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SPECTRAL PROPERTIES OF WEIGHTED COMPOSITION
OPERATORS AND HYPERBOLICITY OF LINEAR
SKEW-PRODUCT FLOWS

YURI LATUSHKIN

1. Introduction

A weighted composition operator is an operator T that acts by the rule (Tf)(x) =
a(x) f (¢x) on a space of vector-valued functions f, defined on a set X. Here ¢ is a
given mapping of X, and a(-) is a given operator-valued function. These operators
have been studied with different purposes and from different points of view (see [3],
[4]1, [7], [9], [12], [16], [18], [23], [24] and literature, cited therein).

Weighted composition operators are widely used in the description of asymptotic
properties of dynamical systems and differential equations. A well-known example
is provided by the celebrated Mather Theorem [19]. This theorem states that a
diffeomorphism ¢ of a finite dimensional smooth manifold X is Anosov (is hyperbolic,
see the definition below) if and only if the associated weighted composition operator
T is hyperbolic, thatis o(T) N T = @for the spectrum o (7T') and unite circle T. Here
T acts in the space of continuous sections f of the tangent bundle over X, a is the
differential of ¢.

This theorem was generalized in several directions (see [1], [2], [S], [14], [18]),
and, in particular, for an arbitrary linear skew-product flow. To give the definition of
the linear skew-product flow (LSPF) we consider a homeomorphism ¢ of a compact
metric space X and a continuous function a: X — L(H) with values in the algebra
L(H) of operators, bounded on a Hilbert space H. Let ®: X xZ; — L(H) be
a cocycle over ¢, defined by the rule ®(x,n) = a(¢"‘1 x) - ...-a(x). The linear
skew-product flow, associated with ®, is the map

) 43”: XxH—>XxH: (x,v)> (¢"x, P(x,n)v), neZs.

The LSPFs are one of the major objects in studying the asymptotics of variational
differential equations v’ = A(¢'x)v, x € X, where A: X — L(H), and ¢" is a flow
on X (see [10], [15], [21], [22] and the literature therein). One can think of ®(x, t) as
the solving operator for the differential equation: v'(f) = ® (x, £)v(0),t € R, x € X.

One of the main problems here is the existence of exponential dichotomy (hy-
perbolicity) for the LSPF (1) with continuous with respect to x dichotomy projec-
tion (see [6], [8], [10], [15], [20], [21]). It means the existence of a continuous
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projection-valued function P: X — L(H) which gives for each x € X a splitting
H =Im P(x)+ Ker P(x) of H inthe direct sumof stable S, = Im P (x) and unstable
U, = Ker P(x) subspaces such that forv € S, (resp. v € U,) thenorm || ®(x, n)v||
approaches O (resp. oo) with an exponential rate as n — oo.

We will characterize the hyperbolicity of the LSPF (1) in spectral terms for the
weighted composition operator

duog™!

1/2
) a@'x)f(¢7'x), xeX.
dup

(TH) = (

The operator T acts on the space L, = L,(X, u; H) of functions on X with values
in H, where u is a given Borel ¢-quasi-invariant finite measure on X. We assume,
that supp 4 = X and ¢ is aperiodic, u(Per¢) = 0.

The central new effect in the present paper is the following. The Mather Theorem
and its generalizations from [1], [2], [5], [14], [18] show that for finite dimensional H
the hyperbolicity of the LSPF (1) is equivalent to the hyperbolicity of the operator T'.
In this sense o (T') plays for the LSPF (1) the same role as the spectrum of monodromy
operator does for periodic differential equations. As it was pointed outby R. Rau [20],
for infinite dimensional H, the Mather Theorem and its generalizations are notal ways
valid. The hyperbolicity of T always implies the hyperbolicity of the LSPF (1). The
converse statement is true provided the values of a are invertible or compact operators
in H. In general, the condition o (T) N T = @ is implied by the hyperbolicity of the
LSPF (1) together with some additional condition on the LSPF (of the invertibility
of a(x) on unstable subspaces U, for all x € X). In the present paper, however, we
were able to characterize the hyperbolicity of the LSPF (1) in other spectral terms for
T. This characterization is the following.

