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CELL-LIKE MAPS AND ASPHERICAL COMPACTA

R. J. DAVERMAN AND A. N. DRANISHNIKOV

A class ofcompacta on which cell-like maps cannot raise dimensionwas presented
by Daverman [Da]. That class is expanded here, by establishing that all compact
metric spaces contain compacta of codimension one on which cell-like maps do not
raise dimension.

Classical results promise that cell-like maps defined on 1-dimensional compacta
do not raise dimension. Dranishnikov [Dr] proved the existence of an infinite dimen-
sional compactum whose integral cohomological dimension equals 3, from which it
follows by the Edwards-Walsh construction [Wa] that there is a cell-like map on a 3-
dimensional compactum with infinite-dimensional image. More recently, Dydak and
Walsh [DW] confirmed that the same phenomenon could occur with 2-dimensional
domain. Daverman [Da] introduced a notion of strongly hereditarily aspherical com-
pacta, showed that cell-like maps on such compacta do not raise dimension, and
provided examples in dimensions up to 5 with this asphericity property. Davis and
Januszkiewicz [DJ] presented methods which give higher dimensional examples, by
providing detailed elaborations of Gromov’s useful idea [Gr] of hyperbolizing sim-
plexes and polyhedra. A fortuitous consequence of the Cartan-Hadamard Theorem,
for our purposes, is the fact that hyperbolization leads to asphericalization. One ofour
key results, a broad existence theorem, stems from techniques intimately related to
this hyperbolization procedure. It is the following SHA Subset Theorem 3.1: Every
compact metric space X contains a 0-dimensional F, -subset F such that all compact
subsets of X\F are strongly hereditarily aspherical. As a striking consequence, every
finite-dimensional, compact metric space X contains a 0-dimensional F,-subset F
such that, for any cell-like map p: X --, Y with infinite dimensional image, p (F) is
infinite-dimensional.

Corresponding to notions of hereditarily aspherical and strongly hereditarily as-
pherical compacta set forth in [Da], we introduce notions of hereditarily aspherical
and strongly hereditarily aspherical maps. An issue still unresolved is whether the two
types of compacta are distinct. Adding evidence for the suspicion that they are, we
point out why the two types ofmaps are distinct. Among the highlights of 2is Corol-
lary 2.4, promising that a cell-like mapping which is strongly hereditarily aspherical
over its image cannot raise dimension; near the end of the paper, in Theorem 3.7, we
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produce a map from a 2-dimensional compactum onto an infinite dimensional space
which is hereditarily aspherical, but obviously not strongly so, over its image.

The heart ofthis effort is the determination of high dimensional analogs ofa grope.
A grope G is an aspherical, acyclic 2-complex having a natural simple closed curve
"boundary", 0G, where inclusion OG --+ G induces an injection of fundamental
groups. As originally described, G is a union of disks with handles, in each of which
are identified finitely many handle curves, arranged so every handle curve is the
boundary ofsome disk with handles atthe next stage, and with the set ofhandle curves
in any component of a given stage chosen to generate its fundamental group. These
objects first appeared in papers oftan’ko [t], buried implicitly deep inhis marvelous
constructions for approximating embeddings ofcodimension 3 compacta in manifolds
by homotopically tame embeddings. When he extended ,tan’ko’s results, Edwards
[Ed] assigned them a more conspicuous role and later on, perhaps more significantly,
made strong use of them in his unpublished initial work on the double suspension
theorem. Cannon really brought these devices into thelimelight in the later 1970s, first
in his work withAncel [AC] on thelocally flat approximation theorem for codimension
one embeddings, most resoundingly in his final solution of the double suspension
theorem [C2], but alsoin a revelatory survey article exposing extensive connections to
wildness and decompositionproblems [C1 ]. Here Proposition 3.6 provides a modeln-
dimensional grope for every n, namely, an aspherical, acyclic n-complex ctcr" having
a natural boundary, Octt7 n, where not only does again inclusion Oct O"n ctO"n induce
an injection at the fundamental group level but also the same holds for inclusion
Xk -- ctcrn of each k-stratum Xk above the k-skeleton of an and where the part of
X* above any k-simplex of O"n is like a connected sum of copies of ct cr*.

The authors gratefully acknowledge suggestions from Professor A. Koyama clar-
ifying certain parts of this paper.

