TRANSFERENCE OF MULTILINEAR OPERATORS

Loukas Grafakos ${ }^{1}$ and Guido Weiss ${ }^{1}$

0. Introduction and statement of results

Fix an integer $k \geq 2$. Let G be an amenable group and $(M, d \mu)$ a measure space. For $0 \leq j \leq k$, let $0<p_{j} \leq \infty$, and assume that $p_{0}=p$ is given by

$$
\frac{1}{p_{0}}=\frac{1}{p_{1}}+\cdots+\frac{1}{p_{k}}
$$

Assume that for any $0 \leq j \leq k$ and any $u \in G, R_{u}^{j}$ is a bounded map from the Banach space $L^{p_{j}}(M)$ into itself. We denote by $\left\|R_{u}^{j}\right\|_{\mathrm{op}}$ the operator norm of $R_{u}^{j}: L^{p_{j}}(M) \rightarrow L^{p_{j}}(M)$. We say that R_{u}^{j} is strongly continuous if for any sequence $u_{n} \rightarrow u$ in the topology of G, we have $\left\|R_{u_{n}}^{j}-R_{u}^{j}\right\|_{\text {op }} \rightarrow 0$. We call the family $\left(R_{u}^{0}, R_{u}^{1}, \ldots, R_{u}^{k}\right)_{u \in G}$ a transference $(k+1)$-tuple if the following are true:

For $0 \leq j \leq k$, the maps $u \rightarrow R_{u}^{j}$ are strongly continuous.

$$
\begin{align*}
& \sup \left\{\left\|R_{u}^{j}\right\|_{\mathrm{op}}, u \in G\right\}=C_{j}<\infty, \text { for } 0 \leq j \leq k \tag{0.2}\\
& R_{v}^{0} R_{u}^{j} f=R_{v u}^{j} f, \text { for all } u, v \in G, 1 \leq j \leq k, \text { and all } f \in \mathcal{D},
\end{align*}
$$

where \mathcal{D} is some dense subclass of all the spaces $L^{p_{j}}(M)$ and we are implicitly assuming that the domain of any R_{u}^{0} includes the ranges of each of the R_{v}^{j}. [BPW] used transference couples ($k=1$) to transfer boundedness properties of convolution and maximal operators. In this paper, we will use $(k+1)$-tuples to transfer boundedness properties of multilinear operators from amenable groups into measure spaces. The general maximal transference presented in [BPW] can be extended to the multilinear setting, but this will not concern us in this paper.

We need to make the additional assumption that each R_{u}^{0} is multiplicative. More precisely, this means that $R_{u}^{0}(f g)=\left(R_{u}^{0} f\right)\left(R_{u}^{0} g\right)$ whenever f, g, and $f g$ belong to \mathcal{D}. This property is clearly satisfied if the R_{u}^{0},s are given by actions on the points of M; i.e. for all $u \in G$ there exist maps $U_{u}: M \rightarrow M$, such that

$$
\begin{equation*}
\left(R_{u}^{0} f\right)(x)=f\left(U_{u^{-1}}^{0} x\right) \tag{0.4}
\end{equation*}
$$

[^0]In this paper we shall, in fact, assume that (0.4) holds. In many settings (0.4) is a consequence of being multiplicative. Moreover, the restriction given by (0.4) is used explicitly for all the families R^{j} in the proof of the weak-type transference announced in Theorem 2. Let λ be left Haar measure on G. It is well known that if G is amenable with respect to left Haar measure λ, it is also amenable with respect to right Haar measure ρ. The spaces $L^{p_{j}}(G)$ are defined with respect to left Haar measure λ. Consider the multilinear operator T on the group G defined by

$$
\begin{equation*}
T\left(g_{1}, \ldots, g_{k}\right)(v)=\int_{G^{k}} K\left(u_{1}, \ldots, u_{k}\right) g_{1}\left(u_{1}^{-1} v\right) \ldots g_{k}\left(u_{k}^{-1} v\right) d \lambda\left(u_{1}\right) \ldots d \lambda\left(u_{k}\right) \tag{0.5}
\end{equation*}
$$

for g_{j} in some dense subspace of $L^{p_{j}}(G)$, where K is a kernel on G which may not be integrable. For $k=1, T$ is a usual convolution operator but for $k \geq 2$ it isn't. We transfer the operator T to an operator \tilde{T} defined by

