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A TIGHT CLOSURE APPROACH TO ARITHMETIC
MACAULAYFICATION

IAN M. ABERBACH, CRAIG HUNEKE AND KAREN E. SMITH

1. Introduction

In this paper we consider the existence of arithmetic Macaulayfications. Let R
be a commutative Noetherian ring with identity. We say that R has an arithmetic
Macaulayfication if there exists an ideal I such that the Rees algebra R[/¢] is Cohen-
Macaulay. In this case, it is clear that X = Proj R[/¢t] will be a Cohen-Macaulay
scheme and the natural projection from X to ¥ = Spec R will be what is called a
Macaulayfication of Y. However, the statement that R[/¢] is Cohen-Macaulay is
significantly stronger than saying X is Cohen-Macaulay.

The most general class of known Macaulayfications comes from desingulariza-
tion. A desingularization of a reduced scheme Y is a regular scheme X together
with a proper birational map from X to Y. Relaxing the requirement that X be reg-
ular and requiring instead that it be Cohen-Macaulay, we arrive at the definition of a
Macaulayfication. Of course, any desingularization of Y is necessarily a Macaulayfi-
cation of Y. Hironaka [Hi] proved the existence of a desingularization for any reduced
scheme essentially of finite type over a field of characteristic zero. In particular, when
Y = Spec R is affine, Hironaka’s work shows that a desingularization X can be ob-
tained by blowing up a suitable ideal I, so that X will be the projective R-scheme
associated to the Rees algebra R[/t]. By comparison, the existence of an arithmetic
Macaulayfication, which is really a property of the embedding of X into projective
space over R, is not known in this generality. Moreover, even the existence of a
desingularization is not known at the present time for arbitrary reduced R.

Work has also been done on Macaulayfications independent of desingularizations;
both Faltings [Fa] and Brodmann [Br1] proved the existence of a Macaulayfication
for special types of rings, without any assumptions about a ground field. Brodmann
[Br2,6.2] and Goto and Yamagishi [GY,7.11] prove the existence of an arithmetic
Macaulayfication for any local ring whose completion is equidimensional and Cohen-
Macaulay on the punctured spectrum. Of course, any Cohen-Macaulay ring trivially
has an arithmetic Macaulayfication: take I to be the zero ideal. For a slightly less
trivial example, let / C R be any ideal generated by a non-zero-divisor of R; the
Rees ring R[[¢] is then isomorphic to a polynomial ring in one indeterminate over
R and is therefore Cohen-Macaulay if and only if R is.
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Nothing else is presently known concerning the existence of arithmetic Macaulay-
fications. We conjecture the existence of an arithmetic Macaulayfication, at least for
local excellent domains.

We stress that there is a significant difference between the existence of a Macaulay-
fication and the existence of an arithmetic Macaulayfication. For example, let R be a
domain essentially of finite type over the complex numbers. One might naively hope
that if we take an ideal I such that Proj R[/¢] is a desingularization of Spec R, then I
or some power of I gives an arithmetic Macaulayfication. However, recent work of
Lipman [L] shows that R[¢] cannot be Cohen-Macaulay unless R is a rational singu-
larity. In particular, if R[/¢] is an arithmetic Macaulayfication of R, then Proj R[[¢]
cannot be a desingularization unless R is already Cohen-Macaulay! Thus the prob-
lem of finding an arithmetic Macaulayfication is quite different from the problem of
resolution of singularities.