I. Definitions and notation

A compact subset X of a metric space S is said to have Property k-UV in S if for
each neighborhood U of X in S there exists a neighborhood V of X, V C U, such
that every map 0B*+1 __+ V extends to a map Bk+l U. Recall that the space X
itself is said to have Property k-UV if for each (some) embedding . ofX in an ANR
Y, .(X) has Property k-UV in Y. Elementary features ofANRs make it plain that the
aforementioned extension property is indeed invariant under embeddings in ANRs.
Generally, X is said to have Property U Vn if it has Property k-UV for 0 < k < n.
Moreover, X is said to be aspherical if it has Property k-UV for all k > 2 and to
be hereditarily aspherical if each compact subset A C X is aspherical. Also, a map
p: X -- X’ between compact metric spaces is said to be k-UV or U Vn if each point
preimage has the property specified.

Throughout this paper p: Q - Q’ will denote a surjective mapping between
compact metric spaces, with Q the Hilbert cube, X’ a compact subset of Q’, and
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X p-1 (X’). Say thatp is strongly hereditarilyaspherical over X’ if foreach e > 0,
X’ is covered by a collection ofopen sets Ui ofdiameter less than e such that every
finite union of the form Up-l(Ui(j)) is aspherical; say simply that p is hereditarily
aspherical over X’ if for each compactset A C X’ and each integer k >_ 2, p-1 (A) has
Property k-UV. One can easily check that the strong hereditary asphericity property
implies the unmodified one and that X C Q is (strongly) hereditarily aspherical as a
space (the strong version being in the sense of [Da]) if and only if the identity map
Q --+ Q is (strongly) hereditarily aspherical over X.

Given a compact metric space X and another space H, as in [Dr2] we use the
Kuratowski notation XrH to mean that X has the extension property with respect to
H, namely, for any closed subset A of X and map f: A -- H, f can be extended to
amap F: X - H.

Let L be a polyhedron with triangulation/. An asphericalization of (L, Z) is
a map g: otL -- L such that for every subcomplex L’ of L (with respect to /2),
g-l(L’) is aspherical. Given a map f: X -- L, another map f’: X -- ct L is called
an ..-lifting to the asphericalization g: tL -- L provided each pair f (x), gf’(x ),
x 6 X, resides in some simplex of/2.
A metric space S is said to be uniformly locally i-connected, written i-ULC, if for

each e > 0 there exists 8 > 0 such that each map of 0 BTM into an 8-subset of S
extends to a mapof BTM into an e-subset ofS; S is referredto as ULCk if itis i-ULC
for0 < <k.

2. Hereditarily aspherical maps

This section presents some basic results about hereditarily aspherical and strongly
hereditarily aspherical maps, confirms that cell-like maps of the latter type do not
raise dimension, and provides an improved characterization of strongly hereditarily
aspherical compacta.

LEMMA 2.1. Suppose the map p: Q Q’ is strongly hereditarily aspherical
over x Q’. Then p-x is cell-like ifand only ifp-lx has Property U V1.

Proof. The forward implication is obvious. For the converse, given a neighbor-
hood W of p-ix, first apply strong hereditary asphericity to obtain an aspherical
neighborhood U, p-ix C U C W, next invoke UV to find a smaller neighbor-
hood V such that Zrl (V) -- Zrl (U) is trivial, and finally name a closed neighborhood
D C V of p-1 x with D homeomorphic to P x Q for some connected, finite polyhe-
dron P. We confirm cell-likeness of p-x by demonstrating the contractibility of D
in U C W. Clearly D P x Q deformation retracts to a copy of P in D. Moreover,
the inclusion of that copy to P extends to a map of the cone cP on P, via path con-
nectedness to extend from the 1-skeleton of cP into D C V, UV features to extend
from the 2-skeleton into U, and, finally, asphericity to extend over the successive
skeleta.
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COROLLARY 2.2. Suppose the map p" Q --+ Q’ is strongly hereditarily aspheri-
cal over X’. Then p X is cell-like ifand only ifp X is U V

Already we can discern distinctions between the two notions of asphericity for
maps. Let p" Q -- Q’ Q/T be the quotient map, where T denotes Taylor’s
example [Ta] of a space with nontrivial shape admitting a cell-like map onto Q. By
construction T has Property k-UV for all k > 0; in other words, P is hereditarily
aspherical over the image of T. As T fails to be cell-like, Lemma 2.1 assures that p
cannot be strongly hereditarily aspherical over the same point.

CONTROLLED LIFTING LEMMA 2.3. Let p" Q Q’ be a cell-like mapping
which is strongly hereditarily aspherical over X’ and e > O. Then there exists
> 0 such that for each finite polyhedron K and function O: K) X’ with

dist(r/(v), r/(v’)) < 3for all v, v’ K) in a common simplex of K, there exists a
mapo" K --+ Qsuchthatdiamptp(cr) < eforeachsimplextr K andptp(v)= O(v)
for all v K) Furthermore, if K’ is a subcomplex ofK and o" K’ Q is a
map such that diamptp’(cr’) < efor each simplex tr’ K and ptp’ (v) O(v) for all
v K’ f) K), then o" K Q can be obtained so tp K’ o’.