$$
\begin{align*}
& \tilde{T}\left(f_{1}, \ldots, f_{k}\right)(x) \tag{0.6}\\
& \quad=\int_{G^{k}} K\left(u_{1}, \ldots, u_{k}\right)\left(R_{u_{1}}^{1} f_{1}\right)(x) \ldots\left(R_{u_{k}}^{k} f_{k}\right)(x) d \lambda\left(u_{1}\right) \ldots d \lambda\left(u_{k}\right),
\end{align*}
$$

for f_{j} in \mathcal{D}. We have the following:
THEOREM 1. Let T be as in (0.5), where the R_{u}^{j} 's satisfy (0.1), (0.2), (0.3), and (0.4). Assume that T is a bounded operator from $L^{p_{1}}(G) \times \cdots \times L^{p_{k}}(G) \rightarrow L^{p}(G)$ with bound N. Then \tilde{T} can be extended to a bounded operator from $L^{p_{1}}(M) \times \cdots \times$ $L^{p_{k}}(M) \rightarrow L^{p}(M)$ with bound no larger than $N C_{0} C_{1} \ldots C_{k}$.

We denote by $L^{p, \infty}(M)$ the space weak $L^{p}(M)$ with quasinorm

$$
\|f\|_{L^{p, \infty}}=\sup _{\alpha>0} \alpha[\mu(\{x \in M:|f(x)|>\alpha\})]^{\frac{1}{p}} .
$$

Let us now consider the case where all the R^{j} 's are given by actions on points. That is, for all $1 \leq j \leq k$ and for all $u \in G$, there exist maps $U_{u}^{j}: M \rightarrow M$ such that the representations R_{u}^{j} have the special form

$$
\begin{equation*}
\left(R_{u}^{j} f\right)(x)=f\left(U_{u^{-1}}^{j} x\right) \tag{0.7}
\end{equation*}
$$

In this case, we replace condition (0.3) by

$$
\begin{equation*}
U_{u v}^{j} f=U_{u}^{j} U_{v}^{0} f \quad \text { for all } j=1, \ldots, k, \text { all } u, v \in G, \text { and all } f \in \mathcal{D} \tag{0.8}
\end{equation*}
$$

We now have the following:
THEOREM 2. Assume that the R_{u}^{j} 's satisfy (0.1), (0.2), (0.7), and (0.8). Assume that T given by (0.5) extends to a bounded operator from $L^{p_{1}}(G) \times \cdots \times L^{p_{k}}(G) \rightarrow$ $L^{p, \infty}(G)$ with norm N. Then \tilde{T} can be extended to a bounded operator $L^{p_{1}}(M) \times$ $\cdots \times L^{p_{k}}(M) \rightarrow L^{p, \infty}(M)$ with a bound no larger than $N C_{0} C_{1} \ldots C_{k}$.

Finally, observe that an immediate consequence of (0.3) is

$$
\begin{equation*}
R_{v}^{0} R_{v^{-1}}^{0} R_{u}^{j}=R_{u}^{j} \tag{0.9}
\end{equation*}
$$

for all $u, v \in G$ and $1 \leq j \leq k$.

1. The proof of Theorem 1

We first assume that $L=\operatorname{support}(K)$ is compact in all variables and that K is bounded in absolute value by some constant C_{K} on L. Once the required estimate is proved for such kernels K, with bounds independent of their support and their size, a density argument will give the conclusion for all kernels K.

The amenability of G is equivalent to Leptin's condition: given $\epsilon>0$ and B a compact subset of G, there exists an open subset V of G, such that \bar{B} is compact and

$$
\begin{equation*}
\lambda\left(B^{-1} V\right) \leq(1+\epsilon) \lambda(V) \tag{1.1}
\end{equation*}
$$

