
ILLINOIS JOURNAL OF MATHEMATICS
Volume 40, Number !, Spring 1996

A CONVERSE OF THE JORDAN-BROUWER THEOREM
FOR QUASI-REGULAR IMMERSIONS

OSAMU SAEKI

1. Introduction

Suppose that f: S __.> Sn is a topological embedding. Then it is known as
the Jordan-Brouwer Theorem that f(Sn-l) separates S into exactly two connected
components. In [BR], cl-immersions with normal crossings were studied and the
following converse ofthe Jordan-BrouwerTheorem was obtained: if f: S-1 --> Sn is
a C1-immersion with normal crossings, then f is an embedding if and only if f (S-1)
separates S into exactly two connected components. After that, this theorem has
been generalized in various settings ([BMS ], [BMS2], [S]); however almost all of
them have been involved with immersions with normal crossings.

The purpose ofthis paper is to considera more general class ofimmersions than that
of immersions with normal crossings, namely the class of quasi-regular immersions
[H], and to obtain the converse of the Jordan-Brouwer Theorem. Recall that a C 1_

immersion f: M -- N into an n-dimensional manifold N is quasi-regular if the
self-intersection locus B C f(M) is an immersed submanifoldofN with the property
that for each x B there is a coordinate system for N valid in a neighborhood U
of x so that x corresponds to 0 Rn and that the branches of f in U correspond to
distinct linear subspaces of Rn i.e., given a numbering yl, y2 ym of the points
of f-l(x) there are pairwise disjoint neighborhoods Vi C M around yi so that
U t3 f(M) U t3 (J=lf(Vi)) is a union of m distinct linear subspaces ofR. Itis
clear that an immersion with normal crossings is always quasi-regular.

Our main result of this paper is the following.

THEOREM 1.1. Let f: M -- N be a quasi-regular immersion, where M is a
closed connected (n 1)-dimensional manifold andN is a connectedn-dimensional
manifold. Assume that Hi(M; Z2) 0 and HI(N; Z) 0. Then if f is not an
embedding, then o(N f(M)) >_ 3, where 6o denotes the number of connected
components.

Note that it has already been known that a proper codimension-1 quasi-regular
immersion f: M -- N separates N if H1 (N; Z2) 0 [NR]. In fact, the same is true
for proper C1-immersions (see [HP], [F]).
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As an immediate corollary, we obtain the following converse of the Jordan-
Brouwer Theorem for quasi-regular immersions.

COROLLARY 1.2. Let M and N be as in Theorem 1.1. Then a quasi-regular
immersion f: M N is an embedding ifand only ifo(N f(M)) 2.

The author would like to express his sincere gratitude to Walter Motta and Carlos
Biasi for nice conversations and suggestions. He also would like to thank the referee
for nice comments and suggestions.

2. Proof of Theorem 1.1

ProofofTheorem 1.1. It is known that, under our homological hypothesis, we
have flo(N f(M)) 2 + dim ker((flA).: Hn-2(A; Z2) Hn-2(B; Z2)), where

A {x e M: f-l(f(x))-7 {x}}

is the self-intersection set of f and B f(A) (for example, see [BMS2, 2]).
Thus, for the proof of Theorem 1.1, it suffices to show that ker(flA). -7/: 0. By an
argument similar to that in [H], we see that there exists an immersion o; X M
of a closed (n- 2)-dimensional manifold X such that o(X) A. Note that o is
not necessarily a quasi-regular immersion. By the construction of o, we see that, for
x A, f-l(f(x)) --m ifandonly ifo-(x) m- 1,where denotesthe number
of elements in the set. Set Am {x M: f-(f(x)) m}.

LEMMA 2.1. IfAm has an interior point in Afor aneven integer m, then A carries
a mod 2fundamental class [A] Hn-2(A; Z2) which does notvanish.

Proof. Set [A] tp,[X], where [X] Hn-2(X; Z2) is the fundamental class of
X. Note that, for x Am, tp- (x) m l, which is odd by our assumption. Since

Am contains a top dimensional cell of A, we see that A] - 0. E!

LEMMA 2.2. We always have (fIA),[A] =0 in Hn-2(B; Z2).

