a consequent condition in fact of T being a modulated composition
operator. This case generalizes three established cases, namely (1)when K is
Stonean or equivalently F is order complete, in [SH1, Theorems 2 and 4] (see
also [Ge, Theorem 1.3(ii)] with a different proof), (2)when K is quasi-Stonean
and H is metric, in [Ge, Theorem 1.4] and (3)when T is compact, in [BLP,
pp, 751-752]. This can be seen from Theorem 3.10 and Remark 3.8(b).
We also consider the related problem of characterizing the extreme points

of the set of positive contractions. The criteria turn out to be analogous to
those for general contractions in the corresponding cases, with similar proofs
that require only very little extra effort.
One may note that virtually all our extremeness results are still valid if the

sets of contractions being considered are restricted to those of compact ones;
this is evident from the proofs. By the same token we may restrict to weakly
compact contractions. (If E or F is reflexive these are just ordinary contrac-
tions [C, Proposition 5.2].)
For related results on extreme contractions between Lp spaces see [H],

[K], [Grl], [Gr2], [Gr4], [Kan3], [Kan4].

1. Norm structure function tl(T)

Let F be an s-normed space (0 < s < 1). That is, F is a vector space
equipped with a translation-invariant metric III f-g Ill(f, g F), for which
the associated functional II1" III, called an s-norm, satisfies II[cglll
Ic[ Ill g I1[ (g F, c a scalar) [K6, 15.10]. On F define the formal norm
II’ll Ill" III1/S, which is a true norm if s=l. Similarly let E be an
r-normed space (0 < r < 1) with an r-norm IIr. The space S --S(E, F) of
all linear operators T: E F with TII sup{ Tfll: f E, Ilfll 1} < is
s-normed by T IITII s. S is complete or in particular a Banach space if
accordingly so is F. Let /-= ’(E, F) {T: [[TI[ < 1}, the unit ball of S
consisting of all contractions from E to F, and ext if, the set of extreme points
of ’. This will be the standing setting in the paper. All true or formal norms
will be denoted by II" when the reference is clear from the context.
E Lp(IX)- Lp(X,,/x) (0 <p < ), a usual Lebesgue space, is

min{1, p}-normed, with Ilfll (fillp dtx)1/p (p <) or ess suplfl (p ). For
p < we always assume that (X,,,/x) for Lp(tx) is a direct union of finite
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measure spaces, without loss of generality; see [Kan3, p. 615] or [L, Corollary
to Theorem 15.3]. Then every sub-familyX of (,,/x) has a lattice supremum
supX (modulo /x-null sets). For p o this assumption would imply that
Loo(/x) is the dual space (La(/x))’ of LI(/x) and an order complete lattice (a
property needed to define 6a(T)). For each A -and each measurable
function f on (X,,,/x) let fA be f on A and 0 on Ac, the complement of
A. (We can allow for f not defined on A.) Let EA {f E: supp f c A}
where supp f {f 4: 0}, the support of f.
EA is identified with Lp(A,/x), and fA or 1Af with f[A. When p < oo for

each T ..qe define o(T) sup{A ." TEA {0}} and s(T) (o(T))c.

(1.1) PROPOSITION. Let 0 < p < 0% E Lp( /x), F be an s-normed space
(s < 1) and T. Then TEo(r) {0} and TEA 4= {0} if ( 4= A - s(T).

Proof The result on s(T) follows from definition. For the result on o(T)
let 0 4: f E,(T). There exist A1, A2,... ,with TEAn {0} (n 1, 2,... ),
such that supp f c U An. Hence

=0+0+ 0. rn

Let p < s < 1, E Lp(/x), F an s-normed space and T .. Define

,(Z) (0 , Z ( )- Zfll Ofll W E},

Then 6a(T) =- inf//(T) L2(/x) exists and is majorized by l(r)llTll
#’(T), by Proposition 1.1. The Lo(/x) norm, for 61(T) and related functions,
will be denoted by [[. 1[. An element of Loo(/x) is considered also a
multiplication operator that it induces. Denote by lp(n) the n-dimensional
Lp space over the counting measure on n points.

(1.2) THEOREM. Let p < s < 1, E Lp( /x), F--an s-normed space and
T 5. Then:

(a) 8a(T)//e’(T), i.e., IlTfll < [161(T)fll Vf E.
(b) supp I(T) s(T).
(c) V’O Lo(/x), (i) tl(r ’r/) [’r/[ tl(r) and (ii) ’0(r)ll To nil.
(d) 81P(.) is sub-additive on .q.
For E Lp(/x), F Zq(v) and T Sa even in the finite-dimensional case

II(Z)ll < IlZll may occur when p > min{1, q} s instead.

Proof Observe that since p/s < 1 we have

(1) IIg + h p < (llgll + IIh II) p/s < ilgllp / Ilh p, (g, h F).



534 CHARN-HUENKAN

We first prove (d). Let S , : /(S) and sr (T). By (1),

(S + T) fllp Sfllp -I-- Zfllp fllp -4- fllp ( ,ff p -4- p) 1/p fllp

for all f E. So i(S + T) < scp + sr p. From this, property (d) follows.
If , r //e’(T) and A -then for all f E by inequality (1) again,

(2) Zfll1 ZfA p + ZfAc I[p UA p + fAC p ’A f + Gcfllp.

Taking A ( < if} in (2)we obtain that : A sr cA + A //Y(T). Thus

(3) ///( T) is closed underformation offinite lattice infima.

Assume first that (X, ,/z) is tr-finite. Fix some f0 E with supp F0

For some :1, :2,... (T)we have

IInf011 + m ---inf(llCf011"

By property (3), 0 :1 A A Sen e’(T) (n > 1). By virtue of the domi-
nated convergence theorem applied on O,,fll for any f E and in particular
for f=fo we get 0 inf{0n} (T) and II0f011- m. For each 0=
e’(T), 0 A 0 d(T) by (3) and as "f011 is strictly monotone on L+(/z), 0 A

0 0. Thus 0 61(T). This proves (a) in the o-finite case. To prove (a) in
the general case we first show that (c)(i) holds when restricted to r/= 1A
(A -). Indeed if sc /(T 1A) then sc > cA 0A /(T 1A) for a 0
/e’(T), e.g., 0 sea + 1AcI[T[[ by argument (2)with ff [[T[[. Conversely if
0 /Y(T) then 0A /(T 1A). From these,

(4) 6(To 1A) =in.f{ 6" sc ’(T 1A) inf(0A- 0 {(T)}
1A (l(r)"

Given 0 4:,f E by (4) and the previous case 1A61(T)/(TolA) for
A suppf. This implies (a) (apply the norm inequality for T 1A on f).