For a given $\epsilon>0$ and $L=\operatorname{support}(K)$, fix such a V. Also fix $f_{1}, \ldots, f_{k} \in \mathcal{D}$. The multiplicative property of R_{v}^{0} and (0.9) imply

$$
\begin{align*}
& \tilde{T}\left(f_{1}, \ldots, f_{k}\right)(x) \tag{1.2}\\
& \quad=\int_{G^{k}} K\left(u_{1}, \ldots, u_{k}\right) R_{v}^{0}\left[\prod_{j=1}^{k}\left(R_{v^{-1} u_{j}}^{j} f_{j}\right)\right](x) d \lambda\left(u_{1}\right) \ldots d \lambda\left(u_{k}\right)
\end{align*}
$$

for all v in G. By the continuity of R_{v}^{0}, we can "move" R_{v}^{0} outside the k-fold integral in (1.2). Since $\tilde{T}\left(f_{1}, \ldots, f_{k}\right)$ is in $L^{p}(M)$, (with bounds that depend on K) and R_{v}^{0} is bounded on $L^{p}(M)$ uniformly in $v \in G$, the following estimate holds for all v in G :
(1.3) $\int_{M}\left|\tilde{T}\left(f_{1}, \ldots, f_{k}\right)(x)\right|^{p} d \mu(x)$

$$
\leq C_{0}^{p} \int_{M}\left|\int_{G^{k}} K\left(u_{1}, \ldots, u_{k}\right) \prod_{j=1}^{k}\left(R_{v^{-1} u_{j}}^{j} f_{j}\right)(x) d \lambda\left(u_{1}\right) \ldots d \lambda\left(u_{k}\right)\right|^{p} d \mu(x)
$$

Next, we average inequality (1.3) over V and we interchange the order of integration to the right hand side of the averaged inequality. We obtain

$$
\begin{align*}
& \int_{M}\left|\tilde{T}\left(f_{1}, \ldots, f_{k}\right)(x)\right|^{p} d \mu(x) \tag{1.4}\\
& \quad \leq \frac{C_{0}^{p}}{\lambda(V)} \int_{M} \int_{V}\left|\int_{G^{k}} K\left(u_{1}, \ldots, u_{k}\right) \prod_{j=1}^{k}\left(R_{v^{-1} u_{j}}^{j} f_{j}\right)(x) d \lambda\left(u_{1}\right) \ldots d \lambda\left(u_{k}\right)\right|^{p} \\
& \quad d \lambda(v) d \mu(x) .
\end{align*}
$$

We denote by χ_{A} the characteristic function of the set A. Observe that we can replace $\left(R_{v^{-1} u_{j}}^{j} f_{j}\right)(x)$ by $h_{j}\left(u_{j}^{-1} v, x\right)$ in (1.4), where $h_{j}(w, x)=\left(R_{w^{-1}}^{j} f_{j}\right)(x) \chi_{L^{-1} V}\left(w^{-1}\right)$. Clearly $h_{j}(\cdot, x) \in L^{p_{j}}(G)$ for all $x \in M$. By the boundedness of T from $L^{p_{1}}(G) \times$ $\cdots \times L^{p_{k}}(G) \rightarrow L^{p}(G)$, we deduce the estimate

$$
\begin{equation*}
\int_{M}\left|\tilde{T}\left(f_{1}, \ldots, f_{k}\right)(x)\right|^{p} d \mu(x) \leq \frac{C_{0}^{p} N^{p}}{\lambda(V)} \int_{M} \prod_{j=1}^{k}\left\|h_{j}(\cdot, x)\right\|_{L^{p_{j}(G)}}^{p} d \mu(x) . \tag{1.5}
\end{equation*}
$$

At this point, we apply Hölder's inequality with exponents

$$
1=\frac{1}{p_{1} / p}+\cdots+\frac{1}{p_{k} / p}
$$

to the right hand side of (1.5). We first assume that all $p_{j}<\infty$ for all j. We have

$$
\begin{align*}
& \int_{M}\left|\tilde{T}\left(f_{1}, \ldots, f_{k}\right)(x)\right|^{p} d \mu(x) \tag{1.6}\\
& \quad \leq \frac{C_{0}^{p} N^{p}}{\lambda(V)} \prod_{j=1}^{k}\left(\int_{M}\left\|\left(R^{j} f_{j}\right)(x) \chi_{L^{-1} V}\right\|_{L^{p_{j}}(G)}^{p_{j}} d \mu(x)\right)^{\frac{p}{p_{j}}} .
\end{align*}
$$