Proof. Let 20 be a finite cover of X’ by open sets ofdiameter less than e/4 such
that for every finite union W of elements of 20, p- 1W is aspherical. Use cell-likeness
of p to determine a finite cover 3t of X’ by connected open sets where to each V 6 3r
there corresponds some U 20 such that St2(V, 21) is null-homotopic in U. For
A C Q’ and j {0, 1}, here

St(A, 71j) tO{V 2j V NA

and St2(A, 2j) St(St(A, 2j), 2j). Choose > 0so that every pair of points in X’
at distance less than 3 apart both belong to a common element of 21. Given K and
r/as prescribed, we define a map qg" K Q in stages o.ver successive skeleta. For
v K() choose xo p-10(v) C X and then set o(v) xv. For any 1-simplex e
of K there is Ve 21 with o(0e) C Ve; connectedness of point preimages implies
connectedness of p- (Ve) and ensures the existence of a map o: e p- (Ve)
extending o 0e. This provides a map o" K(1) --+ Q, and the definition of 21
allows an extension o: K(2 Q such that to each 2-simplex A 6 K corresponds
Uzx 6 20 with o (A) C p-1 (Uzx). We use the asphericityof preimages of20 toextend
o" K(2) Q inductively over successive skeleta to o" K (k) Q (k > 2) where,
specifically, for each k-simplex cr 6 K, o (tr) lies in

p-(tA{U,x A is a 2-simplex of K in 0or}).

Of course, K (k) K when k is large enough. That diam po(cr) < e for tr K
follows because ptp(cr) C St2(O(v), 20) for every vertex v r.

Only minor modifications are required to obtain the supplementary conclusion.
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Remarkable is the absence ofany a priori dimension restriction on the polyhedron
K arising in Lemma 2.3. Of course, for any fixed integer k, standard methods
involving cell-like mappings (or even UVk mappings), with no reference to strong
asphericity, give rise to > 0 satisfying the conclusion of 2.3 for k-complexes.

COROLLARY 2.4. Ifp" Q --+ Q’ is a cell-like mapping which is strongly heredi-
tarily aspherical over X’, then dim X’ <_ dim X.

Proof. According to unpublished work ofKozlowski [Ko](see [DS, Theorem2.1
for an explanation), it suffices to produce approximateright inverses to p X, meaning
that, given any e > 0, one can find a map tp’: X’ -- Q suchthat diam{po’ (x’), x’} < e
for all x’ X’. Let be a finite cover of X’ by open sets of diameter less than
8/2 < e/2, where > 0 satisfies the conclusion of Lemma 2.3 for e/2. Let
/z: X’ K be a barycentric map to K, the nerve of . Name r/: K) - X’
by simply picking r/(v) from the open set V 6 corresponding to v 6 K), and
use Lemma 2.3 to get the promised map o: K - Q such that diam ptp(cr) < e/2
and ptp(v) O(v) for cr K and v K) Set qg’ tpr/. Now to any x’ X’
there corresponds O(v) with {x’, r/(v)} C V 2; equivalently,/z(x’) lives in some
cr K with vertex v. Since {x’, ptp’(x’)} C V U ptp(cr) and V
diam{x’, po’(x’)} < diam V t_J ptp(cr) < e, as required.

PROPOSITION 2.5. If V: Y -- Y’ is a cell-like, strongly hereditarily aspherical,
surjective map defined on a compact ANR Y, then Y’ is a compact ANR.

Outline of a proof. Embed Y in Q and extend o to a cell-like map p: Q Q’
which is 1-1 on Q\Y. Specify e > 0. Find a closed neighborhood D of Y in Q,
retraction R: D -- Y and ?’ > 0 such that diampR (A) < e/3 wheneverA C D and
diam A < ?,. Restrict D so R moves points less than ?’. Find d > 0 corresponding to
p(Y) and e/3 from Lemma 2.3. Restricting further, if necessary, choose D as P x Q
for some finite polyhedron P where diam(z x Q) < 8 for z P; then the image
under pR ofan obvious deformation qt of P x Q to P x. has smallimage in Y’. As
in the proof of Corollary 2.4, obtain a map o: Y’ -- Q with po close to the identity
on Y’. Control tp so o(Y’) C D and p Ro is close to the identity. Apply Lemma 2.3
to get a homotopy between R P x. and RopR P x., tracks ofwhich have small
diameter under p. All this combines to give a homotopy in Y between the identity
and RtppR having small image under p According to [Ko, Theorem 5], Y’ is an
ANR.