Proof. We have (flA).[A] (f o tp).[X]. Note that, for x 6 A,
f-l(f(x)) m if and only if (f o tp) -l (f (x )) m(m 1). Since m(m 1) is
always even, we have the conclusion. El

By Lemmas 2.1 and 2.2, if Am has an interior point in A for an even integer m,
then flo(N f(M)) > 3. Thus, in the following, we assume that Am for m even
has no interior points in A. In particular, the dimension of A2 is less than or equal to
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LEMMA 2.3. Let HI, H2 nm be distinct codimension-1 linear subspaces of
Rn (n >_ 3). Ifdim(H1 n H2n... Hm) < n 2,then thereexists anon-zero vector
w R such that exactly two ofH, H2 Hm contain w.

Proof. First we prove the lemma for n 3. Suppose that there is no non-zero
vector w as in the lemma. Let S2 be the unit sphere centered at the origin in R3.
The intersections of S2 with Hi induce a natural polyhedral decomposition of S2. By
our assumption, for every vertex of this decomposition, at least 6 edges are incident.
We also see easily that every 2-dimensional face of the decomposition has 3 or more
boundary edges. Let f, e and v be the numbers of 2-dimensional faces, edges and
vertices of the decomposition respectively. Then we have

6v< 2e and 3f <2e

by the above observation. Since the Euler characteristic of S2 is equal to 2, we have

f -e+v=2.

Then we have 12 6f -6e + 6v < 4e -6e + 2e 0, which is a contradiction.
This completes the proof for the case n 3.
Now suppose n > 4 and the lemma is true for n 1. Let H be a codimension-1

linear subspace ofRn different from H1, H2 Hm. Suppose thatHnHi HnHj
for #: j. Then we have

n n n n n n n c n

Since dim(Hi nH7) dim(H nH) dim(H n Hj) n -2, wesee that Hn
n Hi Hj and hence Hi Hj C n.

Case 1. dim(H1 n H2 ... n Hm) > 1.
Take a codimension-1 linear subspace H of Rn such that H 75 H1 n H2

Hm, Hi HI (i, j 1, 2 rn ). Such a subspace H exists, since the dimension
of the codimension-1 subspaces of Rn is equal to n 1, while the dimension of the
codimension-1 subspaces containing Hi Hj is equal to and the dimension of the
codimension- subspaces containing H1 n H2... Hm is less than or equal to n -2.
Then by the above observation, we see that H Hl, H nil2 H Hm are distinct
codimension- subspaces ofH and dim((H n H1) n n (H n Hm)) < (n 1) 2.
Then by our induction hypothesis, we see that there exists a non-zero vector w H
such that exactly two of H H1 H n Hm contain w. This vector w is a desired
non-zero vector.

Case 2. H n H2 n n Hm O.
Take acodimension- subspace H ofR such that H 73 Hi Hj i, j 1, 2 rn ).

Then H n H1 H nHm are distinct codimension- subspaces ofH and dim((H
Hl)O...n(H nHm)) 0 < (n- 1)- 2, since n > 4. Then our induction hypothesis
ensures the existence of a desired non-zero vector. This completes the proof.
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Remark 2.4. In the above lemma, the case where n = 3 is equivalent to the
well-known Sylvester’s problem. For details and the history of this problem, see [G,
2.3]. In fact, the above lemma for n 3 is nothing but Theorem 2.12 of [G]. The
above proof is motivated by the proofof an improvement of Sylvester’s problem due
to Melchior [G, Theorem 2.13].

Now recall that we are assuming that A2 is of dimension less than n- 2. Then,
by Lemma 2.3 and the definition of a quasi-regular immersion, we see that, for every
x B, dim(f(V1)N.. "71f(Vm)OU) n-2, where f-l(x) {Yl Ym}, Vi isa
small coordinate neighborhood of Yi in M and U is a small coordinate neighborhood
ofx in N. Therefore, we see that A is the disjoint union of A 3, As, A7 A for
some odd integer/and each Am (m 3, 5, 7 l) is an (n 2)-dimensional closed
submanifold of M. Furthermore, f lAm: A rn "-- f (Am) is an m-fold cover.