Lipman’s result requires use of the vanishing theorem of Grauert and Riemen-
schneider [GrR]. In its dual form, this vanishing theorem states that for i < dimen-
sion R, H}(Ox) = 0, where X is a desingularization Proj R[/¢] of Spec R and Y
is the closed fiber. It is worth noting (see [HS]) that, quite generally, this vanishing
theorem holds on an arbitrary Cohen-Macaulay blow-up X = Proj R[I¢] if and only
if for some power of I, which we relabel as I, the ideal I R[1¢] is Cohen-Macaulay
as an R[/¢] module. It seems quite natural to conjecture the existence of such an
ideal I for excellent local domains. When such an I exists, we will say that R has
a coMacaulayfication. In this language, Paul Roberts [Ro1] proved that if R has a
coMacaulayfication, then the Improved New Intersection Conjecture is true for R.
Despite the progress of Roberts [Ro2] on the Intersection Conjectures, this notorious
problem is open in mixed characteristic. Although the conjectures of the existence
of an arithmetic Macaulayfication and a coMacaulayfication seem very similar, there
is a significant sense in which they are dichotomous. In fact, both can hold for the
same ideal only if R is already Cohen-Macaulay. More profoundly, the existence of
an arithmetic Macaulayfication has to do with the local cohomology of the associated
graded ring being zero except in degrees —1 (see (4.2.1)), while a coMacaulayfication
has to do with the pieces of degree —1 being zero (see [HS)).

In this paper our main result is the existence of an arithmetic Macaulayfication for
rings of characteristic p having an isolated singularity (this last condition is weakened
in our last section to include rings which have an isolated non-F-rational point).! Our
assumption that R has an isolated singularity implies that R has finite local cohomol-
ogy, so that our result is already implied by the results of [Br2] and [GY]. What is new
in this paper is the construction of the ideal / giving the arithmetic Macaulayfication,
and the ensuing proof. Both the construction and the proof use the theory of tight
closure (see [HH1-4]). Our proof is very simple in concept, although some details
still require work. What makes tight closure so useful in the context of arithmetic

ISince this paper was written, related work has been done by Aberbach [Ab3], Brodmann [Br3], and
Kurano [K].
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Macaulayfications is a property which is called “colon-capturing.” Roughly speaking,
colon capturing enables us to manipulate ideals generated by monomials in a system
of parameters for R as if the system of parameters were actually a regular sequence.
We make heavy use of the following form of colon capturing: if my, ..., my, n are
monomials in a system of parameters for an equidimensional excellent local ring
R, then the colon ideal (m, ..., mg):g n is contained in the tight closure of the an-
swer one would get formally for this colon ideal if the system of parameters were
indeterminates in a polynomial ring.

We hope that our results will not only be of independent interest to those studying
tight closure, but also furnish ample proof that this theory gives insight into the
existence of arithmetic Macaulayfications. In particular, we hope that the theory of
tight closure can be used to prove these results for more general classes of rings, and
also shed light upon the existence of a coMacaulayfication.

We close the introduction by giving a short summary of the structure of this
paper. Section 2 contains the background material on tight closure, including a
discussion and precise statement of colon capturing. Section 3 gives a proof of the
Main Lemma 3.2, which s really the crucial point in the entire argument. It deals with
the tight closure of certain ideals generated by monomials in parameters which are
test elements. Section 4 is devoted to the proof of the main theorem on the existence
of arithmetic Macaulayfications, and we close in Section 5 by extending the main
theorem to excellent local rings with an isolated non F-rational point. This section is
of independent interest in the theory of tight closure.

2. Background on tight closure

In its main setting, tight closure is an operation performed on ideals in a commu-
tative ring of prime characteristic. There are also various ways to define tight closure
for rings containing fields of arbitrary characteristic [HH4]. Most of the results of
this paper would be valid if several basic theorems on tight closure were proved for
rings containing fields of characteristic zero. In particular the existence of sufficiently
many test elements is crucial for the applications of our main theorem. This theory
is being worked out in [HH4]. For simplicity we prove our results only in positive
characteristic. In this section, we recall the definition of tight closure in characteristic
p > 0 and a few elementary facts.

Let R denote a commutative, Noetherian ring of prime characteristic p, and let R°
denote the subset of elements not in any minimal prime of R.