The hyperbolicity of the LSPF (1) is equivalent to the existence of T —invariant
splitting L,(X, u; H) = ImP + Ker P into direct sum of “stable” subspace Im P
and “unstable” subspace Ker P. The spectrum of the “stable” part of the operator T
has to be inside the disk D = {z: |z| < 1}. The “unstable” part 7, = T | Ker P of the
operator T has to be left-invertible. The spectrum of the left-inverse operator for TN
must belong to D for some N > 1. And, finally, the set of those functions in Ker P,
that do not have preimages with respect to all powers of T,, has to withstand the
multiplication by continuous scalar functions. Using a C*-algebra technique from
[1,2, 18], we prove, under this conditions, that any projection P on L, (X, u; H), that
gives the described T-invariant splitting, has a form (P f)(x) = P(x) f(x), where
P(-) defines the hyperbolicity of the LSPF (1).

Similar results can be proved also forso-called evolutionary semigroups (see [13],
[17], [20]). The evolutionary semigroup {7} is the semigroup of operators, acting
on Ly(R; H) by the rule (T’ f)(x) = U(x,x —t) f(x —t). Here {U(x, 5)};», is
an evolutionary family on H, that can be viewed as the propagator of a differential
equation v’ = A(x)v, x € R. Clearly, T" is the weighted composition operator with
X=R,ax)=Ux,x —f),and px = x — ¢.
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Also, one can prove similar results for a strongly (versus uniformly) continuous
operator-function a (). This situation for the evolutionary semigroup corresponds to
a strongly continuous propagator U(x, s) for the differential equation v = A (x)v
with, generally, unbounded operators A(x), x € R. Thus, the exponential dichotomy
(hyperbolicity) of any well-posed differential equation in Hilbert space can be ex-
pressed in terms of the spectral properties of the weighted composition operators,
described here.

Section 2 contains some definitions and our main result. We use several lemmas
in its proof. These lemmas are proved in Section 3.

It is a pleasure to thank Carmen Chicone and Stephen Montgomery-Smith for help
and stimulating conversations.

2. Results

Consider the LSPF (1), generated by a continuous cocycle ®: X x Z, —
L(H) over a homeomorphism ¢ of a compact metric space X: ®(x,n + k) =
O@"x,k)P(x,n),n, k€ Zy,and® (x,0) =1, x € X.

Definition. The LSPF(1)is called hyperbolic if there exist a continuous projection-
valued function P: X — L(H) and constants M, A > 0 such that forall x € X and
n € Zy the following is fulfilled:

(i) ®(x,n)P(x) = P(@"x)P(x,n);
@ii) 1P (x, n)vll < Me™"|jv]|, v € Im P (x),
1P x, n)v| = M~ 1" ||v], v € Ker P(x).

The LSPF is called spectrally hyperbolic, if, in addition to that,
(iii) Im (P (x, n)|Ker P(x)) is dense in Ker P(¢"x).

If @ takes invertible values, this definition coincides with the definition of expo-
nential dichotomy for the LSPF (1) (cf. [8], [10], [20], [21]). Note, that the second
condition in (ii) implies the left-invertibility of the restriction ®(x, n)|Ker P(x) as an
operator from Ker P (x) to Ker P (¢" x), while (iii) implies its both-sided invertibility.
Regarding the hyperbolicity and the spectral theory of linear skew-product flows see
[51, [14], [15], [22], where the situation dim H < oo was considered. Let us stress,
that if dim H < oo, then (ii) automatically implies (iii). See also [11, Definition
7.6.1], and [6], [21] for the case of infinite dimensional H.

The following fact (see[18, Theorem 3.2]) explains theterm spectral hyperbolicity.

