RESTRICTION THEOREMS RELATED TO ATOMS

DASHAN FAN

Introduction

Let \mathbb{R}^n be *n*-dimensional real Euclidean space and let S^{n-1} be the unit sphere in \mathbb{R}^n . Suppose that $d\sigma = d\sigma(x')$ is the element of Lebesgue measure on S^{n-1} so that the measure of S^{n-1} is 1. If $d\mu = \psi d\sigma$ is a measure with smooth density ψ , then from [9] or [10] we know that the Fourier transform of $d\mu$ satisfies $d\hat{\mu}(\xi) = O(|\xi|^{-\varepsilon})$ as $|\xi| \to \infty$, for some $\varepsilon > 0$. It turns out that if the density ψ is merely in $L^p(d\sigma)$, for some p > 1, then there is still an average decrease of $d\hat{\mu}$ at infinity along any ray emanating from the origin. More precisely, suppose that ψ is in $L^p(d\sigma)$, then

(*)
$$R^{-1}\int_{O}^{R}|d\hat{\mu}(\rho\xi)|^{2}d\rho \leq A(R|\xi|)^{-\varepsilon},$$

where $\varepsilon < (1 - p^{-1})/2$, and A is a positive constant independent of $R|\xi|$ (see [10]). The estimate (*) has the following application.

Let $\Omega(x)|x|^{-n}$ be a homogeneous function of degree -n, with $\Omega \in L^p(S^{n-1})$, for some p > 1, and $\int_{S^{n-1}} \Omega(x') d\sigma(x') = 0$. Let $r \to b(r)$ be a bounded function on $(0, \infty)$. We consider the distribution $K = P.V.b(|x|)\Omega(x)|x|^{-n}$ and study the boundedness of the operator Tf which is defined by Tf = f * K. This operator was studied extensively and its boundedness properties were established in R. Fefferman [7], Namazi [8], Duoandikoetxea and Rubio de Francia [4] and Chen [1]. In his new significant book [9], by using (*), E. M. Stein gives an alternative proof to conclude that, under the restriction $n \ge 2$, the mapping $f \to f * K$ extends to a bounded operator in $L^2(\mathbb{R}^n)$. Meanwhile, he points out that the condition $b \in L^{\infty}(0, \infty)$ can be replaced by a weaker condition (see pages 372–373 in [10]; also see [4]):

(1)
$$R^{-1} \int_{O}^{R} |b(\rho)|^{2} d\rho \leq A \text{ for all } R > 0.$$

In this paper, we shall study $d\mu = \psi d\sigma$ where the density ψ is an atom. As an application, we will prove that if $\Omega(x')$ is merely in the Hardy space $H^1(S^{n-1})$ with mean zero property and if, for some p > 1, the radial function b(|x|) satisfies

(1')
$$R^{-1} \int_0^R |b(\rho)|^p \, d\rho \le A \text{ for all } R > O,$$

Received October 8, 1993

1991 Mathematics Subject Classification. Primary 42B10, 42B20, 42B30; Secondary 42B99.

© 1996 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

DASHAN FAN

then the operator Tf = f * K, with $K = P.V.b(|x|)\Omega(x')|x|^{-n}$, extends to a bounded operator in $L^2(\mathbb{R}^n)$, for n > 1. Clearly, our result significantly improves the above mentioned L^2 boundedness property. It also improves the result in our previous paper [5]. The proofs in this paper are modifications of those in [5].

Recall that the Poisson kernel on S^{n-1} is defined by

$$P_{ry'}(x') = (1 - r^2)/|ry' - x'|^n,$$

where $0 \le r < 1$ and $x', y' \in S^{n-1}$. For any $f \in S'(S^{n-1})$, we define the radial maximal function $P^+f(x')$ by

$$P^{+}f(x') = \sup_{0 \le r < 1} \left| \int_{S^{n-1}} f(y') P_{rx'}(y') \, d\sigma(y') \right|,$$

where $S'(S^{n-1})$ is the space of Schwartz distributions on S^{n-1} .