DEFINITION 2.1.  The tight closure of an ideal 1 C R, denoted I*, consists of all
elements z € R for which there exists ¢ € R® such that

cz? € I'Y forallg = p* >0

where 1'9) denotes the ideal generated by the q™" powers of all the elements (equiva-
lently, the generators) of 1.
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The tight closure 7* of I is easily seen to be an ideal of R containing I. We say
that I is tightly closed if I* = 1.

The reader is referred to [HH1] for more about tight closure.

The element c in the preceding definition used to “test” whether z is contained in
I* is allowed to depend on I and even on the element z we are testing for inclusion in
I*. However, much of the usefulness of tight closure arises from the fact that in fact,
there exist certain elements ¢ which can be used in any tight closure test. We say that
c € RV is a test element for I if

zeI* ifandonlyif cz? € I forallg = p°, p', p?,....

An element ¢ € R? is a test element if it is a test element for all ideals I C R. In
Section 5 we will discuss other types of test elements.

Fortunately, test elements are known to exist. In particular, in Section 6 of [HH2],
it is shown that:

THEOREM 2.2. If R is a reduced excellent local ring, and c € R is any element
such that R, is regular, then some power of c is a test element for R.

The assumption that R, is regular can be weakened. In Section 5 we will prove
an analog of this theorem for a special class of test elements. Our analogue involves
the concept of F-rationality. A local Noetherian ring of characteristic p is F-rational
if every parameter ideal is tightly closed. This concept is closely related to the
concept of rational singularities (or more generally to pseudorational rings). We refer
the reader to [LT], [S2], [Fe], and [W] for information concerning the relationship
between F-rationality and rational singularities.

Colon Capturing A key feature of tight closure is, roughly speaking, that it
“captures the failure of a ring to be Cohen-Macaulay.” As an example of the most

basic form of “colon capturing,” let x, ..., xs be any system of parameters for a
complete local domain R. Thenforalli =0,1,...,d — 1, we have
(xla X2y eens xi): (xi+l) C (xh X2y eeny xi)*: (xi+l) - (X], X2y eeesy xi)*°

A more general statement of colon-capturing follows [HH1, (7.6) and (7.14)].

THEOREM 2.3. Let (R, m) be an equidimensional excellent localring. Letx,, ...,
x4 be any system of parameters for R and let I and J be any two ideals of the (poly-
nomial) subring A = -I%Z-[xl, ..., x4) of R generated by monomials in the variables.
Then

(UR)*:g JRC ((I:a J)R)".

UIR*NUR* Cc(NJR)*.
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We have slightly changed the assumptions of Theorem 7.6 in [HH1]. In [HH1,
(7.6)] there is an assumption that the ring be a homomorphic image of a Cohen-
Macaulay ring. This condition ensures that tight closure “captures the colon” for
parameter ideals. However, since it is now known that excellent local reduced rings
have test elements, this difficulty can be surmounted by passing to the completion of
R. For details, see [HH2, (6.28)].

The point of Theorem 2.3 is that since I and J are generated by monomials in
X1, ..., X4, the intersection and colon are easily computed as

(INJHR={lcm (m,«,m})}R

(I:a (mY,...m))R

(Gor(T:a m)IR

m;
N { ————, i=1,2,...,1}|R
( 7=l [ g.c.d. (m;, m}) ' ])

where m; runs through a monomial generating set for /, and m; runs through a
monomial generating set for J (g.c.d. means greatest common divisor and l.c.m.
means least common multiple). We refer to (1:4 J)R as the “formal colon ideal” and
write (I:y J) to indicate this ideal of R whenever I and J are ideals generated by
monomials in parameters for R. Similar conventions will apply to intersections. The
reader is referred to [HH1] and [HH3] for more about colon capturing.

REMARK 2.4. Throughout the ensuing text will be many manipulations with
“colon capturing.” Since many of the more routine computations will be left to
the reader, further words on the philosophy of colon capturing may be warranted.
Suppose that J is an ideal generated by monomials m, my, ..., my in the parameters
X1, ...,Xxq for R. Let m be some other monomial. Then the colon ideals (J : m)
or (J* : m) will always be contained in the tight closure of the formal colon ideal
(J:f m), which is the ideal generated by the monomials —"-— fori = 1,2, ...k.