Property (a) and 6(T)< I(T)IIT[I (by Proposition 1.1) imply (b) and
equation (c)(ii) for 1. The latter implies (c)(ii) in general if c(i) proved.

Equation (c)(i) is true for r/= 1A(A --) by (4) and trivially also for r/a
scalar. Hence by an easy argument (c)(i) holds for r/ a simple function. The
general case of (c)(i) follows by approximations as both sides of the equation
are norm-continuous on r/ L(). To see this for the L.H.S. note that for
all rt, rt’ L(/z) by (d) and (c)(ii) for r/= 1 applied to T

IIlP(To) /(Zo’)ll II(Zo(- ’))11
TIIp ’ IIP,

-IlZo(- ’)11p
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For a non-example when p > 1 let T .q(lp(2), lq(1)) map (x, y) to x + y.
Given e > 0, by simple calculus (1 + e, t), (t,, 1 + e) ’(T) for some t,,
1 < t < . As 6a(T) > (1, 1) so equality holds. Since p liT(l, 1)11/11(1, 1)11

21-1/p > 1 so [ITll > 1161(T)11o. When p > q the same arguments apply
to T= diag(1, 1).(lp(2),lq(2)), for which p= 21/q-1/p > 1. ff]

(1.3) COROLLARY. With Ank {11 Tll(k 1)/2" < 61(T) < Tllk/2"},

2

61(T) L-lim 1A,, To l,ll
no k=l

inf{1A]lTo1All + 1AllT1A]I" A .-}.

Proof The first equality follows readily from Theorem 1.2(c)(ii), by which
the sum of the R.H.S. differs from 61(T) by not more than TI[/2 n. For the
second equality the defining set of functions for d =- the stated infimum is a
subset of/Z(T) by the argument in (2)with sc 11T 1A and sr 11T 1ACl[.
So 61(r)< d. But d _< the displayed limit; note that T 1A -O for A-
61(T) 0}. The result follows.

Explicit expressions for 61(T) in some cases will be given in (1.4), (1.6) and
(2.2). Define the atomic segment @(IX) of a measure space (X,, Ix) to be
the supremum of all its atoms (identified as singletons). If E Lp(X,, ix)
and A -we identity the dual space (EA)’ with {A E’: AEAc {0}}.
The main part of Theorem 1.4 below has a close analog [Kan4, Theorem

2.2] for, instead of ,, a tr-subalgebra

-( T) A -: Tfl Tgl 0 Vf EA g EAC

in the case E Lp(ix), F Lq(t,), 1 < p < q < and O # T ..
(1.4) THEOREM. Let p < s < 1, E Lp( ix), F be an s-normed space and

0 :/: T .. Then (- s(T), ix) is purely atomic, i.e., T T 1@(), and

61(T)(x) IlTolxll IlTlxll/lllxll Vx supp tl(T ) s(T) c @(ix).

In particular (cf [D11),

E’= (E@ g))’

{function on @( tz)" I1:11’ sup I(x)l/({x}) a/p- < o).
x@(t)
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Here a member of the last set acts on f E@() according to the equation

(f,> E f(x)(x)p,{x},
x@(g)

with operator norm <’, t: > :11 ’. The sum converges absolutely.

Proof Assume to the contrary D s(T) \ @(/z) 4: . There is an f ED
with Ilfll 1 and Tf # O. Let A supp f. Now IITf(.)ll is subadditive and
IIf(.)ll is additive, in fact a finite diffuse measure, on-A. So if # A
-c A is partitioned into non-null subsets B, C 5- then

p(A) =- IlZfAIl/llfAIIp max{ p(B), p(C)}.

Also any such A can be split into two parts of equal diffuse measure (see
e.g., [W, p. 100]). Hence there exist inductively A1, A2,... -with An+l c
An, Ilfxn-,[[p [[fAn][P/2 and p(An+l) > p(An), (n > 0). We have

IITII >_ IlZfAnllW/llfnll p(An)/llfnlls-p >_ p(A)2n(s-p)/P / c,

a contradiction. Thus -C s(T) is purely atomic. The description of 61(T)
then follows easily from Theorem 1.2(b) and (c)(ii).
For the second part the main result with F =/1(1) gives E’= (E@())’.

Further given A (E@())’ let (x) A1,/{x} (x @(/x)). Then

I111’- suplAlxl/lllxll IIAII < o

x

and

<f, > _f(x)A1x Af(f E@(,)

by continuity of A and by f having r-finite support. The inverse correspon-
dence is A ( -, ). To show ( -, : ) (E@))’ note that terms of the
displayed sum form an element of/p(@(/z)) (Lp space over counting mea-
sure on @(/x)) with formal norm < Ilscll’llfl[. As (.)P is countably sub-
additive on non-negative numbers this implies absolute convergence of that
sum. Moreover <’, t: > -< t:ll’ SUpx <ix, : ) III Ix and so equality holds
here. c3

An s-normed (vector) lattice is a vector lattice equipped with an s-norm
that is monotone on the positive cone and invariant under modulus taking.
When E and F are r- and s-normed lattices with positive cones E+ and F+,
the (linear) modulus TI, if it exists, of a T is a Positive operator S
(i.e., one mapping E+ to F+) for which sup{ITgl:lgl < f} Sf exists for each
fE+.



NORM STRUCTURE FUNCTIONS 537

Note that Banach lattices F satisfying the requirement in Theorem 1.5 on
norm bounded increasing sequences include reflexive ones due to a theorem
of Ogasawara [S, Theorem 11.5.11]. Also the requirement on J is satisfied if F
has order continuous norm [S, Theorem II.5.10], or in particular is an Lq
space (1 < q < o).
For an element f in a function lattice (normed lattice whose elements are

measurable functions) define its signum function sgn f to be f/If[ in supp f
and 0 elsewhere. Denote sgn f by s- f.

(1.5) THEOREM. Let p < s <_ 1, E Lp( ) and F be an order-complete
vector lattice with a complete, strictly monotone s-norm in which every s-norm
bounded increasing sequence is s-norm convergent. Then:

(a) is a complete s-normed vector lattice under the operator s-norm and the
linear modulus. Moreover, (ITI) (T) for each T.

(b) In the case p 1 s for each T -, T*l also exists. Further, when
either the canonical imbedding J: F - F" preserves arbitrary suprema or
F is a function lattice T*I TI *.

For E Lp( /), F Lq(l) and T even in the finite-dimensional case
IlITI TII may occur when q < and p > min{1, q} s instead.