Interchanging the order of integration in (1.6), we obtain
(1.7) $\int_{M}\left|\tilde{T}\left(f_{1}, \ldots, f_{k}\right)(x)\right|^{p} d \mu(x) \leq \frac{C_{0}^{p} N^{p}}{\lambda(V)} \prod_{j=1}^{k}\left(\int_{L^{-1} V} \int_{M}\left|R_{u_{j}}^{j} f_{j}\right|^{p_{j}} d \mu d u_{j}\right)^{\frac{p}{p_{j}}}$

$$
\begin{aligned}
& \leq N^{p} \frac{\prod_{j=0}^{k} C_{j}^{p}}{\lambda(V)} \prod_{j=1}^{k}\left(\int_{L^{-1} V} \int_{M}\left|f_{j} g\right|^{p_{j}} d \mu d u_{j}\right)^{\frac{p}{p_{j}}} \\
& =N^{p} \frac{\prod_{j=0}^{k} C_{j}^{p}}{\lambda(V)} \prod_{j=1}^{k} \lambda\left(L^{-1} V\right)^{\frac{p}{p_{j}}} \prod_{j=1}^{k}\left\|f_{j}\right\|_{L^{p_{j}}}^{p} \\
& \leq(1+\epsilon) N^{p} \prod_{j=0}^{k} C_{j}^{p} \prod_{j=1}^{k}\left\|f_{j}\right\|_{L^{p_{j}}}^{p}
\end{aligned}
$$

by Leptin's condition (1.1). Since $\epsilon>0$ was arbitrary, the required conclusion follows. If some of the p_{j} 's, but not all of them, are equal to ∞, factor out all the L^{∞} norms from the second integral in (1.5) and since $1 / p$ is the sum of the remaining $1 / p_{j}$'s, we can apply Hölder's inequality to these p_{j} 's. The rest of the proof is the same. Finally if $p_{j}=\infty$ for all j, then the argument above can be easily adapted to this case. The proof of Theorem 1 is now complete.

2. The proof of Theorem 2

We now suitably modify the proof of Theorem 1 to obtain Theorem 2. This modification is precisely the one used in Theorem (2.6) in [CW]. In this reference there is a discussion that motivates the arguments given which is certainly applicable here.

Let ϵ, L and V be as before. We first assume that all of the p_{j} 's are finite. Fix $\alpha>0$. Let $A_{\alpha}=\left\{x \in M:\left|\tilde{T}\left(f_{1}, \ldots, f_{k}\right)(x)\right|>\alpha\right\}$ and for $v \in V$, let $B_{\alpha}(v)=$ $\left\{x \in M:\left|\tilde{T}\left(f_{1}, \ldots, f_{k}\right)\left(U_{v}^{0} x\right)\right|>\alpha\right\}$. It is easy to check that $B_{\alpha}=R_{v^{-1}}^{0}\left[A_{\alpha}\right]$. By the boundedness of R^{0} on $L^{p}(M)$ we obtain

$$
\begin{equation*}
\left(\mu\left(A_{\alpha}\right)\right)^{\frac{1}{p}} \leq C_{0}\left(\mu\left(B_{\alpha}(v)\right)\right)^{\frac{1}{p}}, \tag{2.1}
\end{equation*}
$$

for all $v \in V$. Averaging the $p^{\text {th }}$ power of (2.1) over V, we obtain

$$
\begin{align*}
\mu\left(A_{\alpha}\right) & \leq \frac{C_{0}^{p}}{\lambda(V)} \int_{V} \mu\left(B_{\alpha}(v)\right) d \lambda(v)=\frac{C_{0}^{p}}{\lambda(V)} \int_{V} \int_{M} \chi_{B_{\alpha}(v)}(x) d \mu(x) d \lambda(v) \tag{2.2}\\
& =\frac{C_{0}^{p}}{\lambda(V)} \int_{M} \int_{V} \chi_{D_{\alpha}(x)}(v) d \lambda(v) d \mu(x)=\frac{C_{0}^{p}}{\lambda(V)} \int_{M} \lambda\left(D_{\alpha}(x)\right) d \mu(x),
\end{align*}
$$