A R .g‘c.d.’ (m;,m)
Because this formal colon ideal is generated by monomials in x;, .. ., x4, at the very
least we know that
(24.1) (my,my,...,mp)* m C (xy,...,x3)*

unless it is the unit ideal, which happens if and only if some m; formally divides m.
This idea will be used again and again.

As an example, we apply this idea to reprove a result from [HH3]: if [ =
(x1, ..., xq) is a parameter ideal then

242) IN PNy = N1,

We need only check thatif z = Y u,m, € (IN)*, where m, is a monomial of degree
N —1linx,..., x4, then u, € I'*. Focusing on a particular u,, we see that

ugmg € (IN)* + (mg | mg monomial of degree N — 1 other than m,,).
B B
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Letting J denote the monomial ideal above on the right, we see
Ug € J*:p mg C I*

since m ¢ J. This completes the proof of (2.4.2), a typical example of the sort of
routine colon capturing arguments left to the reader.

3. Tight closure of ideals of monomials in parameters

In this section we demonstrate the usefulness of “colon capturing” for re-writing
tight closures of ideals generated by monomials in parameters. The following lemmas,
especially Lemma 3.2, are the key ingredients in the proof of arithmetic Macaulay-
fication appearing in Section 4. The first lemma is an easy application of colon
capturing.

LEMMA 3.1. Letx,, ..., xq be parameters in an equidimensional reduced excel-
lent local ring (R, m), where d > 1, and let I denote the ideal they generate. Assume
that each x; is a test element. Then:

(i) (IN)* — IN_II*.
Gi) (xpy e, xi)*N T C(xq,. .., X0).

Proof. (i) Induce on the length d of the parameter system. Assume thatd =1,
and choose z € ((x1)¥)*. Since x; is a test element it follows that x,z € (x{v ). Then

there is an element v such that x;(z — xf" "lv) = 0. As x; is a parameter and R

is reduced, it follows that z = xf' v e ((x)M)*, and by colon-capturing it then
follows that v € (x1)*. Thus z € (x' ~!)(x1)*. Assume thatd > 2. Letz € (IV)*.
- Since each x; is a test element, we obtain that x;z € I¥. Hence there exists an
element u € IV~ such that x;(z —u) € JV, where J = (x1, ..., x4_1). Using colon
capturing we see that z — u € (JV)*. By induction (J¥)* = J¥N~!1J* In particular
it follows that z € IN~! N (I¥)* = IN~'I*, the last equality following from (2.4.2).
(i7) Induce on d — k. The statement is obvious when d — k = 0. Assume that u
isin (xy, ..., x¢)* butnot (xy, ..., x¢). This assumption is unchanged by subtracting
off elements of (xi, ..., x;); we will do this throughout the proof and repeatedly
relabel the offending element u.

Write u = Z}i:kH xju; € (x1,...,x)* Then
i
U =u— Xpp1ler1 € (X1, .o, Xe Xeg1)* N 1L

By the inductive assumption, we know that u’ € (xi, ..., X, X¢+1). This says that,
after subtracting off an element in the desired ideal (x, ..., x;), we may assume that
u = xg4+ v for some v € R. Colon capturing now forces v € (x, ..., x¢)*, and since
Xr4+1 1S a test element, it follows that u = x; v € (xy,...,X:), as needed. This
completes the proof. [
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MAIN LEMMA 3.2. Letx, ..., xqy be parameters in an equidimensional excellent
local ring R and let I denote the ideal they generate. Assume that each x; is a test
element. Then for any integers N, t; > 1l and any k < d:

t,—1 ti;

N not t N ty =1 _tiy— -1
AV + G x2 ) = AN 4D 00 T 5T x) )i K X)T

where the sum here ranges over all subsets {i1, i, ...,ij} of {1,2,...,k}.