Proof (a) For the lattice part it suffices to show that any given T Z: has
a linear modulus of norm [[TI[. Let f E+. For a (finite, measurable)
partition

_
of (X, ,,/z) by inequality (1) in the proof of Theorem 1.2,

EOrf l A (EOIrfAII A

_< TI]( E {]]fA ]]P" A _})I/P TI[" ]lf]].

The L.H.S. has a finite supremum over all such and the sum there
increases as gets finer. So any maximizing sequence of partitions can be
refined to a progressively finer (p.f.) one {n}, for which E(ITfAI: A n}
converges by the given condition to a limit, designated TIf, in F/ with

ITIfll the said supremum < TI[ Ilfll. As the formal norm of F is strictly
monotone on F/, {joint refinement of .n and _} for any given

_
is a like

sequence inducing the same limit TIf. Thus TIf sup{E{ITfA I: A _}:

_
is a partition}. Positive linearity of IT[ on E+ is easy to prove when applied
on simple functions; for two such functions use a common p.f. maximizing
sequence {_n} for which each _" refines the partitions due to their sets of
constancy. The general case follows by approximating g E/ from below by
simple h E+. Observe that

_(ITIg- ITIhn) <- ITl(g- hn),
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since +(IZgAI ]T(hn)AI) IT(g- hN)AI (A ._-). We can prove IZgl
[Tllgl (g E) likewise by approximation (Re g)-+, (Im g)-+ and hence
from below by simple functions. Now {IZgl" Igl -< f} is majorized by Tlf and
so has a supremum Sf as F is order complete. On the other hand given a
partition {A1, A2,..., AN} we have by IS, p. 134] (or [L, p. 9]),

EITf4nl E sup Re(einZfAn)
On

sup Re(T__,einf4n ) < Sf.
01 ON

It follows that TIf-- Sf. Hence TI extended linearly to an element of S is
indeed the modulus of T and has norm TII.
From the equality TIf- Sf we deduce that for any A ,, Zl 1A

IT 1AI. Hence tl(I TI) 61(T) by Corollary 1.3.
(b) T*I exists by [S, Theorem IV.1.5(i)]. For each f E/ and g F’,

<f, lT*gl> <fqT*g> <T(rf),g> < <lTlf, Igl> <f, lTl*lgl>,

where r/= sgn T*g. It follows that IT[* [gl [T*gl. So IT[* [T*[.
Conversely for each h E/ and g (F’) /, letting Jl: E E" be the

canonical imbedding of E into its bidual E" we get for each angle 0,

<Re(eiTh), g) Re<h, eiT*g) < (h,IT*lg) <g,lT*l*Jlh).

If J preserves arbitrary suprema this implies

T* I*Jlh > sup J Re( ei Zh) Jsup Re( ei Zh) JI Zhl.
0 0

Hence

<lThl, g> <g, JIThl> < <g,lT*l*Jlh> <h,IT*lg>.

If F is a function lattice the net result (I Th I, g <_ (h, IT* [g) can be directly
proved via using a signum function as in the last paragraph. Consider further
each f E+ and any partition {A1,..., As} of (X,,/x). Applying the result
just obtained we get

< lTf.l, g> <lTf.l, g> < <f.,IT*lg> <f, IT*lg>.

Since Tfl is a sequential limit as described in the proof of (a) this implies
(ITlf, g) _< (f, IT* Ig). So Tl*g < IT* Ig. It now follows that TI* T*I.
For the non-example part let T (/p(2),/p(2)) map f (x, y) to (x +

ty, y tx) for some > 0. Then Tfll < IIITI fill if xy # 0. As T attains its
norm it remains to get.

max{llr(0,1)ll, IIr(1,0)ll} < IIIT1(1,1)11/11(1,1)11
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say, i.e., (1 + tq)2q/p < 2(1 + t)q. When p > 1 this is true for 1 and
when p > q, for small enough. 3

(1.6) COROLLARY. For each
IT*I1.

T ’(LI(/Z), LI(p)), 61(T) TI*I

Proof For all f Ll(/X) IIIZlfll < <lTIIfl, 1) (Ill, ITI*I>
Ilfl TI *111. Equality holds if f > 0. So T*I1 TI*I 6a(I TI) 61(T) (The-
orem 1.5(a)(b)). t3

(1.7) LEMMA. Let 0 # f E =- Lp( z) (0 < p < ) andA supp f. Then

span{ fc C -N A EA

Proof Let 0 # g EA.
h (g/f)A as an element of Zp(lflp dtz) is the limit of a sequence

{h EkcnklAn} of simple functions supported in A. (Approximate (Re h) -+

and (Im h) -+ from below by non-negative simple functions.) So EkCnkfAn,
hnf hf g in the metric of EA. 1

(1.8) PROPOSITION. Let p < s < 1, E Lp( ia,), F be an s-normed space,
T and 0 # f E. Then with A supp f,

IITIAII sup{llZfcll/llfcll" C -nA}.

Proof Let g-- ECnfA be a finite sum with disjoint A -0 A \ {}
and scalars c # O. By inequality (1) in the proof of Theorem 1.2, IITgllp <_

E lCn [P TfAn p while IIg p E lCn [P [[fA p- Hence

Zg p/IIg IIp < Zfan IIp/]lEA p for some n.

So IlZgll/llgll < stated supremum < [[T olAI[. These g are dense in EA by
Lemma 1.7. The result follows. El

(1.9) COROLLARY. There exists a sequence of countable, measurable parti-
tions ofA that are progressively more refined such that

1A6(T) Loo-lim {acllZfcll/llfcll" C c,n}.

Proof By Proposition 1.8 and transfinite induction with notation in Corol-
lary 1.3 applied to T 1A (in place of T), each non-empty Ank admits a
countable, well-ordered measurable partition ,n with

TEE II/lifE + l/n > To 1c,
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(C ,nk, C’ Ank \ sup{members of nk preceding C}), so that
IlZfcll/llfcll and 61(T) differ by not more than IIT olA]I/2n / 1/n on C.
Now let ,n= U knk (nk= {} if Ank= Q). For n 2,3,... the con-
struction can be modified so that Ank 0 n-1 C nk also. The result fol-
lows.

Let E Lp(/x), F Lq(u) and T S. For A o and b ’ define

TBA . by TBAf (TfA)n(f E).

(1.10) THEOREM. Let 0 < q < , p < min(1, q}, E Lp(iz), F Lq(v)
and T .. Then 6(l.)T) is additive on ’.

Proof Let 4= B ’ be given. We need only prove that

(1) q(T) q(lnT) + q(lncT).