The Hardy space $H^{\hat{1}}(S^{n-1})$ is the linear space of distribution $f \in S'(S^{n-1})$ with the finite norm $||f||_{H^1(S^{n-1})} = ||P^+f||_{L^1(S^{n-1})} < \infty$. The Hardy space $H^1(S^{n-1})$ was studied in [2] (see also [3]). In particular, a well-known result is $L^1(S^{n-1}) \supseteq$ $H^1(S^{n-1}) \supseteq L^q(S^{n-1})$ for any q > 1. Another important property of $H^1(S^{n-1})$ is the atomic decomposition of $H^1(S^{n-1})$, which will be reviewed in the following:

An exceptional atom is an L^{∞} function E(x) satisfying $||E||_{\infty} \leq 1$.

A regular atom is an L^{∞} function a(x) that satisfies

(i)
$$\operatorname{supp}(a) \subset \{x' \in S^{n-1}, |x' - x'_0| < \rho \text{ for some } x'_0 \in S^{n-1} \text{ and } \rho > 0\},\$$

(ii)
$$\int_{S^{n-1}} a(\xi') \, d\sigma(\xi') = 0,$$

$$\|a\|_{\infty} \le \rho^{-n+1}.$$

From [3], we find that any $\Omega \in H^1(S^{n-1})$ has an atomic decomposition $\Omega(\xi') = \sum \lambda_j a_j(\xi')$, where the a_j 's are either exceptional atoms or regular atoms and $\sum |\lambda_j| \le C \|\Omega\|_{H^1(S^{n-1})}$.

We have the following restriction theorem for atoms:

THEOREM 1. Let I_k be the interval $(2^k, 2^{k+1})$. Suppose that $a(\xi')$ is an atom on S^{n-1} . Then for any q > 1,

(2)
$$\sum_{k=0}^{\infty} \left(\int_{I_k} t^{-1} \left| \int_{S^{n-1}} a(\xi') e^{it\langle x',\xi'\rangle} d\sigma(\xi') \right|^q dt \right)^{1/q} < A,$$

where A is a constant independent of $x' \in S^{n-1}$ and the atom a(x).

Theorem 1 has the following consequence.

THEOREM 2. Suppose that Ω is a homogeneous function of degree zero and satisfies the mean zero property $\int_{S^{n-1}} \Omega(\xi') d\sigma(\xi') = 0$. If b(x) satisfies (1') for some p > 1 and Ω is a function in $H^1(S^{n-1})$, n > 1, then the operator Tf = f * K, with $K = P.V. b(|x|)\Omega(x)|x|^{-n}$, is bounded in $L^2(\mathbb{R}^n)$.

As an analogue of formula (*), we have the following:

THEOREM 3. Suppose that $d\sigma = d\sigma(x')$ is the Lebesgue measure on S^{n-1} . If $d\mu = \psi d\sigma$ with a density ψ in $H^1(S^{n-1})$, then we have

(**)
$$R^{-1} \int_0^R |d\mu(t\xi)| \, dt = o(1) \text{ as } R|\xi| \to \infty.$$

Proof of Theorem 1

We first prove Theorem 1 for a regular atom $a(\xi')$. Let

$$A_{k} = \left\{ \int_{I_{k}} t^{-1} \left| \int_{S^{n-1}} a(\xi') e^{it\langle x',\xi'\rangle} d\sigma(\xi') \right|^{q} dt \right\}^{1/q}.$$

We will prove the theorem in the two different cases n > 2 and n = 2, respectively.

Case n > 2. For a regular atom a(x') with $\operatorname{supp}(a) \subseteq B(x'_0, \rho) \subseteq S^{n-1}$, without loss of generality, we may assume that ρ is very small. Let $\mathbf{1} = (1, 0, \dots, 0)$ be the north pole of S^{n-1} . By a rotation we can assume that $x' = \mathbf{1}$. Let $\xi' = (s, \xi_2, \dots, \xi_n)$; then

$$A_k \leq A \left\{ \int_{I_k} t^{-1} |F(t)|^q dt \right\}^{1/q},$$

where

$$F(s) = (1 - s^2)^{(n-3)/2} \chi_{(-1,1)}(s) \int_{S^{n-2}} a(s, (1 - s^2)^{1/2} y') \, d\sigma(y'),$$