REMARK. Actually, it is not necessary to assume that the xj, ..., x; are test
elements. The proof only uses that they are test elements for ideals generated by
monomials in parameters. In Section 5, we will show (under weak hypotheses) that
any ¢ € RO such that R, is F-rational has a power which will be a test element for
ideals generated by monomials in parameters.

Proof. Throughout this proof, I; denotes the ideal generated by allthe xy, ..., x4
except x;. The proof proceeds by induction on .
Base case. If each t; = 1, we need to show that

((CITE 2 A N C TP 75 ) M= (6 TP 7) 16 M N ¢ TR 7 L)

Induct on d — k. If k = d, there is nothing to prove. Assume that k < d and take
any z € ((x1,...,x5)Y 4+ (x1,...,x))*. Since x, is a test element, we see that
x42 € ((X15 - .., X))V + (X1, ..., xx)). It follows that

xa(z —u) € I + (x1, ..., ),

for some u € IN~!. By using colon capturing (cf. Remark 2.4) and the inductive
hypothesis (on d — k), we see that

z—u € (D" + &ry e x0))* = AN + (xpy oo 20"

This shows that z — u is in the desired ideal, whence we may assume that z =
U € (X1s Xks2s---» Xa)V1. Write u = Y uym, where m, is a monomial of
degree N — 1in x4, Xk42, - . . , X4. A crucial observation is that, again using colon
capturing as in Remark 2, one easily checks that u, € (xi,...,x;)*. We conclude
thatz € (IV)* + (x1, ..., x;)* as needed to complete the initial step in the induction.

Now assume that some #; > 2 and the lemma holds whenever )_ ¢ is smaller.
Change notation so as to assume without loss of generality that z;, > 2. Say that
Z2€((x1, -« x)N + (x]', X2, ..., x*))*. Since x is a test element, this implies that

N t L 7
leG(xla---,xd) +(x{I’x2za‘~-’xkk)~
This inclusion can be re-written as

xiz—u—=x""v)y e IV + (2, ..., 1),



ARITHMETIC MACAULAYFICATION 317

where u € IV~ and v is just some element of R. Using colon capturing, we see that
z—u—x"vye N + G2, x),

which, by the inductive hypothesis, is in the desired ideal. We may therefore assume
that z = u + x!'"'v for u = Y ugm,, where m, is a monomial of degree N — 1
in xy, ..., xg4; without loss of generality, we can assume that the exponent of x; is
strictly less than #;, and the exponent of x| is strictly less than ¢#; — 1. Again, it is an
easy consequence of colon capturing that u, € (xi, ..., x4)*, so thatu € (IV)*, and
hence is in the desired ideal. We can therefore assume that

H—1

N
z=x""ve((x1,...,Xq) +(x1,x2,...,xk))

By colon capturing, we have

- t 4
V€ (1, ey X))V 4 Gepy X2, LX)

which we may expand using the inductive hypothesis in order to conclude that x|~ v

is in the desired ideal. This completes the proof. O

COROLLARY 3.3. Let xy, ..., x, be parameters in an equidimensional excellent
local ring R and let 1 denote the ideal they generate. Assume that each x; is a test
element. For arbitrary integers N and t, with N >t > 1,

UMY N xh, o xh) = VY, X, . X)),

foranyk <d.

Proof. We use induction on k. The statement follows immediately from colon
capturing when k = 1. Write w = Y, _; ., rix} € (IN)*. Then

re € (MY 4+ (e, x5, . xh_)): xfe

By colon capturing this latter ideal is contained in (/¥~" + (x}, x}, ... x;_;))*. An
application of Lemma 3.2 therefore guarantees that

V=1 -1
ree (V- ')*+Z(x’ AREEEE A [C TR N

12

where the sum here ranges over all subsets {iy, i2,...,ij} of {1,2,...,k — 1}. Be-
cause x; is a test element, we see that ryx! = xib; + s, where by € (IN™")* and
s € (x,....,xt_). Thus w — rxf € (xf,...,x;_)) N (IY)* which is equal to