(Replace T by 1DT (D ’) to get the theorem.) Let 0 4=f E and
A supp f. Take any 4= Z -N A and e > 0. Repeated relativized
applications of Proposition 1.8 on 1BcT in a transfinite induction process
yield a well-ordered countable decomposition of Z, such that for all
Cg,

ZBcfl[ q

]lfcll q > IIiBcT lc, q > inf(1BZ)A ’
(where the infimum is taken over A) by Theorem 1.2(c)(ii). Here C’
sup(members of preceding C}. Also

II Zcfll/Ilfc Zzfll/IIfz for some

(extend the argument in the proof of Proposition 1.8 to fz E{fc" C }).

llZfcll )
q

liT 1A q > Ilfcil

("Tzfll)>- Ilfzll

( Zcfll )
q

( Zcfll )Ilfcll
/

Ilfcll

+ inf6q(lsT)_..
A

Hence by Theorem 1.2(c)(ii) and Proposition 1.8 again this gives

(2) 1A aaq(T)ll -IlTolAIIq> IITzAII q + inf61q(lzcT)
A

>_ 1Aalq(1BT) + infA gilq(lzT).
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Conversely q-additivity of the formal norm on F and the same theorem imply

(3) I{(T) _< IlZolll q IIZll q + IIZll q

II1(1T)11 + IIlq(lcZ)lloo.

As A is arbitrary albeit of o--finite measure inequalities (2) and (3) imply
equation (1) by approximations. Indeed given integer n > 1 partition X into
finitely many subsets wherein each of all three terms in (1) has /x-essential
oscillations < 1/n. Partition each subset into further subsets A of finite
measures. By (2) and (3) considered at points of such A, the two sides of
equation (1) differ by not more than 2/n a.e. on X. So they are equal a.e.
(Note that the special case p < min{q, 1} also follows from Theorem 1.4, and
the case p 1 q follows from Corollary 1.6.) q

2. Extreme contractions on Lp, p < 1

(2.1) THEOREM. Let p < s < 1, E Lp( IX), F be an s-normed space and
T ext . Then:

(a) T 1A ext ’(AA, F) for each 4: A .
(b) 61(T)= lwhenp 1.

Proof (a) Let R ’(EA, F) with T 1A R "(EA, F). Extend R to
R with R IA O. We have by Theorem 1.2(c)(i),

61(T R1) 1A61(TolA 4- R) + la6,(T olaf).

So T +_ R ’ by Theorem 1.2(c)(ii). Thus R O R.
(b) We use Theorem 1.2 freely. We have 6 61(T) < 1. Let g F with

Ilg[I 1 and S (., 1)g. Then 61(S) 1 and

61(T+So(1- 6)) < 6+ (1- 6) 1.

SoT_+So(1- 6)’,whenceSo(1- 6)=Oandl- 6= 61($o(1- 6))

Call an extreme point of the unit ball of an s-normed space F an extreme
unit vector of F.

(2.2) THEOREM. Let (X,, IX) be a r-finite measure space, E LI(IX), G
a Banach space and T (E, G’), where either G or TE is separable. Then
there exists a ix-essentially unique weak* measurablefunction q(T) on (X,, ix)
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to G’ such that (g, qg(T)(.)) L(/x) 0/g G) and

<g, Tf> f <g, q(T)(x)>f(x) dtx(x) (Vf E, g G).

Moreover, IITll esssupllq(T)(.)ll and al(T)--IIp(T)(’)II.
Further T ext g/only if II(T)(’)II 1 Ix-a.e. Conversely either G or E is

separable T ext g/if q(T)(x) is for tx-a.e, x an extreme unit vector of G’.

Proof The unique existence of the specified q(T) and the formula for
TII are given in [DS, VI.8.6-7] (see also [S, Theorem IV.7.6]). The displayed

representation equation shows that for each A ,, T 1A is similarly
induced by 1Aq(T) as T is by q(T). It follows that 61(T) IIq(T)(-)ll since
by Theorem 1.2(c)(ii), for all A ,,

II1Aaa(Z)ll IlZo 1All esssupllq(Z)(x)ll.
xA

The necessary condition for extremeness then follows by Theorem 2.1(b).
For the sufficiency part let R with T + R g/. When E is separable T
and T + R all have separable ranges. So under the given conditions all three
operators have their respective representations as described in the theorem.
By the expression for 61(-) again and Theorem 1.2(c)(ii) we get for/x-a.e, x,

Ilqg(T)(x)ll- 1 >_ IIp(Z +__ R)(x)ll--IIp(T)(x) +__ q(R)(x)ll.

As q(T)(x) is for /x-a.e. x an extreme unit vector, q(R)(x)= 0 G’ for
/x-a.e.x. So R O and T is extreme, rq

(2.3) THEOrEM. Let E--LI(/x) and F be a normed space with strictly
convex bidual F". Then a T is extreme if and only if l(Z) 1.

Proof By Theorem 2.1(b)we need only prove the sufficiency. So assume
31(T) 1. We use results in 3. By Corollary 3.2, &(T*)= 61(T)= 1. By
Theorem 3.3 applied to T*, T* is extreme and so is T. rq

In view of Theorems 2.2 and 2.3 we posit a conjecture below, which is true
when /x is purely atomic (Corollary 2.6) or when T is a dual operator
(Theorem 3.4 and Corollary 3.2). Note that a strictly convex (s.c.) normed
space F may not have a s.c. bidual F". Indeed 11, being separable, can be
equivalently renormed (e.r.) to be a s.c. space F [K6, p. 362, item (5)] but its
dual l cannot be e.r. to be smooth [D2, Theorem 9]. So F" is not s.c., or else
F’ would be smooth by [AB, Footnote 13] (or [K6, p. 346, item (2)]). Another
example is F e.r. co(A) (A any uncountable index set) [D2, p. 517,
comment (ii)].
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(2.4) CONJECTURE. For a strictly convex normed space
gc’(Ll(/x), F) is extreme if and only if 6a(T) 1.

F, a T

In the general setting of r- and s-normed spaces E and F respectively, for
each t define (T) {f E: IITfll Ilfll} and

A(T) f E" f 4:0 , Tf/ Ilfll an extreme unit vector of F}.

One can see that T ext if E spalT). The following two results
clarify this situation when E LI() and F is a normed space. Note also that
T ext ff only if 1 (T) (x @(/x)) by Theorem 2.1(a).

(2.5) THEOREM. Let E L,I( /x), F be a normed space and T with
A(T) {0}. Then A(T) LI{A/(T) EA} for a unique disjoint family {A}
c-\ {(} with sup{supp f: f A(T) 0 EA A for each index a.
Moreover for each index a there exists (

_
g,) E’ F with Il 1A

and g an extreme unit vector of F such that

and consequently

TolA. (., ,)g,

A/( T ) q EA A(T) EA ch h E c a scalar}.