THEOREM 1. The spectral hyperbolicity of the LSPF (1) is equivalent to the
hyperbolicity of the operator T on L,(X, u, H).
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Note, that condition (iii) was missing in Definition 3.1 in [18] (see [20]).
The following example (cf. [20]) shows that the hyperbolicity of the LSPF (1) (that
is (i) and (ii) without (iii)) does not imply the hyperbolicity of T

Example 1. Let X be a single-point set, ¢ be the identity map, H = l,(Z,),
and a = a(x) be a weighted unilateral shift on /,(Z,), that is, a: (v, vy,...) —
(0, e*vy, e*vy, . ..),A > 0. Note that |la"v|| = €**||v|| and the LSPF (1) is hyperbolic
with P = 0. However, 6 (T) = 0 (@) = {z: |z| <e*} containsT. 0O

Similar examples can be constructed to give two LSPFs (1) such that one of them
is hyperbolic, another one is nonhyperbolic but the spectra (and even approximate
point spectra) of the corresponding weighted composition operators are equal.

Note that under one of the following additional assumptions the spectral hyper-
bolicity coincides with the hyperbolicity:

1. a(x) is an invertible operator for all x € X. Then ®(x, n)| Ker P(x) is also
invertible, which implies (iii).

2. a(x) is a compact operator for all x € X. Then the multiplicative ergodic
theorem implies (see [18]) that dimKer P(x) < oo. The second inequality
in (ii) gives the left invertibility of the matrix ®(x, n)| Ker P(x). Hence, this
matrix is invertible, which implies (iii).

Let us formulate now the main result of the paper that describes the hyperbolicity
of (1), that is conditions (i) and (ii), in the spectral terms for 7. To this end for a
left-invertible operator A letus denote by A" its left inverse, defined as ATu = v if
u=AvelmAand A'u = 0if ul ImA. Let ||Alls = inf{||{Aul|: ||| =1}, and let
| denote restriction of an operator.

THEOREM 2. The LSPF (1) is hyperbolic if and only if there exists a projection
P on L2(X, u, H) such that.

(@ TP ="7PT;

(b) o(T|ImP) C D;

(c) The operator T, = T| Ker P is left-invertible in Ker P and for some N € Z
one has o ((TuN)T) c Dy

(d) The subspace KerP © nnzo Im T} of Lo(X, u, H) is invariant under the
multiplications by scalar continuous functions on X .

Any projection P that satisfies (a), (b), (c), and (d) has a form (P f)(x) = P(x) f(x)
for a continuous projection-valued function P: X — L(H).

Proof of Theorem 2. Let us note that achange of variables gives the equation

(€)) NT"fliL, = 1@ n) fllL,, f €L
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Since supp 4 = X, from (4) one has
3) IT"|| = max{||® (x,n)|: x € X}, |T"|l, = min{||®(x,n)|,: x € X}.

Assume that LSPF (1) is hyperbolic; that is, conditions (i) and (ii) are fulfilled.
We will show that (a)—(d) are fulfilled. Define a projection P by the rule (P f)(x) =
P(x) f(x). Then (i) implies (a). Having applied (5) to T"| Im P, one has (b) from
the first inequality in (ii). The second inequality in (ii) by the same reason gives
Il T”l KerP|, > M ~le*. Now (c) is a consequence of the following simple fact (see

proofs of all lemmas below in Section 3).
LEMMA 1. For an operator A in a Hilbert space 'H the following are equivalent:

1) (|A™v|| = Cy"|\v|| foralln € Z+,v € H and somey > land C > 0;
(2) A is left-invertible, and o (AN WHech for some N € Z.

Let us derive (d) from (i) and (ii). To this end for any continuous m: X — Rwe
will denote also by m the operator of multiplication by m in L2, that is (nf)(x) =
m(x) f(x). Then Pm = mP since P is an operator of multiplication by P(-).
Hence mf € Ker P provided f € Ker P. Denote K = [,.,Im7;. Obviously,
T) (mo@") =mT}.If f € K then f = T,'g, forsome g, € KerP and alln € Z,.
Butnow mf = T} (m o ¢") g» € K, and (d) is proved.

Assume now that (a), (b), (c), (d) are fulfilled. We will show the hyperbolicity of
(1). To this end, basically, we need to prove that P is an operator of multiplication by
a continuous projection-valued function P(-). Indeed, let us assume that this fact has
been already proved. Then (i) follows from (a). The firstestimate in (ii) follows from
(5), applied to 7" | Im P and & (x, n)| Im P (x). By Lemma 1 also || 77 f|| > Cy"| f||
for some y > 1 and C > 0 provided (c). Now the second estimate in (ii) follows
from (5) applied to T}, and ®(x, n )| Ker P (x), and the hyperbolicity of (1) is proved.