 $d\sigma(y')$ is the Lebesgue measure on S^{n-2} and F(t) is the Fourier transform of F(s). Now we easily see that $\int_{\mathbb{R}} F(s) ds = 0$. Furthermore, we can check that, up to a constant independent of the atom $a(\xi')$, F is a regular atom on \mathbb{R} . Since the computation is tedious but similar to the simplest case $\operatorname{supp}(a) \subseteq B(1, \rho)$, we examine this fact for $\operatorname{supp}(a) \subseteq B(1, \rho)$ (more details can be found in [6]). For small ρ , we may assume

$$\operatorname{supp}(a) \subseteq \{\xi' = (s, \xi_2, \dots, \xi_n) \in S^{n-1} : (s-1)^2 + \xi_2^2 + \dots + \xi_n^2 < \rho^2\}.$$

Clearly this implies $\operatorname{supp}(F) \subseteq (1 - \rho^2/2, 1)$ and $||F|| \leq C\rho^{-2}$. Now assume that the atom F has support $(s_0 - r, s_0 + r)$. If $2^{k+1} \leq r^{-1}$, by the cancellation condition

of F(s), we easily see that

$$A_k \leq r \left\{ \int_{I_k} t^{q-1} dt \right\}^{1/q} = A \ 2^k r.$$

Thus, we obtain

(3)
$$\sum_{2^{k+1} \le r^{-1}} A_k \le A r \sum_{2^{k+1} \le r^{-1}} 2^k \le A.$$

To estimate A_k for $2^{k+1} \ge r^{-1}$, using Hölder's inequality, we obtain

$$A_{k} \leq \left(\int_{I_{k}} t^{-2} dt\right)^{1/2q} \left(\int_{\mathbb{R}} |F(t)|^{2q} dt\right)^{1/2q}$$

.

By the Hausdorff-Young inequality, we have

$$A_k \leq A \ 2^{-k/2q} \|F\|_{L^{2q/2q-1}(\mathbb{R})} \leq A \ r^{-1/2q} 2^{-k/2q}.$$

Therefore,

(4)
$$\sum_{2^{k} \ge 1/r} A_{k} \le A \ r^{-1/2q} \sum_{2^{k} \ge 1/r} 2^{-k/2q} \le A.$$

This proves the theorem for the case n > 2.

Case n = 2. In this case $\Sigma_1 = \mathbb{T}$, the one-dimensional torus. As before, we may assume that $\operatorname{supp}(a) \subseteq (-\rho, \rho)$. Let $x' = (\cos \alpha, \sin \alpha)$. Then for $2^k \leq \rho^{-1}$,

$$A_k = \left(\int_{I_k} t^{-1} \left| \int_{-\pi}^{\pi} a(\theta) (e^{it\cos(\theta - \alpha)} - 1) d\theta \right|^q dt \right)^{1/q} \le A(2^k \rho).$$

Thus $\sum_{2^k \leq 1/\rho} A_k \leq A$.

Next we only prove the case $\cos \alpha \neq 0$ and $\sin \alpha \neq 0$, since the estimates for these two cases are easier than in the prior case. Also we assume $\sin \alpha > 0$. For $1/\rho \leq 2^k \leq \rho^{-2}$,

$$A_{k} = \left(\int_{I_{k}} t^{-1} \left| \int_{-\pi}^{\pi} a(\theta) e^{it \cos\theta \cos\alpha} e^{it \sin\theta \sin\alpha} d\theta \right|^{q} dt \right)^{1/q}$$

$$= \left| \int_{2^{k} \cos\alpha}^{2^{k+1} \cos\alpha} t^{-1} \right| \int_{-\pi}^{\pi} a(\theta) e^{it (\cos\theta - 1)} e^{it \tan\alpha \sin\theta} d\theta \Big|^{q} dt \Big|^{1/q}$$

$$\leq \left| \int_{2^{k} \cos\alpha}^{2^{k+1} \cos\alpha} t^{-1} \right| \int_{-\pi}^{\pi} a(\theta) e^{it \tan\alpha \sin\theta} d\theta \Big|^{q} dt \Big|^{1/q}$$

$$+ A \left| \int_{2^{k} \cos\alpha}^{2^{k+1} \cos\alpha} t^{-1+q} \left(\int_{-\pi}^{\pi} |a(\theta)(\cos\theta - 1)| d\theta \right)^{q} dt \Big|^{1/q}$$

$$= B_{k} + C_{k}.$$

It is easy to see that $C_k \leq A \rho^2 (\int_0^{2^{k+1}} t^{-1+q} dt)^{1/q} \leq A \rho^2 2^k$.