Proofi Let f A(T), Ilfll 1. Let B o-f3 supp f. Then

IlZfll IlZfll + IlZfcll IIfll + IIfll 1.

Thus equalities hold. Hence fB A/(T) and as Tf is an extreme unit vector,

Tf- IITfllTf--- IIfllTf---<fB,-f>Tf.

So T lsupp f-- (.,-f)Tf by Lemma 1.7.
Define an equivalence relation on unit vectors in A(T) by: fl f2 if

and only if Tfl and Tf2 differ by a scalar factor. It induces a partition {A} of
these vectors into equivalence classes mod Let A sup{supp f: f A}.
Well order {supp f: f A} as {supp h,} for some h A. Inductively for
each ordinal /3 let B ’> A \ sup{supp ft /3’ </3} (B A) and let

f be the normalized first (with reference to y) non-zero (h)B, until B
becomes . Each fA and by the result of the last paragraph, {supp f}
partitions A. Let g Tf,o. Then Tf,t -c,tg, for a unimodular scalar

c. Let sr ? sgn ft on suppf for each /3; let ’, 0 on (A’)c. Now
each pair (sr, g) is defined. The assertions can then be routinely verified.
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(2.6) COROLLARY. Z sup(supp f: f cvCTq(T)} sup{A’}, spanT)
Ez and lzl(T)= 1z. Furthermore T iz ext ’(Ez, F).

Proof. The first statement is an easy consequence of last theorem. For the
extremeness part, if R S,(Ez, F) is such that T + R ’(Ez, F) then R O
on A)(T), whence on Ez. [3

(2.7) THEOREM. Let p < s < 1, E Lp( ix), F be an s-normed space and
T ’. Then A(T) cA(T) {clx" c a scalar, x @( ix)}.

Further 61(T) 1@(,) if and only if the last two sets are equal, while all three
sets are equal if and only if T exp . In particular T ext

(i) for F a strictly convex normed space if and only if 61(T) 1@(,), or
(ii) for F M-normedwith unit 1 if andonly if [Tlx[/[[lx[[ 1 /x @(ix).

Proof Let f vf(T), Ilfll 1. For each B -c3 supp f,

Zfllp < (11TTB / TTBc )p/" <- (llf / liThe )p/

< Ilfn p / IIfc p 1.

So equalities hold. As p/s < 1, Ilfn II or Ilfn is 0. Thus supp f is an atom of. This proves the second inclusion; the first is trivial. The last two sets are
equal if and only if 61(T) l@(t by Theorem 1.4. All three sets are equal if
and only if ix vl?(T)(x @(/x)), which implies T ext ’ as R R 1@)
/R .’ (Theorem 1.4). The converse holds by Theorem 2.1(a) applied to
each atom A {x}.
The result (ii) follows as g =- Tlx/II lll F is an extreme unit vector if

and only if Igl 1. (Necessity: lg + (1 Igl)l -< 1. For sufficiency, imbed F
into Fn, a space C(K) [S, Theorem 11.7.4].) (i) is easy.

Let E Lp(ix) and F Lq(v). T . is said to be codisjunctive if for
each B’ there is an A-such that TocA =O=TnAc. (This was
introduced in [Kan2].) Dually T is disjunctive (also called Lamperti in [Kanl]
due to a theorem of J. Lamperti [La]) if ITf[ A [Tg[ 0 for all f, g E with
If] A ]gl 0. When v is a direct sum of finite measures (recall our conven-
tion in 1) this is equivalent to requiring that given A -there exists
B ff such that again TsA 0 TAC. It is routine to prove that for
1 < p, q < oo, T. is codisjunctive if and only if T* is disjunctive. (See also
[Kan4, Theorem 2.1].)
When E Loo(ix), F Loo(v) and T .’ is disjunctive we have

(Property D) T (T1)# and Zfl TI Ill (f E).

(See Remark 4.1 and Theorem 3.1 in [Kanl].) Here # is the unique linear
operator .Z’ induced by a Boolean ring homomorphism : (,, ix) (’, v)
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satisfying #1, 1,4 (A -). We may in face define A supp T1,4
(A -)if A has finite measure.

(I) # is positive and preserves L convergence. Note that Ifl lfl
(f E) and so in Property D, IT[ [Zl[#. Also, # preserves sequential
a.e., not necessarily Loo, convergence if (I) is a Boolean tr-ring homomor-
phism. (See also [M, p. 159] or [Do, pp. 453-454].) Such a # has the formal
properties of a composition operator induced by a measurable transforma-
tion and in some cases simplifies to one.

(2.8) THEOREM. Let p < 1 < q < , E Lp(tz) and F Lq(p). Then a
T " is extreme if and only if:
(1-1 +) in the casep < 1 < q, 61(T) 1@();
(11 +) in the case p 1 < q, 6I(T) 1;
(1-1) in the case p < 1 q, tl(T) l@(g) and T is codisjunctive;
(11) in the case p 1 q, 6a(T) 1 and T is codisjunctive.

Moreover, criterion (1-1) is equivalent to (1-1)’, and (11) to (11)’ below:

(1-1)’

(11)’

T T 1@() and T1 (x)lg,(x), I(x)l Illxll/lll(x)ll(x
@(/z)) for a function on @(/x) and a mapping " @(/x) --+ @( v)."
T* h for an h Lx( tz) with h 1 and a tr-algebra homo-
morphism " (’, v) --+ (,, tz).

Proof The first two parts follow from Theorems 2.7(i) and 2.3. Consider
the other two, where q 1.

Necessity. The part on 81(T) is by Theorems 2.1(b) and 2.7. Given B ’let sc 81(1BT), " 61(1BET)and R lnT "- ltcT so. Then 0 _< sc, r _< 1
and T +_ R lnT o(1 _+ st) + lnT o(1 -T- so). By Theorems 1.10 (or Theorem
1.4 and Corollary 1.6)and 1.2(c)(i),

tl(T
___
R) tI(1BT o(1 st)) + 81(1BT o(1 -T- ))

(1 + ’)sc + (1 T- sc)"= sc + sr= tl(T) _< 1.

So T R (Theorem 1.2(c)(ii)) and R O, i.e., 1BT " O lnT so.
By Theorem 1.2(c)(i), sc" 0. By Theorem 1.2(b), T is codisjunctive.