where $D_{\alpha}(x)=\left\{v \in V: x \in B_{\alpha}(v)\right\}$. By property (0.6) we have $D_{\alpha}(x)=$ $\left\{v \in V: \int_{G^{k}} K\left(u_{1}, \ldots, u_{k}\right) f_{1}\left(U_{u_{1}^{-1} v} x\right) \ldots f_{k}\left(U_{u_{k}^{-1} v} x\right) d \lambda\left(u_{1}\right) \ldots d \lambda\left(u_{k}\right)>\alpha\right\}$. We can now replace $f_{j}\left(U_{u_{j}^{-1} v} x\right)$ by $h_{j}\left(u_{j}^{-1} v, x\right)$, where $h_{j}(w, x)=f_{j}\left(U_{w} x\right) \chi_{L^{-1} V}(w)$. Clearly $h_{j}(\cdot, x) \in L^{p_{j}}(G)$ for all $x \in M$. The assumed weak type estimate for T gives

$$
\begin{equation*}
\lambda\left(D_{\alpha}(x)\right) \leq \frac{N^{p}}{\alpha^{p}} \prod_{j=1}^{k}\left\|h_{j}(\cdot, x)\right\|_{L^{p_{j}}(G)}^{p} \tag{2.3}
\end{equation*}
$$

Using (2.2) and (2.3), we obtain

$$
\begin{align*}
\mu\left(A_{\alpha}\right) & \leq \frac{C_{0}^{p} N^{p}}{\lambda(V) \alpha^{p}} \int_{M} \prod_{j=1}^{k}\left\|h_{j}(\cdot, x)\right\|_{L_{p_{j}}(G)}^{p} d \mu(x) \tag{2.4}\\
& \leq \frac{C_{0}^{p} N^{p}}{\lambda(V) \alpha^{p}} \prod_{j=1}^{k}\left(\int_{M}\left\|h_{j}(\cdot, x)\right\|_{L_{p_{j}}(G)}^{p_{j}} d \mu(x)\right)^{\frac{p}{p_{j}}},
\end{align*}
$$

where we applied Hölder's inequality as before. By Fubini's Theorem and the bound-
edness of the maps R^{j} on $L^{p_{j}}(M)$, we obtain the following bound for (2.4)

$$
\begin{align*}
& N^{p} \frac{\prod_{j=0}^{k} C_{j}^{p}}{\lambda(V) \alpha^{p}} \prod_{j=1}^{k}\left(\int_{L^{-1} V} \int_{M}\left|f_{j}\right|^{p_{j}} d \mu d u_{j}\right)^{\frac{p}{p_{j}}} \tag{2.5}\\
& \quad=N^{p} \frac{\prod_{j=0}^{k} C_{j}^{p}}{\lambda(V) \alpha^{p}} \prod_{j=1}^{k} \lambda\left(L^{-1} V\right)^{\frac{p}{p_{j}}} \prod_{j=1}^{k}\left\|f_{j}\right\|_{L^{p_{j}(M)}}^{p} \\
& \quad \leq(1+\epsilon) \frac{N^{p}}{\alpha^{p}} \prod_{j=1}^{k} C_{j}^{p} \prod_{j=0}^{k}\left\|f_{j}\right\|_{L^{p_{j}(M)}}^{p}
\end{align*}
$$

where we used Leptin's condition (1.1) in the last inequality above. Since $\epsilon>0$ was arbitrary, (2.4) and (2.5) imply the required weak type inequality. The removal of the restriction on the support and the size of K is standard. Finally, the case where some or all of the p_{j} 's are infinite is treated as in the previous section.

3. Remarks and applications

We begin by observing that the kernels $K\left(u_{1}, \ldots, u_{k}\right)$ of the previous sections can depend on l variables only, say u_{1}, \ldots, u_{l}, while the remaining $k-l$ variables can be linear functions of the first l variables. Let us consider the case where u_{l+1}, \ldots, u_{k} are related to the variable u_{l} by the relation $\frac{u_{l}}{b_{l}}=\frac{u_{l+1}}{b_{l+1}}=\cdots=\frac{u_{k}}{b_{k}}$, where b_{l}, \ldots, b_{k} are nonzero real numbers. More precisely, let

$$
\begin{equation*}
K=K_{0}\left(u_{1}, \ldots, u_{l}\right) \delta_{\frac{u_{l}}{b_{l}}=\frac{u_{l+1}}{b_{l+1}}=\cdots=\frac{u_{k}}{b_{k}}, .} \tag{3.1}
\end{equation*}
$$

where $1 \leq l<k, \delta$ is the Dirac distribution, and K_{0} is a function of l variables. For this kernel K, the k-fold integral (0.5) defining T reduces to an l-fold integral. Assuming first that K_{0} is compactly supported and bounded, the proofs of Theorems 1 and 2 apply as before with minor modifications. Then a density argument will give the conclusion for general K_{0}.