(IN=")*(x!, ..., x,_)) by inductive assumption. The corollary follows. [

We will also need a stronger version of the Main Lemma 3.2 with more restrictive
hypotheses.
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LEMMA 34. Letx),...,xq be parameters in an equidimensional excellent local
ring R and let I denote the ideal they generate. Assume that each x; is a test element.
Then for any integers N, t; > 1,k < d and for any integer a with lei «@i—D+2 <
a <N:

AV + (] X2, L) N A = AN+ Y Xy

I1<i<k

Proof. Therighthand sideis clearly in the left hand side. The reverse containment
is proved by induction on the sum of the #;. If all t; = 1, then the Main Lemma proves
that

Gy ooy XDV + Gty x) = (1 e X))+ (1, x0)

When we intersect with (/¢)*, with a > 2, we can then apply Lemma 3.1 and
Corollary 3.3 to get the desired conclusion. Without loss of generality, assume that
t; > 2. The induction gives us

(IN + (x;l_l’ x;z, e, Itck))* N (Ia)* — (IN)* + Z x:i (Ia—t,»)* + xil—'l(la—-n-*-l)*.
2<i<k
34.1)

Letu € (IN + (x]', x2, ..., x))* N (I°)*. By using (3.4.1) we can write u = v +
xI''w, where v e (IN)* + Y aci<k xi(1°7%)* and w € (I*~+1)*. By Lemma 2.3,
w e (Y + @] x2, .. xf))Dw 1T N ety

C (AN (g, xR, X)) N (T

Itthen follows by induction thatw € (JN="+1)*+3", . x/ (Ja="+1=y*4x, (J971)*,
Multiplying by x;"l then gives the desired conclusion. O

4. Arithmetic Macaulayfication

Given a local ring (R, m), when does there exist a filtration F: R = Iy D I, D
I, O - - - such that the corresponding Rees ring

4.1 Re=Ro It L*’®---

is Cohen-Macaulay? Such a ring is called an arithmetic Macaulayfication of R. In
practice, one often requires that the filtration comes from the powers of a particular
ideal I, in which case we write R[It] instead of Rr. Included in the definition of
‘Cohen-Macaulay’ is the assumption that the ring be Noetherian. In this case, there
will be an integer k such that Iy, = (I;)" for all n > 1. The subring R[It*] of RF is
a direct summand of Rr, and Rp is finite over this subring. It follows that (cf. [BH,
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(6.4.5)]) if Rf is Cohen-Macaulay, then so is R[I;t]. Hence if there is an arithmetic
Macaulayfication involving a filtration, there is also one where the filtration is given
by powers of an ideal. So there is no loss of generality in considering only this case,
although it may be more convenient to use the more general case.

Letx, ..., x4 be a system of parameters for R and consider the filtration F: R D
(INy* > (I*N)* > (I*¥)* > ... where I is the ideal generated by xi, ..., x; and
N is a fixed integer. Because of the colon capturing properties of tight closure, one
might expect the associated Rees ring Ry to have nice properties, maybe even be an
arithmetic Macaulayfication for R. In fact, the next theorem shows that this is indeed
the case with some additional assumptions on R.

THEOREM 4.1. Let (R, m) be an excellent normal local ring of dimension d. Let
X1, ..., Xq be any system of parameters such that each x; is a test element. Then the
Rees algebra

RlJ)=R®J® )’ ]’®---

is Cohen-Macaulay, where J is the ideal ((x1, ..., x4)*"2)*.

COROLLARY 4.2. Let (R, m) be an excellent normal local domain of dimen-
sion d. Assume that R has an isolated non-F-rational point (e.g., R has an iso-
lated singularity). Then there exists some integer T such that given any system
of parameters xy, ...,xq for R, the Rees ring R[Jt] is Cohen-Macaulay where
J=((xd,xh, .. x4 foranyt > T.