THEOREM 2.6. If X is LC and p is cell-like and hereditarily aspherical over
X’, then dim X’ <_ dim X.

This follows via the argument of epin detailed in [Da, Theorem 8].
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The point of this paper is that the LC hypothesis ofTheorem 2.6 is necessary and
that Corollary 2.4 cannot be improved by deleting the word "strongly". The example
described in Theorem 3.7 nails this down.

LEMMA 2.7. Suppose S is a ULCk metric space and X C S has Property k-UV
(in the absolute sense). Then X has Property k-UV in S.

Proof. Let ." X ---> A be an embedding in an ANR A. Then Z extends to a map
g: Z ---> A, for some neighborhood Z of X in S. Fix a neighborhood U of X. We
spell out calculations needed to determine the smaller neighborhood V of X. To that
end, let ,oa and ps denote distances in A and S, respectively.

Find 8k+l > 0 such that U contains the 8,+ 1-neighborhood of X in S. Since S
is i-ULC for all < k, there exists 8, > 0 such that every map from OIk+l into a
28k-subset of S extends to a map from I k+l into a 8,+ 1-subset of S. Recursively, for
0 < m < k find 8k-rn > 0 such that every map from Ik-m+l into a 28k-m-subset of
S extends to a map from Ik-m+l into a 8,-m+ 1-subset of S. Then determine 7 > 0
such that diam .-1 (S) < 80/2 for each subset S C .(X) satisfying diam S < 7.
Let W denote the (7/3)-neighborhood of .(X) in A. Find a smaller neighborhood
W’ of .(X) there such that every map 0 B --> W’ extends to a map B ---> W.
Let V* Z q g-l(W’) X, and restrict V* so there exists y (0,80)with
diam g(C) < 7 wheneverC C V* and diamC < y. Finally, let V be the intersection
of V* with the y-neighborhood of X.
Now consider a map f" OBk+l ---> V. By hypothesis, gf extends to a map

F: B*+1 ---> W C A. Name a triangulation T of Bk+l with mesh so small that, for
each cr T, diam F(tr) < 7/3 and, when cr C 0B, diam f (or) < 80. Given any ver-
tex v e T not in0B*+l, choose a point v’ X(X) suchthat dist(v’, F(v)) < 7/3. De-
fine F" OB t_JT ) --> S as F’(v) )-l(v’) for vertices v T) and F’(z) f(z)
for z 0B*+1. Check thatfor each 1-simplexe of T notin 0Bk+ l, diam F’ (0e) < 280
(the tricky case occurs when 0e v, w with v Int Bk+1, w 0Bk+l" here choose
x X so ps(x, f(w) F’(w)) < y < 80 and notethat Pa(g(x) "-,(X), gf(w)) <
7, which implies pa()(x),F(v)) < 7 and ps(x, F’(v)) < 80). Apply the pre-
determined 1-ULC features to obtain an extension F’: e ---> S into a 81-subset of
S. Under the assumption that F’" OBTM t_J T(i-1) ----> S is an extension of f with
diam F’ (or) < 8i- for each (i 1)-simplex tr T, the i-ULC arrangements give rise
to an extension F’: OB*+1 t_J Ti) ---> S such that diam F’ (or) < 8i for each/-simplex
cr T. When k + 1, this provides F" Bk+l ---> U extending f on OBTM, as
desired.

COROLLARY 2.8. Suppose p: Q ---> Q’ is a cell-like, surjective map, and X’ C
Q’ has Property k-U V (in the absolute sense). Then X’ has Property k-U V in Q’
and X has Property k-U V.

Proof. Here Q’ is known to be ULCk for all k, so X’ has Property k-UV by
Lemma 2.7. That X also has Property k-UV follows because, due to cell-likeness,
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p induces isomorphisms 7t" (p-1 (U)) -- 7t" (U) for all connected open subsets U
of Q’. I--1

COROLLARY 2.9. Suppose p" Q Q’ is a cell-like surjective mapping and
X’ C Q’ is a hereditarily aspherical compactum. Then p is hereditarily aspherical
over X’.

THEOREM 2.10. For any compact metric space X, the following statements are
equivalent.

