A CONVERSE OF THE JORDAN-BROUWER THEOREM FOR QUASI-REGULAR IMMERSIONS

Osamu Saeki

1. Introduction

Suppose that $f: S^{n-1} \rightarrow S^{n}$ is a topological embedding. Then it is known as the Jordan-Brouwer Theorem that $f\left(S^{n-1}\right)$ separates S^{n} into exactly two connected components. In [BR], C^{1}-immersions with normal crossings were studied and the following converse of the Jordan-Brouwer Theorem was obtained: if $f: S^{n-1} \rightarrow S^{n}$ is a C^{1}-immersion with normal crossings, then f is an embedding if and only if $f\left(S^{n-1}\right)$ separates S^{n} into exactly two connected components. After that, this theorem has been generalized in various settings ([BMS1], [BMS2], [S]); however almost all of them have been involved with immersions with normal crossings.

The purpose of this paper is to consider a more general class of immersions than that of immersions with normal crossings, namely the class of quasi-regular immersions $[\mathrm{H}]$, and to obtain the converse of the Jordan-Brouwer Theorem. Recall that a C^{1} immersion $f: M \rightarrow N$ into an n-dimensional manifold N is quasi-regular if the self-intersection locus $B \subset f(M)$ is an immersed submanifold of N with the property that for each $x \in B$ there is a coordinate system for N valid in a neighborhood U of x so that x corresponds to $0 \in \mathbf{R}^{n}$ and that the branches of f in U correspond to distinct linear subspaces of \mathbf{R}^{n}; i.e., given a numbering $y_{1}, y_{2}, \ldots, y_{m}$ of the points of $f^{-1}(x)$ there are pairwise disjoint neighborhoods $V_{i} \subset M$ around y_{i} so that $U \cap f(M)=U \cap\left(\cup_{i=1}^{m} f\left(V_{i}\right)\right)$ is a union of m distinct linear subspaces of \mathbf{R}^{n}. It is clear that an immersion with normal crossings is always quasi-regular.

Our main result of this paper is the following.
THEOREM 1.1. Let $f: M \rightarrow N$ be a quasi-regular immersion, where M is a closed connected ($n-1$)-dimensional manifold and N is a connected n-dimensional manifold. Assume that $H_{1}\left(M ; \mathbf{Z}_{2}\right)=0$ and $H_{1}(N ; \mathbf{Z})=0$. Then if f is not an embedding, then $\beta_{0}(N-f(M)) \geq 3$, where β_{0} denotes the number of connected components.

Note that it has already been known that a proper codimension-1 quasi-regular immersion $f: M \rightarrow N$ separates N if $H_{1}\left(N ; \mathbf{Z}_{2}\right)=0$ [NR]. In fact, the same is true for proper C^{1}-immersions (see [HP], [F]).

1991 Mathematics Subject Classification. Primary 57R42; Secondary 57R40.

As an immediate corollary, we obtain the following converse of the JordanBrouwer Theorem for quasi-regular immersions.

Corollary 1.2. Let M and N be as in Theorem 1.1. Then a quasi-regular immersion $f: M \rightarrow N$ is an embedding if and only if $\beta_{0}(N-f(M))=2$.

The author would like to express his sincere gratitude to Walter Motta and Carlos Biasi for nice conversations and suggestions. He also would like to thank the referee for nice comments and suggestions.

2. Proof of Theorem 1.1

Proof of Theorem 1.1. It is known that, under our homological hypothesis, we have $\beta_{0}(N-f(M))=2+\operatorname{dim} \operatorname{ker}\left((f \mid A)_{*}: H_{n-2}\left(A ; \mathbf{Z}_{2}\right) \rightarrow H_{n-2}\left(B ; \mathbf{Z}_{2}\right)\right)$, where

$$
A=\left\{x \in M: f^{-1}(f(x)) \neq\{x\}\right\}
$$

is the self-intersection set of f and $B=f(A)$ (for example, see [BMS2, §2]). Thus, for the proof of Theorem 1.1, it suffices to show that $\operatorname{ker}(f \mid A)_{*} \neq 0$. By an argument similar to that in $[\mathrm{H}]$, we see that there exists an immersion $\varphi: X \rightarrow M$ of a closed $(n-2)$-dimensional manifold X such that $\varphi(X)=A$. Note that φ is not necessarily a quasi-regular immersion. By the construction of φ, we see that, for $x \in A, \sharp f^{-1}(f(x))=m$ if and only if $\sharp \varphi^{-1}(x)=m-1$, where \sharp denotes the number of elements in the set. Set $A_{m}=\left\{x \in M: \sharp f^{-1}(f(x))=m\right\}$.