We are now going to give some applications of our theorems. Let $G=\mathbb{Z}$ with counting measure, $M=\mathbb{R}$ with Lebesgue measure, and $K\left(n_{1}, \ldots, n_{k}\right)$ be a complexvalued function on \mathbb{Z}^{k}, or a distribution of the type (3.1). For $1 \leq j \leq k$, let a_{j} be multipliers for $L^{p_{j}}(\mathbb{R})$ and define the operators R_{u}^{j} acting on $L^{p_{j}}(\mathbb{R})$ as follows:

$$
\left(R_{u}^{0} f\right)(x)=f(x-u)=\left(\hat{f}(\xi) e^{2 \pi i u \xi}\right)^{\check{v}}, \quad\left(R_{u}^{j} f\right)(x)=\left(\hat{f}(\xi) a_{j}(\xi) e^{2 \pi i u \xi}\right)^{\nu}
$$

where we are using the definition $\hat{f}(\xi)=\int_{\mathbb{R}} f(x) e^{-2 \pi i x \xi} d x$. It is easy to see that the family $\left(R_{u}^{0}, \ldots, R_{u}^{k}\right)_{u \in \mathbb{Z}}$ satisfies (0.1)-(0.4), and thus it is a transference $(k+1)$-tuple as the ones we considered. Assume that the operator

$$
\begin{equation*}
T\left(g_{1}, \ldots, g_{k}\right)(n)=\sum_{\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k}} K\left(m_{1}, \ldots, m_{k}\right) g_{1}\left(n-m_{1}\right) \ldots g_{k}\left(n-m_{k}\right) \tag{3.2}
\end{equation*}
$$

maps $L^{p_{1}}(\mathbb{Z}) \times \cdots \times L^{p_{k}}(\mathbb{Z})$ into $L^{p}(\mathbb{Z})$. Then Theorem 1 implies that the transferred operator

$$
\tilde{T}\left(f_{1}, \ldots, f_{k}\right)(x)=\sum_{\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k}} K\left(m_{1}, \ldots, m_{k}\right)\left(R_{m_{1}}^{1} f_{1}\right)(x) \ldots\left(R_{m_{k}}^{k} f_{k}\right)(x)
$$

maps $L^{p_{1}}(\mathbb{R}) \times \cdots \times L^{p_{k}}(\mathbb{R})$ into $L^{p}(\mathbb{R})$. In particular, if the multipliers $m_{j}(\xi)$ have the special form $e^{2 \pi i d_{j} \xi}$ for some d_{j} real constants, and T maps $L^{p_{1}}(\mathbb{Z}) \times \cdots \times L^{p_{k}}(\mathbb{Z})$ into $L^{p, \infty}(\mathbb{Z})$, then by Theorem $2, \tilde{T}$ maps $L^{p_{1}}(\mathbb{R}) \times \cdots \times L^{p_{k}}(\mathbb{R})$ into $L^{p, \infty}(\mathbb{R})$. An interesting situation arises when the kernel K is the distribution

$$
\begin{equation*}
K\left(n_{1}, \ldots, n_{k}\right)=\frac{1}{n_{1}} \delta_{\frac{n_{1}}{b_{1}}}=\frac{n_{2}}{b_{2}}=\cdots=\frac{n_{k}}{b_{k}}, \tag{3.3}
\end{equation*}
$$

where b_{j} are nonzero and pairwise distinct numbers, and the notation in (3.3) means that all the variables n_{1}, \ldots, n_{k} have collapsed to being multiples of the single variable n_{1}. For $p \geq 1$, it is a difficult open question whether the operator T in (3.2) maps $L^{p_{1}}(\mathbb{Z}) \times \cdots \times L^{p_{k}}(\mathbb{Z})$ into $L^{p}(\mathbb{Z})$. Replacing $\frac{1}{n_{1}}$ by $\frac{1}{n_{1}^{\epsilon}}$ or by $\frac{1}{n_{1}\left(\log n_{1}\right)^{1+\epsilon}}$ in (3.3) for some $\epsilon>0$, we obtain examples of multilinear operators for which we know that the operator T in (3.2) is bounded.