(1) X is strongly hereditarily aspherical.
(2) For every map f: X --+ L to a polyhedron L and every triangulation of L,

f admits an l?.-lifting f’: X otL to some asphericalization g: tL -- L of(L,.).
gi+l g!+l. Li(3) X can be expressed as an inverse limit ofa system {L }, where

L is an asphericalization of L with respect to some triangulation ff-’i and where
mesh gi+ (ff"i+k) O as k

Proof. Assume (1), and consider a map f ofX to a polyhedron L endowed with
triangulation/2. Let 2 be the cover of L by open stars of vertices of/2, and then let
2’ be an open cover of X refining f-l(2) such that every finite union of elements
of 2’ is aspherical. Let ot L be the nerve of 71 and ft: X cL a barycentric map.
Define g" ctL -- L on vertices of ctL by choosing g(v) to be a vertex w of L such
that f(Vo) C St(g(v), L) and extend g linearly over the simplexes of ctL. It follows
that f’ is an/-lifting and, thus, (2) holds.

Next assume (2). Not only will we determine the system {Li, g+l} involving
asphericalizations gi+l" Li/l -- Li, we will simultaneously construct 1/i maps
vi" X -- Li such that gl- 11)i is a/i-l-lifting of vi-l. Toget started, take/z " X -- N1
to be a barycentric map to the nerve of some finite open cover of X, impose a
triangulation ’ffl on N1 of mesh less than 1, and then apply (2) to.obtain a lifting
v" X L otN1 to some asphericalization GI" L1 -- N1 of (N1,791). Assume
inductively that all this data (Lj, j, vj, g/+), with the exception of gkk+l, has been
constructed for j k. By [Hu, Theorem 8.1 there exists a / (k + 1)-map
IZk/ 1" X Nk/ to the nerve Nk+1 of some finite open cover of X, as well as a map
k/l" Nk/l "- Lk such that ok+l/Zg+l is/k-Close to Vk. Specify a triangulation 79+
OfNk/l withmesh sosmall thatdiam(/Zk+l)-l(cr) < 1/(k+l)anddiam g/kk+l(O’) <
1/k for each cr Tg/l and _< _< k. Apply (2) to obtain an asphericalization
Gk+l" Lk+l otNk+l Nk+l. Set g+l k+lGk+l and name a triangulation
/k+ of L+ such that Gk+l sends cells of/k+ into cells of 79k+1. The sequence
{Li, gl+1 iteratively constructed in this way fulfills the small mesh features of (3),
and the other surrounding conditions ensure that the inverse limit of this sequence is
homeomorphic to X. Hence (2) implies (3).

To complete the cycle, the proof that (3) implies (1) can be found in [Da, Propo-
sition ]. lq
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3. Strongly hereditarily aspherical subsets

The proof of the following occupies the bulk of this section.

SHA SUBSET THEOREM 3.1. Each compact metric space X contains a O-dimen-
sional G-subset W (alternatively, a O-dimensional F,-subset) such that compacta
in X\W are strongly hereditarily aspherical.

For applications of 3.1 it is useful to note that dim(X\W) > dim(X) 1 [HW,
p. 28] and that, by the Sum Theorem For Dimension n [HW, p. 30], X\W contains a
compact subset C for which dim(C)= dim(X\W).

COROLLARY 3.2. Forn 2, 3 there exists an n-dimensional stronglyheredi-
tarily aspherical compactum in Sn+ l;furthermore, there exists a strongly hereditarily
aspherical Compactum embedded as a separating subset ofthe Hilbert cube.

Corollary 3.2 answers Question of [Da]. Before turning to the arguments, we
present an example loosely related to the 0-dimensional Fa-subset of Sn promised in
Theorem 3.1.

Example. A Cantor set in Sn with aspherical complement. Consider the Blank-
inship construction [Bk] of a Cantor set C in Tn-2 2 (here Tn-2 denotes the
(n 2)-dimensional toms). The crucial observation is that (Tn-2 x/R2) \C is aspher-
ical (to see why, check how Blankinship presents this space essentially as a union of
chambers of the form M x Tn-3, where M is a solid torus from which is deleted the
interiors of four solid tori, linked as in the related 3-dimensional Antoine’s necklace
construction; since M is knownto be aspherical and, foreach componentS of 0M, S is
aspherical and rl (S) Zrl (M) isan injection, asphericity of (Tn-2 x 2)\C follows
from [Wh, Theorem 5]. Pass tothe universalcover0: n ]n-2 x I2 ---> T-2x2.
Clearly IRn \0 -1 (C) is also aspherical. Define the desired Cantor set in Sn n t.J o
as 0-1 (C) [,.J

LEMMA 3.3. Suppose {Hi is a countable collection ofCW-complexes with each
SO Hi contractible. Then each compact metric space X contains a O-dimensional,
G-subset W such that (X\ W)rHi for all i.