LEMMA 2.1. If A_{m} has an interior point in A for aneven integer m, then A carries a mod 2 fundamental class $[A] \in H_{n-2}\left(A ; \mathbf{Z}_{2}\right)$ which does not vanish.

Proof. Set $[A]=\varphi_{*}[X]$, where $[X] \in H_{n-2}\left(X ; \mathbf{Z}_{2}\right)$ is the fundamental class of X. Note that, for $x \in A_{m}, \sharp \varphi^{-1}(x)=m-1$, which is odd by our assumption. Since A_{m} contains a top dimensional cell of A, we see that $[A] \neq 0$.

LEMMA 2.2. We always have $(f \mid A)_{*}[A]=0$ in $H_{n-2}\left(B ; \mathbf{Z}_{2}\right)$.

Proof. We have $(f \mid A)_{*}[A]=(f \circ \varphi)_{*}[X]$. Note that, for $x \in A$, $\sharp f^{-1}(f(x))=m$ if and only if $\sharp(f \circ \varphi)^{-1}(f(x))=m(m-1)$. Since $m(m-1)$ is always even, we have the conclusion.

By Lemmas 2.1 and 2.2, if A_{m} has an interior point in A for an even integer m, then $\beta_{0}(N-f(M)) \geq 3$. Thus, in the following, we assume that A_{m} for m even has no interior points in A. In particular, the dimension of A_{2} is less than or equal to $n-3$.

Lemma 2.3. Let $H_{1}, H_{2}, \ldots, H_{m}$ be distinct codimension-1 linear subspaces of $\mathbf{R}^{n}(n \geq 3)$. If $\operatorname{dim}\left(H_{1} \cap H_{2} \cap \cdots \cap H_{m}\right)<n-2$, then there exists a non-zero vector $w \in \mathbf{R}^{n}$ such that exactly two of $H_{1}, H_{2}, \ldots, H_{m}$ contain w.

Proof. First we prove the lemma for $n=3$. Suppose that there is no non-zero vector w as in the lemma. Let S^{2} be the unit sphere centered at the origin in \mathbf{R}^{3}. The intersections of S^{2} with H_{i} induce a natural polyhedral decomposition of S^{2}. By our assumption, for every vertex of this decomposition, at least 6 edges are incident. We also see easily that every 2 -dimensional face of the decomposition has 3 or more boundary edges. Let f, e and v be the numbers of 2-dimensional faces, edges and vertices of the decomposition respectively. Then we have

$$
6 v \leq 2 e \quad \text { and } \quad 3 f \leq 2 e
$$

by the above observation. Since the Euler characteristic of S^{2} is equal to 2 , we have

$$
f-e+v=2
$$

Then we have $12=6 f-6 e+6 v \leq 4 e-6 e+2 e=0$, which is a contradiction. This completes the proof for the case $n=3$.

Now suppose $n \geq 4$ and the lemma is true for $n-1$. Let H be a codimension- 1 linear subspace of \mathbf{R}^{n} different from $H_{1}, H_{2}, \ldots, H_{m}$. Suppose that $H \cap H_{i}=H \cap H_{j}$ for $i \neq j$. Then we have

$$
H \cap H_{i}=H \cap H_{j}=H \cap H_{i} \cap H_{j} \subset H_{i} \cap H_{j} .
$$

Since $\operatorname{dim}\left(H_{i} \cap H_{j}\right)=\operatorname{dim}\left(H \cap H_{i}\right)=\operatorname{dim}\left(H \cap H_{j}\right)=n-2$, we see that $H_{i} \cap H_{j}=$ $H \cap H_{i} \cap H_{j}$ and hence $H_{i} \cap H_{j} \subset H$.