Sufficiency. Assume (1-1). As T is codisjunctive, for each x e
@(/,), supp T1x is an atom of (Y, ,g, v). So via Theorem 1.4, I x Ag’(T). By
Theorem 2.7, T is extreme.
Assume (11). Let R Sa with T _+ R . Then IT* _+ R* 11 61(T

___
R)

_< 1 by Corollary 1.6 and Theorem 1.2(c)(ii), while IT*[1 61(T)= 1. But
2[T*I _< IT* + R*[ + IT* R*[. It follows that equalities hold for all three
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inequalities. So by Property D for T*,

21T*gl 21T* lgl IT* R*I Igl + IT* R*I Igl
>_ Z*g + R*gl + T*g- R*gl
>_ 21R*gl, (g F’).

This implies that T*+ R* and R* are disjunctive, since T* is. From
IT*I1 1 IT* + R*]I, we get by Property D again ]T*ll 1 IT*I +
R*ll, implying 0 [R*ll IR*I1. Hence R* O, or R O. Thus T is
extreme.

Clearly (1-1)’ implies (1-1) and (11)’ implies (11). Condition (1-1) implies
(1-1)’ by Theorem 1.4; see also the pertinent sufficiency part. Condition (11)
implies (11)’ by Property D and Corollary 1.6; preserves countable unions
as T*I ]Zl* is sequentially order-continuous (see e.g. [G, p. 34]). rn

(2.9) Remark. One can also consider p < q < 1. The case p < q < 1 has
the same extremeness criteria as for p < 1 q. When p q < 1, T ext
if and only if both 61(T) lsE,v) and T is codisjunctive, where

s(E,F) (sup{A -: Sa(EA,F) {O}}) c.
The proofs of these cases especially the latter are more elaborate but partly
resemble those for the cases p< 1 =q. (To show a Textff to be
codisjunctive change R in the proof of Theorem 2.8 to R 1BT sc 1-qff_
1BcT serf 1-q and get 8(T + R) < 8q(T) < 1 via Theorem 1.10 and Jensen’s
inequality for (.)q.) These cases p < q < 1 are less intriguing as here is
generally not convex.

3. 8(T) and extreme contractions into C(K)

We follow the terminology of [S] on M-normed and AM-spaces. Let E be a
normed space, F an M-normed space and T. Define

7//(T) {I Tfl" f E, lfll < 1)

and 8oo(T) sup (T) provided that this exists in F+; it exists for all T
when F has a unit and is order complete, or in particular when F is replaced
by F". Recall that for each subset H F, H= {g F: Igl A Ih[ 0 h
H} and so (TE)" is the band in F generated by TE.
An AM-space (complete M-normed space) F with unit is represented by

C(K), the Banach lattice with supremum norm, of continuous functions on a
compact Hausdorff space K. In this context we consider multiplication to be
defined in F and elements of F also as multiplication operators on F.
Some properties of 81(.) in Theorem 1.2 have dualized analogs for
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(3.1) THEOREM. Let E be a normed space, F an M-normed space with unit
and T for which 6(T) exists in F+.
(a) 6,(r) is a weak order unit of (TE) +/- " and [[6(r)[[ [[T[[.
(b) When F is complete ’q’/ F. (i) there exists 6(lT) [/I 6(T) and (ii)

6(r)[[ r[[.

Proof Let d 6(T).
(a) By [S, Proposition II.1.5], d/x g sup{h /x g: h 7/(T)) 0 for each

g (TE) +/- So d (TE) +/-. Then the definition of d implies that d is a
weak order unit of (TE) +/- i We have d _< TIll and obviously [[dl[ > 11TI[.
Hence [Idll- IITI[.

(b)(i) Let a F+ majorize 7(/T) [/[7(T). As [[ 1 >_ [[ so

a + (tl [r/l)d > sup{[r/[g + (tl [r/[)g tg’g 7/(T)} td,

where nil. Thus a >_ nld. As nld majorizes 7///(rT) so 8(T) nld.
(b)(ii) This follows by (b)(i) and the equation in (a) for r/T. m

(3.2) COROLLARY.
6(T*) 6a(T).

Let E LI( /z), F be a normed space and T. Then,

Proof Let A . Then by Theorems 3.1(b)(ii) and 1.2(c)(ii),

I[1A6(T*)I[ [[1AT*[[ [[TolA[ [[1A61(T)[[.

Since A is arbitrary, 6(T*)= 6(T). []

We have an extremeness criterion dual to Theorem 2.5.

(3.3) THEOREM. Let E be a normed space and F an M-normed space with
unit 1. Then a given T " is an ext ’ only if, and with F complete and E’
strictly convex if, there exists 6(T) 1.

Proof Necessity. Assume T ext ’. 1 majorizes 7//(T). So does d/x 1 for
any majorant d F+. Let R (., h)(l d/x 1) with h

_
E’ of norm 1. If

f E and I[f[[ 1 then

[Tf+Rf[ <_ [Tf[ + (1-d/x 1) <d/x 1 + (1-d/x 1) 1.

Thus T + R g/. Hence R O. So 1 d A 1 _< d and 6(T) 1 exists.
Sufficiency. Assume the last three conditions given. Represent F as C(K)

for a compact Hausdorff space K. The pointwise supremum : of 7(T) is a
lower semicontinuous function on K. 6(T) 1 means that 0 < (y) < 1 Vy
and 1 is the least majorant in F+ of sc. Let U > 1 1/n} (n 1, 2,... ).
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Given y, U--n there is I>_X, F+ with X,(Y,)= 1 and x,(U")=(0}
(Urysohn’s Lemma), whence < 1 Xn/n F+, a contradiction. So each
U" is open and dense in K. Hence 1} + U" is dense in K by Baire’s
category theorem. For each S .2 there is a weak* continuous function
0(S): K E’ such that Sf(y) ( f O(S)(y))(f E, y K) and [[S[[
SUpy[[O(S)(y)[[ [DS, Theorem VI.7.1] (replace E if necessary by its comple-
tion and extend S thereto, as this will not change E’ or for S T, 6o(T));
O(S)(y) is the S*-image of the evaluation map at y. So (:(y) I10(T)(y)II.
Let R .Z.c with T _+ R g/. Then O(T)(y) +_ O(R)(y)[[ < 1 Vy as 0 is
linear on .2. Since E’ is strictly convex this implies O(R) 0 on : 1}. As
: 1} is dense so R O and T is extreme. El

(3.4) THEOREM. Let E, F be nortned spaces with F’ an Ll-space and
T .. Then 3=(JT) 6=(T**) for the canonical imbedding J: F --, F". /f
either side is the unit 1 of F" and E’ is strictly convex then T* is extreme.