Proof. Contractibility of SO Hi makes it an absolute retract, so Xr (SO Hi).
The proof of Corollary 3 in [Dr2] gives a Gs-subset W ofX such that WrSO (in other
words, W is 0-dimensional) and Yr Hi for each compact Y C W. By Proposition 2.3
of [Dr2], (X\W)rHi. This establishes the lemma for one such space; for a countable
family, use the countable wedge.

LEMMA 3.4. Suppose X is a compact metric space, L is a polyhedron with tri-
angulation ,, and g: K - L is a map such that Xrg-l (tr forall tr E. Then each
map f: X L admits a E-lifting f’: X K.
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Proof. This is an easy inductiveapplication ofthe extensionproperty --assuming
f’ has been defined on f- (L(k- 1)) so that f,(f-i (?,)) C g-1 (,) for all ,
one invokes Xrg-l(r) for k-simplexes tr Z3 to extend f’ so that f’(f-(r)) C
g-l(cr).

Next we review the Gromov Construction [Gr], exploited extensively in [DJ, 4].
The data consists of a space P equipped with a reflection r: P P (rE identity),
where P is expressed as a union ofclosed subsets P0 and P1, A P0 t P1, r A
identity, and r(Po\A) PI\A. We call P0 (or P1) a fundamental domain of r.
Define f2(P, r) as P x [0, 1]/ --, where is the relation with nontrivial classes
x {0} x x {1}forx P1. Thereis a naturalinclusion j: P f2 (P, r) such that
j(xi Pi) is either (i 0) the image ofxo x {0} or(/= 1) theimage ofr(xl) x {1}.

LEMMA 3.5. Suppose H, (P) satisfies r, () -, where r: P P is the
reflection, as above, and suppose H,(A H, P is trivial. Then the inclusion
j: P -- f2(P, r) satisfies j,() O.

Proof. Name a k-cycle z Co + c representing (, where i is supported in P/.
By hypothesis, ( is also carried by -r#(co + cl). Let d be a (k + 1)-cycle such that

Co + cl -r#(co) r#(c) + Od,

and express d as do +dl with di supported in Pi. Hence there exists a k-chain e
carried by A such that

(*) Co -r#(c 1) + 8do + e.

The image of z x I in f2 (P, r) satisfies

O(zxl)=co x l+Cl x 1-coxO-cl XO=co x 1-c0x 0

due to the identification of P1 x 0 with P1 x 1. As a result,

j#(z) j#(co + cl) Co x 0 + r#(q) x

co O-co +Odo +e
-O(z x l)+Odox l+ex 1.

The preceding equality reveals that e x is a k-cycle in j (A) and, as such, it is
nullhomologous inj(P) C f2(P,r). Hence, j,(() j,([z]) =0.

ADDENDUM TO 3.5. Let p: P --+ Po denote the obvious retraction with p p.r.
The conclusion ofLemma 3.5 holds with no assumption of triviality for H,(A)
H,(P) provided order (p, ()) 2.
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Proof. Here p,(() p,. r,(() -p,((), yielding p,(() 0. Consequently,
in the notation of 3.5,

p#(co -b Cl) c0 ’[" r#(c1) Od0,

promising that one can take e 0 in equation (.), from which the conclusion quickly
follows, just as before.

This leads to the promised generalization of a grope. Recall that a grope G is
an aspherical, acyclic 2-complex having a natural simple closed curve "boundary",
OG, where inclusion G -- G induces an injection of fundamental groups. See the
description given by Cannon [C1, Supplement 13]. Actually, it is possible to obtain
a finite 2-complex possessing exactly the same stated features [DV].

Another device used in [DJ] is put to work here as well. In order to define ct an+ 1,
we will presume n" ct0,n 0,n as already defined. Given a nondegenerate simplicial
map zr" S 0,n we then will use ot 0,A S to denote the fiber product of ct0,n and
S over an, also known as the Williams functor [Wi] of (ot0,n, aPn) and S over 0,

(explicitly, t0,nAs is the setof all (x, s) t0, x S such that aPn(X) re(s)).
The referee has pointed out that the nextresult was proved by Maunder [Ma], who

actually produced a finite complex ct0, We include an argument for completeness.