Case 1. $\operatorname{dim}\left(H_{1} \cap H_{2} \cap \cdots \cap H_{m}\right) \geq 1$.
Take a codimension-1 linear subspace H of \mathbf{R}^{n} such that $H \not \supset H_{1} \cap H_{2} \cap \cdots \cap$ $H_{m}, H_{i} \cap H_{j}(i, j=1,2, \ldots, m)$. Such a subspace H exists, since the dimension of the codimension- 1 subspaces of \mathbf{R}^{n} is equal to $n-1$, while the dimension of the codimension-1 subspaces containing $H_{i} \cap H_{j}$ is equal to 1 and the dimension of the codimension-1 subspaces containing $H_{1} \cap H_{2} \cap \cdots \cap H_{m}$ is less than or equal to $n-2$. Then by the above observation, we see that $H \cap H_{1}, H \cap H_{2}, \ldots, H \cap H_{m}$ are distinct codimension-1 subspaces of H and $\operatorname{dim}\left(\left(H \cap H_{1}\right) \cap \cdots \cap\left(H \cap H_{m}\right)\right)<(n-1)-2$. Then by our induction hypothesis, we see that there exists a non-zero vector $w \in H$ such that exactly two of $H \cap H_{1}, \ldots, H \cap H_{m}$ contain w. This vector w is a desired non-zero vector.

Case 2. $H_{1} \cap H_{2} \cap \cdots \cap H_{m}=0$.
Take a codimension-1 subspace H of \mathbf{R}^{n} such that $H \not \supset H_{i} \cap H_{j}(i, j=1,2, \ldots m)$. Then $H \cap H_{1}, \ldots, H \cap H_{m}$ are distinct codimension-1 subspaces of H and $\operatorname{dim}((H \cap$ $\left.\left.H_{1}\right) \cap \cdots \cap\left(H \cap H_{m}\right)\right)=0<(n-1)-2$, since $n \geq 4$. Then our induction hypothesis ensures the existence of a desired non-zero vector. This completes the proof.

Remark 2.4. In the above lemma, the case where $n=3$ is equivalent to the well-known Sylvester's problem. For details and the history of this problem, see [G, §2.3]. In fact, the above lemma for $n=3$ is nothing but Theorem 2.12 of [G]. The above proof is motivated by the proof of an improvement of Sylvester's problem due to Melchior [G, Theorem 2.13].

Now recall that we are assuming that A_{2} is of dimension less than $n-2$. Then, by Lemma 2.3 and the definition of a quasi-regular immersion, we see that, for every $x \in B, \operatorname{dim}\left(f\left(V_{1}\right) \cap \cdots \cap f\left(V_{m}\right) \cap U\right)=n-2$, where $f^{-1}(x)=\left\{y_{1}, \ldots, y_{m}\right\}, V_{i}$ is a small coordinate neighborhood of y_{i} in M and U is a small coordinate neighborhood of x in N. Therefore, we see that A is the disjoint union of $A_{3}, A_{5}, A_{7}, \ldots, A_{l}$ for some odd integer l and each $A_{m}(m=3,5,7, \ldots, l)$ is an ($n-2$)-dimensional closed submanifold of M. Furthermore, $f \mid A_{m}: A_{m} \rightarrow f\left(A_{m}\right)$ is an m-fold cover.

Let Y be a connected component of $f\left(A_{m}\right)$. If $f^{-1}(Y)$ is not connected, we see easily that $\operatorname{ker}\left((f \mid A)_{*}: H_{n-2}\left(A ; \mathbf{Z}_{2}\right) \rightarrow H_{n-2}\left(B ; \mathbf{Z}_{2}\right)\right) \neq 0$. Hence we may assume that $f^{-1}(Y)$ is connected. Furthermore, note that A_{m} is orientable, since it is a codimension-1 embedded submanifold of M with $H_{1}\left(M ; \mathbf{Z}_{2}\right)=0$. Since $f \mid A_{m}: A_{m} \rightarrow f\left(A_{m}\right)$ is an odd-fold cover and $f^{-1}(Y)$ is connected for every component Y of $f\left(A_{m}\right), f \mid A_{m}$ must be orientation preserving after suitable orientations are given to A_{m} and $f\left(A_{m}\right)$.