$$B_{k} = \left| \int_{2^{k} \cos \alpha}^{2^{k+1} \cos \alpha} t^{-1} \left| \int_{-\pi}^{\pi} a(\theta) e^{it \tan \alpha (\sin \theta - \theta)} e^{it \tan \alpha \theta} d\theta \right|^{q} dt \right|^{1/q}$$

$$= \left(\int_{2^{k} \sin \alpha}^{2^{k+1} \sin \alpha} t^{-1} \left| \int_{-\pi}^{\pi} a(\theta) e^{it (\sin \theta - \theta)} e^{it \theta} d\theta \right|^{q} dt \right)^{1/q}$$

$$\leq \left(\int_{2^{k} \sin \alpha}^{2^{k+1} \sin \alpha} t^{-1} \left| \int_{-\pi}^{\pi} a(\theta) e^{it \theta} d\theta \right|^{q} dt \right)^{1/q}$$

$$+ A \left(\int_{2^{k} \sin \alpha}^{2^{k+1} \sin \alpha} t^{-1+q} \left| \int_{-\pi}^{\pi} \left| a(\theta) (\sin \theta - \theta) \right| d\theta |^{q} dt \right)^{1/q}$$

$$= D_{k} + E_{k}.$$

Clearly, $E_k \le A\rho^2 2^k$. If $2^k \le (\rho \sin \alpha)^{-1}$, then D_k can be bounded by

$$\left(\int_{2^k\sin\alpha}^{2^{k+1}\sin\alpha}\left|\int_{-\pi}^{\pi}a(\theta)\left\{e^{it\theta}-1\right\}d\theta\right|^q t^{-1}dt\right)^{1/q} \leq A\rho 2^{k+1}\sin\alpha.$$

If $2^k \ge (\rho \sin \alpha)^{-1}$, then, by Hölder's inequality and Hausdorff-Young's inequality, we can find that

$$D_{k} = \left(\int_{2^{k} \sin \alpha}^{2^{k+1} \sin \alpha} |a^{\hat{}}(t)|^{q} t^{-1} dt \right)^{1/q}$$

$$\leq \left(\int_{2^{k} \sin \alpha}^{2^{k+1} \sin \alpha} t^{-2} dt \right)^{1/2q} \left(\int_{\mathbb{R}} |a^{\hat{}}(t)|^{2q} dt \right)^{1/2q}$$

$$\leq A(\sin \alpha \ 2^{k})^{-1/2q} ||a||_{2q/(2q-1)} \leq A(2^{k} \sin \alpha)^{-1/2q} \rho^{-1/2q}.$$

This proves that

$$\sum_{\rho^{-1} \le 2^k \le \rho^{-2}} A_k \le \sum_{2^k \le \rho^{-2}} C_k + \sum_{\rho^{-1} \le 2^k \le \rho^{-2}} B_k$$

$$\le A + \sum_{2^k \le \rho^{-2}} E_k + \sum_{\rho^{-1} \le 2^k \le \rho^{-2}} D_k$$

$$\le A + A \rho \sin \alpha \sum_{2^k \le (\rho \sin \alpha)^{-1}} 2^k + A \sum_{(\rho \sin \alpha)^{-1} \le 2^k} 2^{-k/2q} (\sin \alpha \rho)^{-1/2q}$$

$$\le A.$$

Finally, we estimate $\sum_{2^k \ge 1/\rho^2} A_k$. Since

$$A_{k} \leq \left(\int_{I_{k}} t^{-1} \left| \int_{0}^{\pi} a(\theta + \alpha) e^{it \cos \theta} d\theta \right|^{q} dt \right)^{1/q} + \left(\int_{I_{k}} t^{-1} \left| \int_{-\pi}^{0} a(\theta + \alpha) e^{it \cos \theta} d\theta \right|^{q} dt \right)^{1/q} = A_{k,1} + A_{k,2},$$

and since the estimates for $A_{k,1}$ and $A_{k,2}$ are exactly the same, without loss of generality we assume $A_k = A_{k,1}$.