Let Y be a connected component of f(Am). If f-l(y) is not connected, we
see easily that ker((flA)," Hn_E(A; Z2) -+ Hn_E(B; Z2)) 5 0. Hence we may
assume that f-1 (y) is connected. Furthermore, note that Am is orientable, since
it is a codimension-1 embedded submanifold of M with HI(M; Z2) 0. Since

flAm" Am "- f(Am) is an odd-fold cover and f-1 (y) is connected for every com-
ponent Y of f(Am), flAm must be orientation preserving after suitable orientations
are given to Am and f(Am).
Now suppose that Am # 0 for an odd integer m. By the 2-color theorem together

with our assumption that H1 (M; Z2) 0, thereexisttwo disjointopen sets Bm and Wm
ofM such that M- Am Bm Id Wm and Bm f) Wm 0Bm OWm A Note that
M is orientable since H (M; Z2) 0 and that Bm and Wm are compact orientable
manifolds with boundary. Orient M arbitrarily. Recall that f lAm f lOBm
flOWm is orientation preserving. Hence f (Bin) and f(Wm) are (n 1)-dimensional
Zm-cycles in N. Take a point x f(Am) and take U, Yl,.., Ym, V Vm as in the
paragraph just after Remark2.4. We identify U withRn and f(Vl) 71.. f(Vm) U
with the codimension-2 subspace {Xl x2 0} ofRn. SetL {x3 =" xn 0},
which is a 2-dimensional subspace of U. We orient N and L arbitrarily. We may
assume that L f(V/) andL f(Vi+l) are adjacent as in Figure for/= m

(Vm+I V) in accordance with the given orientation of L. Since each f(Vi) has
a canonical orientation induced by that of M, it has a canonical unit normal vector

vi - L C TxN. Take aconnectedcomponent C of L-(f (V1)t_J. ..t_J f (Vm)) bounded
by f(V/) t_J f(Vi+l). We say that C is good if < vi, Vi+l > does not coincide with
the given orientation of L (we warn the reader that in Figure 2 the component C
is not good). Now suppose that/0(N f(M)) 2. If there exists a component
C of L (f(V1) U t.J f(Vm)) which is not good, then it is not difficult to find
a closed oriented smooth curve , in N which intersects with f(M) transversely in
two points with the same sign of intersection (see Figure 2). This contradicts the
assumption .that H (N; Z) 0. Thus every component ofL (f(V) ... t_J f(Vm))
must be good (see Figure 3). Since flAm is orientation preserving, we see that
f(Bm 71Vi)71L and f(Bm (’1Vi+l) f3 L is not adjacentin L as in Figure 3. Thenit is
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Figure 3

not difficult to find a closed oriented smooth curve ,’ in N which intersects f (Bin)
transversely in one point. This contradicts the assumption that H (N; Zm) 0.
Hence/0(N- f(M)) > 3. This completes the proof, r

Remark 2.5. When n 2, we have a similar result. In fact, in [N], it is shown
that if f: S ---> S2 is a continuous map with only finitely many self-intersection
points t tm with {f(tl) f (tm) r, then/0(S2 f(S l)) 2 +m r. If
f is not an embedding, then we have m r > 0 and hence (S2 f(S1)) > 3. Note
that, for a quasi-regular immersion f: S .__> S2, its self-intersection set is always
finite.

Remark 2.6. In Theorem 1.1 and Corollary 1.2, the condition that HI (M; Z2)
0 is essential. In fact, there exists a quasi-regular immersion f: T2 ---> R such that f
is not an embedding and/0(R3 f(T2)) 2, where T2 is the 2-dimensional torus.
See [S, Figure 2].

Remark 2.7. In Theorem 1.1 and Corollary 1.2, the condition that H1 (N; Z) 0
can be replaced by the conditions that the torsion of Hn-2(N; Z) is a 2-group and that
Hn- (N; Z) 0. In this case we have Hn-1 (N; Zm) 0 for every odd integer m by
the universal coefficient theorem and the same proof is valid in this case.

Remark 2.8. In [NR], a more general class, namely that of quasi-regular topo-
logical immersions, has been studied and it is shown that a proper codimension-
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1 quasi-regular topological immersion f: M N separates N, provided that
H (N; Z2) 0. Note that our results also hold for quasi-regular topological im-
mersions.

The following problem has been given by the referee.

Problem 2.9. Let f be as in Theorem 1.1, but replace the quasi-regular condition
with the one that there exist distinct two points p and q in M such that f (p) f (q)
but f.(Tp(M)) f.(Tq (M)). Is the resulting statement true?

The answer is "yes" if f-1 (f (p)) {p, q} (see [S]). The author does not know
the answer in general situations.
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