Now suppose that $A_{m} \neq \emptyset$ for an odd integer m. By the 2-color theorem together with our assumption that $H_{1}\left(M ; \mathbf{Z}_{2}\right)=0$, there existtwo disjointopen sets B_{m} and W_{m} of M such that $M-A_{m}=B_{m} \cup W_{m}$ and $\bar{B}_{m} \cap \bar{W}_{m}=\partial B_{m}=\partial W_{m}=A_{m}$. Note that M is orientable since $H_{1}\left(M ; \mathbf{Z}_{2}\right)=0$ and that \bar{B}_{m} and \bar{W}_{m} are compact orientable manifolds with boundary. Orient M arbitrarily. Recall that $f\left|A_{m}=f\right| \partial B_{m}=$ $f \mid \partial W_{m}$ is orientation preserving. Hence $f\left(\bar{B}_{m}\right)$ and $f\left(\bar{W}_{m}\right)$ are $(n-1)$-dimensional \mathbf{Z}_{m}-cycles in N. Take a point $x \in f\left(A_{m}\right)$ and take $U, y_{1}, \ldots, y_{m}, V_{1}, \ldots, V_{m}$ as in the paragraph just after Remark 2.4. We identify U with \mathbf{R}^{n} and $f\left(V_{1}\right) \cap \cdots \cap f\left(V_{m}\right) \cap U$ with the codimension-2 subspace $\left\{x_{1}=x_{2}=0\right\}$ of \mathbf{R}^{n}. $\operatorname{Set} L=\left\{x_{3}=\cdots=x_{n}=0\right\}$, which is a 2 -dimensional subspace of U. We orient N and L arbitrarily. We may assume that $L \cap f\left(V_{i}\right)$ and $L \cap f\left(V_{i+1}\right)$ are adjacent as in Figure 1 for $i=1, \ldots, m$ $\left(V_{m+1}=V_{1}\right)$ in accordance with the given orientation of L. Since each $f\left(V_{i}\right)$ has a canonical orientation induced by that of M, it has a canonical unit normal vector $v_{i} \in L \subset T_{x} N$. Take a connected component C of $L-\left(f\left(V_{1}\right) \cup \cdots \cup f\left(V_{m}\right)\right)$ bounded by $f\left(V_{i}\right) \cup f\left(V_{i+1}\right)$. We say that C is good if $\left\langle v_{i}, v_{i+1}\right\rangle$ does not coincide with the given orientation of L (we warn the reader that in Figure 2 the component C is not good). Now suppose that $\beta_{0}(N-f(M))=2$. If there exists a component C of $L-\left(f\left(V_{1}\right) \cup \cdots \cup f\left(V_{m}\right)\right)$ which is not good, then it is not difficult to find a closed oriented smooth curve γ in N which intersects with $f(M)$ transversely in two points with the same sign of intersection (see Figure 2). This contradicts the assumption that $H_{1}(N ; \mathbf{Z})=0$. Thus every component of $L-\left(f\left(V_{1}\right) \cup \cdots \cup f\left(V_{m}\right)\right)$ must be good (see Figure 3). Since $f \mid A_{m}$ is orientation preserving, we see that $f\left(\overline{\boldsymbol{B}}_{m} \cap V_{i}\right) \cap L$ and $f\left(\overline{\boldsymbol{B}}_{m} \cap V_{i+1}\right) \cap L$ is not adjacent in L as in Figure 3. Then it is

Figure 1

Figure 2

Figure 3
not difficult to find a closed oriented smooth curve γ^{\prime} in N which intersects $f\left(\bar{B}_{m}\right)$ transversely in one point. This contradicts the assumption that $H_{1}\left(N ; \mathbf{Z}_{m}\right)=0$. Hence $\beta_{0}(N-f(M)) \geq 3$. This completes the proof.