In order to prove that (Pf)(x) = P(x)f(x) we need to know that the decom-
position L, = ImP+ KerP is invariant under the multiplication by any continuous
function m. We formulate this fact as a lemma.

LEMMA 2. Conditions (a), (b), (c), (d) imply Pm = mP for any continuous
functionm: X — R.

We will show that conditions (a), (b), (c), and Lemma 2 implies (P f)(x) =
P(x) f(x).

We start from the following heuristic remark. Assume o (T) N'T = @. Then (a),
(b), (c) are fulfilled for the Riesz projection P of the operator T', that corresponds
to the part o (T) N D of its spectrum. In this case the Riesz integral formula (see,
e.g., [8]) allows one to calculate P via the resolvent (z — T)~! for z € T. From
this formula, using the technique from [18], one can derive that P is an operator of
multiplication. Let now (a), (b), (c) are fulfilled. Of course, these conditions do not
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imply the two-sided invertibility of z — T for z € T. We will see, however, that the
operator z — T is aleft-invertible operator for any z € T. Moreover, we will compute
‘P by the formula, similarto the integral formula for a Riesz projection. Then we will
apply a modification of the usual technique from [18] to prove that P is an operator
of multiplication.

Having in mind these arguments, we formulate the following result.

LEMMA 3. Condition (a), (b), (c) imply the left-invertibility of z—T forall z € T,
and the formula

@ P=—1~./(z—T)“dz.
271'1 T

Let us prove that P from (6) is an operator of multiplication. To this end let us
consider the Banach algebra B of the operators b on L,(X, ; H) of the form

0 00
) b= > aTf, with [bli= Y llall <oo,

k=—00 k=—00

where

Zin 112
(T H() = (d—"ai—) £,
uw
and g are operators of multiplication by continuous functions a;: X — L(H), that
is (@, f)(x) = aq(x) f(x). Itisclear, thatz — T =z —Tya € B forallz € T.
Note that B is inverse-closed (see [18, Proposition 2.3]). This means, that if b € B
is an invertible operator in L(L,) then its inverse operator b~ ! also belongs to B.

Moreover, the following fact is valid.

LEMMA 4. Ifb € B is aleft-invertible operator on L,(X, u; H), then bt € B.

Now, in accordance with Lemma 3 and (6) we conclude that® € B. Inaccordance
with (5), P can be writtenas P = ) alek . Let us use Lemma 2 and rewrite the
equation mP — Pm = 0 term-by-term: max — ax (m o¢"‘) = 0, k € Z. Recall
that Int Per ¢ = @. Hence for any k # 0 and any x ¢ Per ¢ one can choose m such
that m(x) —m o ¢ *(x) # 0. Then ax = Ofor k # 0, and P = ay is an operator of
multiplication. O

3. Proofs of Lemmas

Proof of Lemma 1. To prove 2) = 1) note that for the spectral radius r =
r((AN)t) one has r < 1 provided 2). For small € > Othen ||[(AN)%]| < c(r +¢€)* for
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somec > 0andall k € Z,. Forany n € Z, taken = Nk + ko, 0 < ko < N. Then,
since (AM)' . AN = I, one has

ol = Aa%) (AN A" vl < (A9 - e(r + e)¥ [l A",

and (1) is proved.
To prove (1) = (2) let usdenote by v(,) the orthoprojection of v € H onto subspace
(-). Choose N such that Cy" > yy for some yo > 1. Then

loll = lvmaxll = AN (AY) Tvman ||
> CyM (AN tumav || > yollAY) T,

and o ((AV)") c D. Here we have used the fact that Afvima = ATv and AATw =u
foru elImA. O

Proof of Lemma2. Denote Q =I1—P,T,=T |ImP,T,=T | ImQ. Letus
point out, that

(6) ImP ={f e L,(X,u; H): |T"f|l = 0,n — oc}.