Next, we turn to an application regarding fractional integrals. Let $G=\mathbb{R}^{1}$ and $M=\mathbb{R}^{n}$, both with usual Lebesgue measure. For $g_{1}, \ldots g_{k}$ functions on \mathbb{R}^{1}, and $0<\alpha<1$ let

$$
I_{\alpha}\left(g_{1}, \ldots g_{k}\right)(x)=\int_{-\infty}^{+\infty} g_{1}\left(x-\theta_{1} t\right) \ldots g_{k}\left(x-\theta_{k} t\right)|t|^{\alpha-1} d t
$$

where $\theta_{1}, \ldots, \theta_{k}$ are fixed nonzero and pairwise distinct numbers. Let $p_{1}, \ldots, p_{k}>$ 1 , and assume that their harmonic sum p satisfies $\frac{1}{1+\alpha} \leq p<\frac{1}{\alpha}$. By Theorem 1 in $[\mathrm{G}], I_{\alpha} \operatorname{maps} L^{p_{1}}(\mathbb{R}) \times \cdots \times L^{p_{k}}(\mathbb{R})$ into $L^{q}(\mathbb{R})$, where $\frac{1}{q}+\alpha=\frac{1}{p}$. Fix a unit vector $\omega \in S^{n-1}$. Using the maps $R_{u}^{0}=$ Identity, $\left(R_{u}^{j} f\right)(x)=f\left(x-u \theta_{j} \omega\right)$ for all $u \in \mathbb{R}$ and $0 \leq j \leq k$, we have that the transferred operator

$$
\tilde{I}_{\alpha, \omega}\left(f_{1}, \ldots f_{k}\right)(x)=\int_{-\infty}^{+\infty} g_{1}\left(x-\theta_{1} t \omega\right) \ldots g_{k}\left(x-\theta_{k} t \omega\right)|t|^{\alpha-1} d t
$$

maps $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times \cdots \times L^{p_{k}}\left(\mathbb{R}^{n}\right)$ into $L^{q}\left(\mathbb{R}^{n}\right)$ when $\frac{1}{q}+\alpha=\frac{1}{p}$. Here we are using the fact that the kernel of I_{α} has the special form $K\left(u_{1}, \ldots, u_{k}\right)=\left|\frac{u_{1}}{\theta_{1}}\right|^{\alpha-1} \delta_{\frac{u_{1}}{\theta_{1}}}=\frac{u_{2}}{\theta_{2}}=\cdots=\frac{u_{k}}{\theta_{k}}$. Compare this result with Theorem 1 in [G] in dimension n.

References

[BPW] E. Berkson, M. Paluszyňski and G. Weiss, Transference couples and their applications to convolution operators and maximal operators, Interactions between functional analysis, harmonic analysis, and probability, N. Kalton, E. Saab and S. Montgomery-Smith, eds., Lecture Notes in Pure and Appl. Math., Dekker, New York, 1996, pp. 69-84.
[CM] R. R. Coifman and Y. Meyer, Non-linear harmonic analysis, operator theory and P.D.E., Beijing Lectures in Harmonic Analysis, edited by E. M. Stein, Princeton Univ. Press, Princeton NJ, 1986.
[CW] R. R. Coifman and G. Weiss, Transference methods in analysis, CBMS Regional Conference in Mathematics Series, Number 31, Amer. Math. Soc., Providence, R.I., pp. 1-59.
[G] L. Grafakos, On multilinear fractional integrals, Studia Math. 102 (1992), 49-56.
[SW] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton NJ, 1971.

University of Missouri Columbia, Missouri
WASHINGTON UNIVERSITY St. Louis, Missouri

[^0]: Received December 7, 1994.
 1991 Mathematics Subject Classification. Primary 42.
 ${ }^{1}$ Research partially supported by the National Science Foundation.