Using Hölder's inequality and changing variables $u = \cos \theta$, we have

$$A_{k} \leq 2^{-k/2q} \left(\int_{\mathbb{R}} \left| \int_{0}^{\rho} a(\theta + \alpha) e^{it \cos\theta} d\theta \right|^{2q} \right)^{1/2q}$$

$$\leq A 2^{-k/2q} \left(\int_{\mathbb{R}} \left| \int_{\cos\rho}^{1} a(\alpha + \cos^{-1}u)(1 - u^{2})^{-1/2} e^{itu} du \right|^{2q} dt \right)^{1/q}$$

Thus, by the Hausdorff-Young inequality again, we find that A_k is bounded by

$$A \ 2^{-k/2q} \left(\int_{\mathbb{R}} \chi_{(\cos\rho,1)^{(t)}} |a(\alpha + \cos^{-1}t)(1-t^2)^{-1/2}|^{2q/(2q-1)} dt \right)^{(2q-1)/2q}$$

,

where $\chi_{(\cos \rho, 1)^{(j)}}$ is the characteristic function of the interval $(\cos \rho, 1)$. Changing variables again, we obtain that

$$A_k \leq A \, 2^{-k/2q} \|a\|_{\infty} \left(\int_0^{\rho} |\sin \theta|^{-1/(2q-1)} \, d\theta \right)^{(2q-1)/2q} \\ \leq A \, 2^{-k/2q} \, \rho^{-1/q} \, .$$

Thus we have $\sum_{2^k \ge \rho^{-2}} A_k \le A$, which completes the proof of Theorem 1 for the regular atom $a(\xi')$. If $a(\xi')$ is an exceptional atom, we can view it as a regular atom supported in S^{n-1} without the cancellation condition. Thus we assume the support of a(x) is contained in a ball with radius $\rho = 1$. If we examine the proof for the case of regular atom a(x), we find that we actually did not use the cancellation condition of a(x) to prove

$$\sum_{2^k \ge r^{-1}} A_k \le A \text{ for } n > 2 \quad \text{and} \quad \sum_{2^k \ge \rho^{-2}} A_k \le A \text{ when } n = 2$$

Now, letting $\rho = 1$ and r = 1 and mimicking the proof for a regular atom, one has no difficulty proving the theorem for the case of an exceptional atom. This completes the proof for Theorem 1.

Proof of Theorem 2

Let \hat{K} be the Fourier transform of K. By Plancherel's theorem, we only need to prove that

(5)
$$\|\hat{K}\|_{\infty} \leq A \|\Omega\|_{H^{1}(S^{n-1})}.$$

In fact, let x = |x|x' with $x' \in S^{n-1}$. Then by Hölder's inequality one easily sees that, up to a constant, K(x) is bounded by

$$\left(\int_0^1 |b(t|x|^{-1})|^p \, dt \right)^{1/p} \left(\int_0^1 \left| \int_{S^{n-1}} \Omega(\xi') (e^{it\langle x',\xi'\rangle} - 1) \, d\sigma(\xi') \right|^q t^{-q} \, dt \right)^{1/q} \\ + \int_1^\infty |b(t|x|^{-1})| \, \left| \int_{S^{n-1}} \Omega(\xi') e^{it\langle x',\xi'\rangle} \, d\sigma(\xi') \right| t^{-1} \, dt = I(x) + II(x).$$

Clearly, by (1'), one has

$$I(x) \leq A\left(|x|\int_{0}^{|x|^{-1}}|b(t)|^{p} dt\right)^{1/p}\left(\int_{0}^{1} dt\right)^{1/q} \|\Omega\|_{L^{1}(S^{n-1})}$$

$$\leq A\|\Omega\|_{H^{1}(S^{n-1})} \quad \text{since } \|\Omega\|_{L^{1}(S^{n-1})} \leq A\|\Omega\|_{H^{1}(S^{n-1})}.$$

For II(x), we recall that $\Omega(\xi') = \sum \lambda_j a_j(\xi')$, where the a_j 's are either exceptional atoms or regular atoms and $\sum |\lambda_j| \le A \|\Omega\|_{H^1(S^{n-1})}$. Therefore it remains to prove that for any atom $a(\xi')$,