PROPOSITION 3.6.
such that:

Let 0,n denote the n-simplex. There exists a map @n" 10,n -’

(1) 010,
n is an aspherical n-dimensional complex;

(2) Pn is an asphericalization;
(3) n.(ot0,n) 0;
(4) zrl((p,)-(K) zr(a0, n) is 1-1,for each connected subcomplex K of00,;
(5) (kn)-l(’i) is homeomorphic to ol0, Air(0,i) for each i-simplex ,i in 00,n and

for some choice ofr.

Proof. The n case is trivial: 0/0, 0,1 and 1/r identity.
The n 2 case takes a bit more work. Let ct0,2 be a grope and " Ct0, 2 0,2 a

map collapsing to a point the complement of an annular neighborhood of the grope’s
boundary, 0or0,2, coordinatized so lr2 0o 0,2 acts like inclusion.

The remaining cases involve intrinsically infinite complexes, which we describe
recursively. Suppose i and Ct0, have been defined for < n. Let S denote the
first barycentric subdivision of the standard triangulation of 0 0,n+ 1, endowed with the
standard nondegenerate simplicial mapping zr" S 0, sending the barycenter ofany
j-simplex to the vertex of 0, labelled j. Apply the Williams functor to obtain a com-
plex P c0,nA S and map lrn+ P -, 00, n+l (projection to the second coordinate
of P or0, AS in or0, n x S) such that (1/tn+l)--I (/i) 010, Ar(0, i) for some choice
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of r and for each/-simplex V in S. Now a simplicial reflection r’: 00- n+l --"> 00- n+l

determined by tranposing a pair of vertices gives rise to a reflection r: P ---> P, by
functoriality of the Williams construction. A routine Mayer-Vietoris argument con-
firms that Pn+l: 0Pn+l)-l(K) --> K induces an isomorphism of homology groups,
for every subcomplex K of 00-n+l; consequently, r.: Hn(P) H(P) amounts to
multiplication by -1, as the same certainly holds for r," Hn(00- n+l) ---> Hn (o-n+ 1).
Perform the Gromov construction f2(P, r). Not only does inclusion j: P --> Q(P, r)
induce the trivial homomorphism on nth homology, by Lemma 3.5, but also other
straightforward homology calculations show that

H,(2 (P, r)) HI(2(P,r)) + Hn(f2(P, r))

with HI(f2(P, r)) carried by the image C1 of a x [0, 1], where r(a) a, and
Hn(Q(P,r)) by the image D1 of P x 0 in g2(P,r). To 2(P,r) attach a (2-
dimensional) grope G1 with OG1 CI and attach another copy of g2(P, r) to
D1, specifically equating j (P) C Q(P, r) with D1. Repeat the procedure in the
new copy and iterate, producing in this way countably indexed collections {Gi}
and {f2 (P, r)i of gropes and Gromov constructions such that Gi+ and l(P,r)i+l
kill the homology of (P, r)i. Then the union o-"+ of both collections is an
acyclic, aspherical (n + 1)-complex; asphericity follows exactly as in [DJ, Lemma
(1.h2)]. Moreover, statement (4) holds because, for each connected subcomplex K
of 00-’+1, Yrl((n+l)-l(K) zr (P) is 1-1 by [DJ, Proposition lh.1] and Yrl(P >
Zrl(Co-n+l) is 1-1 by [DJ, Proposition 4c.2]. Define Pn+l" co-+1 "-> O-n+ as an
arbitrary extension Ofn+l (e oto-nAS) with rn+l(Olo-n+l\P (7. Into- "+1. F]

Proofof Theorem 3.1. Let Hi} be an enumeration of all Williams complexes of
the form oto-/r(o-n), for all integers r > 0 and n > 0, where fir (o-n) denotes the
rth barycentric subdivision of O- and oto- the complex promised in Proposition 3.6
for n. By the Hurewicz Theorem SO Hi is contractible. Hence, Lemma 3.3 gives
a 0-dimensional Gs-subset W of X with (X\W)rHi for every i. We claim that
this makes every compact subset Y of X\W strongly hereditarily aspherical. To
that end, consider a finite, n-complex L triangulated by Z: and map f" Y -> L.
Let zr" fl(L) O-n be the standard simplicial mapping defined as in 3.6. Use the
Williams functor to get an asphericalization g" otL --+ L of (L,/2) such that, for
each n-simplex yn L, g-l(y,) equals some Hi. Then invoke Lemma 3.4 to get an
:-lifting f" Y --+ ot L of f. Theorem 2.10 certifies that Y is strongly hereditarily
aspherical.