Proof For the stated equality let g (F’) + and h E" with [[hi[ _< 1,
we have by [S, Corollary 3 to Theorem IV.1.8],

(g,[T**h[) =sup{[(y,T**h)[’yF’,[y[ <g} lim[(T*yn,h)[,

where each Yn F’ and [Yn[ < g" The unit ball of E is weak* dense in that of
E". So for some fn E with Ilfn --< 1 (n 1, 2,... ),

(g, IT**hl) lim [(fn,T*yn)l lim I(Yn,Jrfn)l <_ (g, too(JT)).
n n

It follows that 6(T**) < 6(JTg. Equality holds as JT T**IE.
For the last part, JT is extreme by Theorem 3.3 applied on JT. Now

.Z(E,F") is linearly isometric to .(F’,E’)with JT corresponding to T*
(forward correspondence: R S R*J and reverse: S R S’J, using
the canonical imbedding Ja: F’ F’"). So T* is extreme. D

We have an analog of Corollary 1.6.

(3.5) THEOREM. Let E be a nortned lattice, F an M-normed space and
T for which ITI exists. Then:

(a) (ITI) 6(T) if either side exists in F+.
(b) For E M-normed with unit 1, (i) there exists 6(T) TI 1 and (ii) when

E is also complete there exist IT a TI lal and
for all a E.

Proof (a) Majorants of 7’(T) majorize 7(T; f) {IZgl" g E, Igl < f}
and so sup (T; f) Zlf, if f E/ and Ilfll _< 1. So they are majorants of
7(1TI), and clearly vice versa. The result follows.
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(b)(i) This follows as 7(T) 7(T; 1).
(b)(ii) The second equality follows from the first one and (b)(i) applied to

T a. The first equality follows since 7//(T a;f)(f E+) is an order dense
subset of 7(T; [alf). To show the denseness represent E as C(H) for a
compact Hausdorff space H. Given g E with [g[ < [a f, for each n
1, 2,..., there exists by Ursohn’s Lemma 1 > Xn E/ for which Xn is 1 on
{Igl >- I/n} and 0 on {a 0}. Define gn to be Xng/a on {a 4: 0} and 0 on
a 0}. Then gn C(H), [gn < Xnf <-f and egg Xng" Hence

IT(agn)[- IZgll _< ITI1. IlXng- gll--< ITll/n " O.

The concept of a disjunctive T in 2 extends to the case where E and
F are normed vector lattices. Given topological spaces h, K, a subset Z c K
and a mapping q: Z H define for all functions f on H,

pof= {fop onZ
0 on Zc.

(Note. Z q is the empty mapping qof 0.)
We have an extension of Property D (in 2):

(3.6) LEMMA. (a) Let H and K be compact Hausdorff spaces. Then T
(C(H), C(K)) is disjunctive if and only if T (T1)q for a continuous
mapping p: {T1 4: 0} H.

(b) Let E,F be Banach lattices and T order bounded. Then T is
disjunctive if and only if IT[ exists and satisfies Tf[ IT[ If[ for all f E.

Proof (a) See [A, Example 2.2.1]. (p has been modified.)
(b) See [A, Theorem 2.4(i)(v)]. The original statement in [A] mentions

Zfl II Till TI Ifl but actually the middle term is not essential. (See also
[Kanl, Theorem 3.1] for the case of L00 spaces E, F.) t3

We have an extended dualized analog of Theorem 2.8 part (11).

(3.7) THEOREM. Let E, F be AM-spaces with unit, denoted by 1 for either
space, and T " for which TI exists. Suppose TE, TIE c B for a
subalgebra B of F containing 1. Then T ext ffl where 1 {S ’: SE c B}
if and only if

6oo(T) TI 1 1 and T is disjunctive.
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Further, apart from the requirements on B:
(a) If we have the representations E C(H) and F C(K) for compact

Hausdorffspaces H and K then () is equivalent to

T h q for an h C(K) with hl 1 and a continuous

mapping q" K --, H;

(b) If E L00(X,, tz) and F L00(Y, ’, v) then () is equivalent to

T hdp# for an h L00() with [h 1 and a Boolean

algebra homomorphism dp. (, ) ( ’, ).

Proof For the equivalence in (a) and (b) clearly each of the conditions
()’ and ()" implies condition (). The converse implication for (a)
follows from Lemma 3.6(a) and that for (b), from [Kanl, Remark 4.1].

Necessity. Let T ext /1- By Theorems 3.5(b)(i) and 3.1(a), TI1
(T) _< 1. TI 1 1 by the proof of Theorem 3.3--change d A I to TI 1 and

to /a. Let a,/3 E + with all t311 1 and a A/3 0. T is disjunc-
tive if :’=0, where sc= Z]a and ’= ]Zl/3. Let R=’Toa-:To/3.
Then

Now a +/3 < 1 and :, sr < TI 1 1. So if f E Ilfll 1 then

I(T + R)fl (1 +__ ’):+ (1 )" + ITI(1 -/3) ITI1 1.

So T + R ’ and R O. Represent E as in (a). There exists 1 > Xn E +

(n 1, 2,... ) with values 1 on {a > l/n} and 0 on {a 0} D {/3 4: 0}. Then
0 R Xn T aXn T a. So by Theorem 3.5(b)(ii) and 3.1(b)(i),

600(T a) 600( T a) 600(0) 0 as wanted.
Sufficiency. Assume (). Represent E and F as in part (a). So

holds. Let R with T+R’cff. Consider any fixed yK. It
follows from ()’ that Rf(y) 0 for any f C(H) with [f(qffy))[ [[fl[.
But all such f span C(H): if g (C(H))+ then with m g(q(y)),

g g A m + Ilgll (llgll (g m) + ).
And as y is arbitrary, R O. So T is extreme. []

(3.8) Remark. (a) Automatically, TI T exists if T is a positive opera-
tor.

(b) TI exists when T is compact. Indeed represent F as C(K), K compact
Hausdorff. By [DS, Theorem VI.7.1] for each S there is a weak*
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continuous function 0(S): K E’ such that Sf(y) (f, O(S)(y)) (f E, y
K) and IISII SUpyll O(S)(y)ll. Further S is compact if and only if O(S) is

continuous with the norm topology in E’. All this implies (using [S, Corollary
3 to Theorem IV.1.8]) that IT[ exists and is compact with a norm continuous
0(IZl) 10(Z)l and IIIzlll [[Zl[. Note that a compact T in condition
()’ has to satisfy further requirements on q; see [Ka, Theorem A(1)] in the
setting E F. Also in Theorem 3.7 we may replace ’1 by {S : S is
compact}, since the operators R used in the necessity part of the proof are
then compact also. When B F this modified Theorem 3.7 is equivalent to
[MP, Theorem 4.5] and comes with a simpler proof. (In Theorem 3.3, ’ can
likewise be replaced by {S : S is compact}.)