Indeed, for f € ImP and small € > 0 one has ||[T"f| = Ty fI| < c(r(T5) +
e)"IlfII = O, since the spectral radius r(7;) < 1 provided (b). By Lemma 1 for
A = T, condition (c) implies that |7 Qf || = Cy"|Qfll, y > 1. If |[T"f|l = O
and f =Pf + Qf then

lofll < CTly ™MITIQf I =C™ly ™" (IT"f = TPPfI)
< CT'y AT SN+ TP A = O,

as n — 00, and (8) is proved.

Let us fix a continuous m: X — R. Note that T"mf = (m 0¢p™)T"f. But
[lmo¢™| = |Im|| =max{|m(x)|: x € X} forall n € Z. Then for f € ImP one
has ||[T"mf|| — Oas n — oo and mf € Im P by (8).

In order to prove that mf € Ker P provided f € KerP let us denote K =
,»0Im 7. Note that KerP © K is invariant under multiplications by m in accor-
dance with (d), and we need to show only that mK C K.

Note that mf € Im T" provided f € Im 7", since for f = T" g one has

T"(mo¢")g=mT"g=mf €ImT".

Fix f € K and show thatmf € K. Let us denote, for brevity, B = (T,7)V. Consider
fo=B"f,n=0,1,.... Since f € K one has f = T"Nf,. Also, o(B) C D
provided (c). Then | f,|| < c(r(B) +€)"|| fl = Oas n — oo for small € > 0.
Let us assume mf ¢ Ker P. Consider the functions g, = m o ¢" - f,. Obviously
lignll < llmllll £,Il - Oas n — oo,and T"Ng, =mf. Decompose g, = Pg,+ 08,
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Since Ker P and Im P are T-invariant by (a), 7"V Pg, = Pmf, TN Qg, = Qmf.

By Lemma 1 one has || @mf || = |T;"Qg.ll > Cy"™"||Qgxll and [|Qgull — O as
n — 0OQ.

Since, as we have seen, ||g, | = 0, we conclude that ||Pg,|| — 0. However by
®), |Pmfll = IT/NPgull < c(r(Ty) + €)"V||Pg,ll — 0 for small € > 0, which
contradicts the assumption Pmf # 0. O

Proof of Lemma 3. LetT,=T|ImP,T, = T| ImQ,and Q = I — P. Decom-
pose

21 -T=@EP-T)+zQ-T,), z€T.
The operator zP — T is invertible in ImP provided (b). Also one has

o0

¢ @P-T) ! =2 (P =Ty = 3T,
k=0

Having denoted B = (T¥)* for N from (c), one has

No-TN=7"BT) -1 =B - OT.

But zV B — Q is an invertible operator in KerP provided (c). Since B is the left
inverse for TuN , one has

@"Q-T") =B"B-0)"' =B i(ZNB)k.
k=0

From the identity
®) NO-T) =" Q+ NPT 4+ + TV Q- T)
one has
(e8]
©) @Q-T)' =B MBe" '@+, + -+ T,

k=0

and finally (z — =P - Ts)‘l-f-(zQ - Tu)". Both series (9) and (11) converge
absolutely for |z| = 1. Since [ X dz = Ofork # —1, integration of (z — T)" gives
the only one nonzero term which corresponds to the value k = 0 in (9), thatis to the
operator T = P, and (6) is proved. O

Proof of Lemma 4 (told to the author by R. Exel). Note that Tj* = Tl'l. Then in
accordance with (7), b € B implies b* € B, and b*b € B. Since b is a left-invertible
operator in L(L,), the Hermitian operator b*b is invertible in L(L;). Indeed, if
b*bv = 0 for some v, then ||bv||> = (B*bv,v) = 0 and v = 0. But (see [18,
Proposition 2.3]) B contains inverse operators for each of its element, that is invertible
in L(L,). Hence, (b*b)~! € B and also (b*b)~1b* € B. To finish the proof, let us
note, that b' = (b*b)~!b*. Indeed, b'bv = (b*b)~1b*bv = v. If uLImb then
u € Kerb* and btu = b*b)~1b*u =0. O
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