Remark 2.5. When $n=2$, we have a similar result. In fact, in [N], it is shown that if $f: S^{1} \rightarrow S^{2}$ is a continuous map with only finitely many self-intersection points t_{1}, \ldots, t_{m} with $\sharp\left\{f\left(t_{1}\right), \ldots, f\left(t_{m}\right)\right\}=r$, then $\beta_{0}\left(S^{2}-f\left(S^{1}\right)\right)=2+m-r$. If f is not an embedding, then we have $m-r>0$ and hence $\beta_{0}\left(S^{2}-f\left(S^{1}\right)\right) \geq 3$. Note that, for a quasi-regular immersion $f: S^{1} \rightarrow S^{2}$, its self-intersection set is always finite.

Remark 2.6. In Theorem 1.1 and Corollary 1.2, the condition that $H_{1}\left(M ; \mathbf{Z}_{2}\right)=$ 0 is essential. In fact, there exists a quasi-regular immersion $f: T^{2} \rightarrow \mathbf{R}^{3}$ such that f is not an embedding and $\beta_{0}\left(\mathbf{R}^{3}-f\left(T^{2}\right)\right)=2$, where T^{2} is the 2-dimensional torus. See [S, Figure 2].

Remark 2.7. In Theorem 1.1 and Corollary 1.2, the condition that $H_{1}(N ; \mathbf{Z})=0$ can be replaced by the conditions that the torsion of $H_{n-2}(N ; \mathbf{Z})$ is a 2-group and that $H_{n-1}(N ; \mathbf{Z})=0$. In this case we have $H_{n-1}\left(N ; \mathbf{Z}_{m}\right)=0$ for every odd integer m by the universal coefficient theorem and the same proof is valid in this case.

Remark 2.8. In [NR], a more general class, namely that of quasi-regular topological immersions, has been studied and it is shown that a proper codimension-

1 quasi-regular topological immersion $f: M \rightarrow N$ separates N, provided that $H_{1}\left(N ; \mathbf{Z}_{2}\right)=0$. Note that our results also hold for quasi-regular topological immersions.

The following problem has been given by the referee.

Problem 2.9. Let f be as in Theorem 1.1, but replace the quasi-regular condition with the one that there exist distinct two points p and q in M such that $f(p)=f(q)$ but $f_{*}\left(T_{p}(M)\right) \neq f_{*}\left(T_{q}(M)\right)$. Is the resulting statement true?

The answer is "yes" if $f^{-1}(f(p))=\{p, q\}$ (see [S]). The author does not know the answer in general situations.

References

[BMS1] C. BIASI, W. MOTTA and O. SAEKI, A note on separation properties of codimension- 1 immersions with normal crossings, Topology Appl. 52 (1993), 81-87.
[BMS2] , A remark on the separation by immersions in codimension-1, Topology Appl. 61 (1995), 179-186.
[BR] C. BIASI and M. C. ROMERO FUS TER, A converse of the Jordan-Brouwer theorem, Illinois J. Math. 36 (1992), 500-504.
[F] M. E. Feighn, Separation properties of codimension 1 immersions, Topology 27 (1988), 319321.
[G] B. Grünbaum, Arrangements and spreads, Regional Conference Series in Math., no.10, Amer. Math. Soc., 1972.
[H] R. Herbert, Multiple points of immersedmanifolds, Mem. Amer. Math. Soc. 34 (250), 1981.
[HP] M. D. HiRSCH and C. C. PuGH, C^{1} immersed hypersurfaces separate R^{n}, to appear in Michigan Math. J.
[N] J. J. NuNo Ballesteros, Counting connected components of the complement of the image of a codimension 1 map, Compositio Math. 93 (1994), 37-47.
[NR] J. J. Nuño B allesteros and M. C. Romero Fuster, Separation properties of continuous maps in codimension 1 and geometrical applications, Topology Appl. 46 (1992), 107-111.
[S] O. SAEKL, Separation by a codimension-1 map with a normal crossing point, Geom. Dedicata 57 (1995), 235-247.

Hiroshima University

Higashi-Hiroshima, Japan