(6)
$$II_{a}(x) = \int_{1}^{\infty} \left| b(t/|x|) \int_{S^{n-1}} a(\xi') e^{it\langle x',\xi'\rangle} \, d\sigma(\xi') \right| t^{-1} dt \le A$$

with a constant A independent of $a(\xi')$ and $x \in \mathbb{R}^n$. In fact,

$$II_{a}(x) = \sum_{k=0}^{\infty} \int_{2^{k}}^{2^{k+1}} \left| b(t/|x|) \int_{S^{n-1}} a(\xi') e^{it(x',\xi')} d\sigma(\xi') \right| t^{-1} dt$$

=
$$\sum_{k=0}^{\infty} L_{k}(x).$$

Now by Hölder's inequality and (1'), we find that $L_k(x)$ is dominated by

$$\left(\int_{I_{k}}|b(t/|x|)|^{p} dt\right)^{1/p} \left(\int_{I_{k}}t^{-q} \left|\int_{S^{n-1}}a(\xi')e^{it\langle\xi',x'\rangle} d\sigma(\xi')\right|^{q} dt\right)^{1/q}$$

$$\leq A \left(|x|2^{-k-1} \int_{0}^{2^{k+1}/|x|}|b(t)|^{p} dt\right)^{1/p} A_{k} \leq A A_{k},$$

where $A_k = (\int_{I_k} t^{-1} | \int_{S^{n-1}} a(\xi') e^{it(\xi',x')} d\sigma(\xi') |^q dt)^{1/q}$. Now Theorem 2 is easily proved by using Theorem 1.

DASHAN FAN

Proof of Theorem 3

To prove the theorem, by changing variables, we only need to prove that as $R \to \infty$,

(7)
$$R^{-1} \int_0^R |d\mu(tx')| dt = o(1) \quad \text{uniformly for } x' \in S^{n-1}.$$

We know that $\psi \in H^1(S^{n-1})$ has an atomic decomposition $\psi = \sum_{k=1}^{\infty} c_k a_k$ with $\sum |c_k| < \infty$. So for any $\varepsilon > 0$, there exists an N such that $\sum_{k=N}^{\infty} |c_k| < \varepsilon$. For an atom a(x), we let $d\mu_a = a \, d\sigma$. Then it is obvious that

$$R^{-1}\int_0^R |d\hat{\mu}_a(tx')| \, dt \leq A$$

with a constant A independent of x', R and the atom a(x). Therefore one easily sees that to prove (7), it suffices to prove

(8)
$$\lim_{R \to \infty} R^{-1} \int_0^R |d\hat{\mu}_a(tx')| \, dt = 0.$$

By Hölder's inequality, we have

$$R^{-1}\int_0^R |d\mu_a(tx')| dt \leq A \left(R^{-1}\int_0^R |d\hat{\mu}_a(tx')|^2 dt \right)^{1/2}.$$

Since each atom a(x) is an L^p function, (8) follows easily from (*). Theorem 3 is proved.

REFERENCES

- 1. K. Chen, On a singular integral, Studia Math. TLXXXV (1987), 61-72.
- 2. L. Colzani, Hardy spaces on sphere, Ph.D. Thesis, Washington University, St. Louis, 1982.
- L. Colazni, "Lipschitz spaces on compact rank one symmetric spaces" in Harmonic analysis, Proceedings of a conference held in Cortona, Italy in 1982, Edited by G. Mauceri, F. Ricci, and G. Weiss, Lecture Notes In Math., no. 992, Springer-Verlag, New York, 1983, pp. 139–160.
- 4. J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84(1986), pp. 541-561.
- 5. D. Fan, A singular integral on $L^2(\mathbb{R}^n)$, Canadian Math. Bull. 37(1994), 197–201.
- 6. D. Fan and Y. Pan, Oscillatory integrals and atoms on the unit sphere, Manuscripta Math., to appear.
- 7. R. Fefferman, A note on singular inbtegrals, Proc. Amer. Math. Soc., 74 (1979), 266-270.
- 8. J. Namazi, A singular integral, Ph.D. Thesis, Indiana University, Bloomington, 1984.
- 9. E. M. Stein, *Beijing lectures in harmonic analysis*, Ann. of Mathematic Studies, Princeton Univ. Press, Princeton, NJ, 1986.
- 10. _____, Harmonic anaylsis: Real-variable methods, orthogonality and oscillatory integrals, Princeton University Press, Princeton, NJ, 1993.

UNIVERSITY OF WISCONSIN-MILWAUKEE, MILWAUKEE, WISCONSIN