(3.9) QUESTION. In connection with Theorem 3.7, what conditions on com-
pact Hausdorff spaces H and K will make (C(H), C(K)) a Banach lattice
(relative to the operator norm and the linear modulus)?

Recall that C(A), A compact Hausdorff, is order complete, countably
order complete or separable according as A is respectively Stonian, quasi-
Stonian or metrizable [S, Propositions II.7.7, Corollary 7.5]. In the light of
this the following theorem gives some answers to the interesting question"
above. (There are likely to be more answers.)

(3.10) THEOREM. Let E and F be AM-spaces with unit. Then - is a
Banach lattice if (i) F is order complete, or (ii) E is separable and F is countably
order complete, or (iii) E is finite-dimensionaL

Proof (i) This is given in [S, Theorem IV.1.5(i), 1.8 Corollary 2].
(ii) Let T. It suffices to show that TI exists; by Theorems 3.5(b)(i) and

3.1(a), I11TI ITIIII II6(T)I[ IITII. Here 1 denotes the unit of E, as
well as that of F. Represent E as C(H) for a compact Hausdorff space H.
For TI to exist it suffices that sup{[Tgl: Igl < f} TIf (f E+) exists, as
this implies that ITI is positive linear on E +. (Clearly ITl(cf) clTIf for any
constant c > 0. Also fl, f2 E+ and Igl < f + f2 imply gl + g2 g and
Ign < fn where g (Igl / f,)sgn g C(H), (n 1, 2), whence TI is sub-
additive. It is easy to deduce that TI is additive.) As TI is continuous on E+

by [S, Theorem II.5.3], linearly extended IT[ . So now let {en} be a
countable dense subset of E. Given 0 4: f E+, let

h (lenl / f)sgn e C(H).
If Igl -< f then Ig hl _< Ig el (by elementary trigonometry in the com-
plex plane) while lZgl- IZhnll <-IIZ(g- hn)lll < IITII" IIg- hnlll.
Hence {IZhl} is an order dense subset of {IZgl: Igl -<f}. Thus sup{IZgl:
Igl < f} sup{IZhl} exists in F+ as wanted.

(iii) This is easy; cf. Remark 3.8(b). t
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4. Extreme positive contractions

When E and F are also vector lattices our extremeness results on ’ or /a
have analogs for += {S a/: Se+c F+}, aq a/+ or some further subset.
We may also restrict these to compact operators; cf. Remark 3.8(b).
The following is a 4+ analog of Theorem 2.8.

(4.1) THEOREM. Let p < 1 < q < , E Lp( z) and F Lq(u). Then a
T ’+ is in ext /’+ if and only if:
(1-1+)* in the case p < 1 < q, 61(T) 1A and A c @( );
(11+) * in the case p 1 < q, 6a(T) 1A, A ’,
(1-1)* in the casep < 1 q, 61(T) 1‘4, A c @(/,) and T is codisjunc-

tire:
(11)* in the case p 1 q, 31(T) 1.4 A -and T is codisjunctive.

Moreover, the criterion (11/)* is still valid when Lq(i) is generalized to a
normed lattice with a strictly convex bidual space.

Proof Necessity. We have

3 31(T) 1 and T _+ To(1 3) /+

as 31(T T o(1 3)) 3 + 3(1 3) _< 1. So

To(1 3) -O and 3(1 3) 3a(To(1 a)) 31(O) --0,

whence 3 1‘4 where A supp 3- s(T)(Theorem 1.2(b)). The part on
@() is from Theorem 1.4. The codisjunctiveness part follows from the
proof of Theorem 2.8; just change ’ to ’+.

Sufficiency. Let R .’ be such that T +_ R 4+. We have A s(T). By
Proposition 1.1, +R 1A (T + R)o lAc g’+ and so R 1A O. By Theo-
rems 2.8 and 2.3 each of the given conditions implies T 1A ext a/(EA, F).
So R o1‘4 O also. Thus R O and T ext ’+.

(4.2) Remark. The part of Theorem 2.8 on equivalence to the criteria
(1-1)’ and (11)’ has an analog here too. In (1-1)’ just change @() to
A s(T) with s(T) c @(/,) and :1 to :. Change (11)’ to

T* # for a it-ring homomorphism " ( ’, u)

#1 equals T*I 81(T)-- ls(T).)(Note that Y s(T) since 1,y
We have an extended ?./+ analog of Theorem 3.3. Note that &(T) exists in

F+ if F is order complete, if E is separable and F is countably order
complete, or if E is an AM-space with unit (Theorem 3.5(b)(i)).
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(4.3) THEOREM. Let E be a normed lattice, F an AM-space with unit 1 and
B a subalgebra of F containing 1. Then a given T 4 =- {S 4+: SE c B}
for which there exists 6,(T) B F+ is in ext 4- only if, and with E’ strictly
convex if, 6oo(T) is an idempotent element of F+.

Proof Represent F as C(K), K compact Hausdorff. The criterion means
6=(T) 1z for a clopen (closed and open) set Z c K. The proof is similar to
that of Theorem 4.1, with 4/ changed to 4i-, 61(’) to 6=(.), and order of
composition reversed. Also change 1A to lz, 1AC to lzc, 4(EA, F) to
4(E, C(Z)), Proposition 1.1 to Theorem 3.1(a) and Theorem 2.8 and 2.3 to
Theorem 3.3. t2

Likewise we have an extended
corresponds to [Ph, Theorem 2.1].)

analog of Theorem 3.7. (Case (ii)

(4.4) THEOREM. Let E, F be AM-spaces with unit, denoted by 1 for both
spaces, B a subalgebra of F containing 1, and T an element of either (i)
(S 4+: SE B} or (ii) {S 4+: SE c B, $1 1}. Then T is an extreme
point of that set if and only if

()* T is disjunctive and, in case (i), (T1)2 T1.

Further, apart from the requirement TE B:
(a) With the representations E C(H) and F C(K) for compact Haus-

dorff spaces H and K, ()* is equivalent to

T q for a continuous mapping q: Z H

were Z K in case (ii) and Z is a clopen subset of K with 1z B in case (i);
(b) If E L(X,, tx) and F L(Y, ’, ) then ()* is equivalent to

T # for a Boolean ring homomorphism d: (-, I) ( ’, u).

Proof The necessity is by Theorem 4.3 for the part on T1 in case (i) and
by the proof of Theorem 3.7 for disjunctiveness. The sufficiency follows from
Theorem 3.7 via the same argument as for Theorem 4.3. []
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