For the alternative form locating a 0-dimensional F-subset, simply use [O1] to
obtain a G-subset Z of X containing X \W such that Zr Hi for all i. Then X\Z is
the required F-set for, just as shown above, each compact subset Y of Z is strongly
hereditarily aspherical.
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THEOREM 3.7. There exist a 2-dimensional compactum F C Q and cell-like map
p: Q Q’ such that

F’ p(F) and F p-1 (F,),
p is hereditarily aspherical over F’,
dim F’ cxz.

Proof. Consider a Dydak-Walsh cell-like map p: X X’ where dim X 2
and dim X’ cx. Embed X in Q and extend p to a cell-like map p: Q Q’ which
is 1-1 on Q\x. Apply SHASubset Theorem 3.1 to find a 0-dimensional Z C X’ such
that X’\Z is a countable union of strongly hereditarily aspherical compact subsets
7. Corollary 2.9 implies p is hereditarily aspherical over 7 for each i. Moreover,
there exists an index k with dim Tk cx, as otherwise we would have dim < 2
for all and therefore dim X’ < cx, since X’ would be expressed as a union of the
0-dimensional space Z and its 2-dimensional complement.

COROLLARY 3.8. There exists a cell-like map p" Q Q’ and a 2-dimensional
subset F p-1 p(F) of Q such that p is hereditarily aspherical but not strongly
hereditarily aspherical over p (F).

The compactum F’ of Theorem 3.7 reveals that covering dimension and integral
cohomological dimension do not coincide for strongly hereditarily aspherical spaces,
answering Question 3 of [Da] in the negative.

At one time we thought perhaps every 2-dimensional compact metric space which
is k-UV for all k > 2could be expressed as an inverse limitofaspherical 2-dimensional
polyhedra. However, the proof ofKarimov’s result [Ka] shows this is false. Still open
is:

GENERALIZED WHITEHEAD CONJECTURE. If X is a 2-dimensional compactum
having Property 2-UV, then every subcompactum has Property 2-UV.

When X is a 2-complex, the conjecture above is equivalent to the classical White-
head Conjecture, unsolved at this juncture. The truth of the Generalized White-
head Conjecture would imply that the example promised by Corollary 3.8 is actually
hereditarily aspherical and would provide a negative answer to Question 2 of [Da].
Furthermore, if that example could be expressed as an inverse limit of aspherical
2-complexes, then the classical Whitehead Conjecture would be false.

Example. A cell-like subset ofan n -manifold thatdoes notembed in ]Rn. McMil-
lan [Mc] has described an arc ot in an n-manifold, no neighborhood of which embeds
in ]Rn. A minor adaption of the source of ct gives an example of the desired sort. The
source is obtained as a cell-like image of awedge ofthe suspensions oftwo continua
X+, X- disjointly embedded in S3. For n 4 McMillan uses a 4-manifold arising as
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the interior of (B4 plus two attached 2-handles), where the individual 2-handles are
attached to S OB4 so as to cover X+ and X- separately. Each suspension point
corresponds to the center ofeither B4 or one of the 2-handles. Expanding McMillan’s
wedge, one can simply thicken each of the three points corresponding to suspension
points to 4-cells, in the natural way so each 4-cell meets the wedge in a cone. The
union C of McMillan’s example and the three 4-cells is the desired cell-like set. IfC
were embedded in 4, one could trim back the 4-cells slightly and tube together the
two not containing the wedge point toproduce an embedding . of (X+ t3X -) x [0, 1
in S3 x [0, 1] satisfying

.((X+ t3 X-) x [0, 1]) (q S3 x {i} .((X+ U X-) x {i}), {0, 1},

with )((X+ t.3 X-) x {0}) embedded in S3 x {0} just like McMillan’s example and
with the two components of .((X+ U X-) x {1}) separated in S x {1} by some
2-sphere, an arrangement which the argument of [Mc] shows cannot occur.

Other questions

1. If dim X 2 and X’ has rational cohomological dimension at most 1, is p
hereditarily aspherical over X’?

2. Is the compactum F of Theorem 3.7 itself hereditarily aspherical?

3. If p: F - F’ is cell-like, where dim F 2, F’ is hereditarily aspherical and
fibers are 1-dimensional, is F hereditarily aspherical? Can dim F’ > dim F?
Same questions if F’ has rational cohomological dimension 1.

4. Can every acyclic 2-dimensional compactum be embedded in /I4? What if
acyclic and aspherical? What about cell-like sets? Whatabout cell-like subsets
of 4-manifolds?

5. Can proper, cell-like maps on 4-complexes raise dimension? What about
on 4-manifolds? On 3-complexes? The best result available concerning 3-
complexes, which appears in [KRW], gives a negative answer provided all
point preimages are 1-dimensional.

[AC]

[Bk]

[c1]
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