Proof of 4.2. For the case where R has an isolated singularity, the result follows
from the theorem by taking T sufficiently large so that (x], xJ, ..., xT) is contained
in the test ideal for R, which is known to be m-primary by Theorem 2.2. To complete
the proof of the corollary in its full generality, we need to know that the ideal of
test elements for all ideals generated by monomials in parameters is contained, up
to radical, in the ideal defining the non-F-rational locus of R. We will prove this in
Section5. O

Before embarking on the proof of Theorem 4.1, we recall a criterion (see [L],
[IT], and [Vi]) for the Cohen-Macaulayness of Rees algebras Rr. Let (R, m) be a
Noetherian local ring of dimension d with filtration F determining the Rees ring Rp
asin 4.1 above. Let G denote the associated graded algebra Gr = R/I1 & 1,/ ®
L/I; & ---. Let m denote the distinguished maximal ideal m/I, ® I, /[, ® - - - of G.
Then the Cohen-Macaulayness of the Rees ring Rr is equivalent to the following two
conditions on the local cohomology modules for G:

¢)) Hrg (G) =0 in all non-negative degrees.
(4.2.1) (2) H(G) =0 except in degree —1, forall i < d.
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We will distinguish the (non-zero) homogeneous elements of degree a in G by
writing 7 for the element r + I,/1,,; whenever r € I, — I,,,. Note that if 7 has
degree a and § has degree b, then their product 75 is either the degree a 4 b element
75 or it is zero, which happens if and only if s € I,4p4.

Let yi, ..., y2 be ahomogeneous system of parameters for G. Local cohomology
with support in the ideal generated by ¥, ..., y4 may be computed as a limit of
Koszul cohomology, and thus as the cohomology of the complex
422) 0— G5 G5 @ ®G;, 2> - 23 Gy55 — 0
where the maps are all essentially just localization (up to sign) and the signs are as-
signed as in the Koszul (cohomology) complex: the first map sends 7 to (% , %, e %) €
@i Gy,, and the subsequent maps are the same as in the standard Cech complex for the
open cover of the punctured spectrum of G consisting of the affines where y; does not
vanish. Because G is graded and the y;’s are homogeneous, this complex is graded,
inducing a natural grading on the local cohomology modules. More generally, of
course, it is not necessary to assume that the y;’s are a system of parameter or that d
is the dimension of G: the cohomology of complex (4.2.2.) always yields the local
cohomology of G with support in the ideal generated by the y;’s. We will be applying
this when the y;’s are a partial system of parameters for G.

It will be convenient to re-write conditions (4.2.1.) in a different form. With
notation as above, the Cohen-Macaulayness of the Rees ring Rr is equivalent to the
following two conditions on the local cohomology modules for G:

Q)] H,‘;’l (G) = 0 in all non-negative degrees.

423) @ HG' ;,(G)=0 exceptindegree —1, forall i <d,

for all subsets {iy,..., it} C {1,...,d}.

This equivalent form of (4.2.1.) follows immediately from the next fact.

LEMMA 4.3. Let G be a N-graded ring, and let z,, . . ., 74 be any homogeneous
elements of G of positive degree. Let S be any subset of Z that is bounded above.
Suppose that for each subset {iy, ..., iy} C {1,2,...d} of cardinality k, the module
H," . ,)(G) is zero in all degrees § ¢ S. Then for all i, Hy(G) is zero in degree
8 ¢ S, where n is any ideal of G generated by more than i of the elements z;.

Proof of 4.3. There is a standard long exact sequence for local cohomology

] i— i i
431) — H! y(Gz,) — H('ziI zik)(G) — H(z“,.

@igreennZig )N %77 T iy v Zig_y

,(G) >

where the unlabeled arrows are degree preserving maps. This complex arises by
thinking of the functor I'y = “global sections supported on E” where E is the closed
subscheme of Spec G given by theideal (z;,, . . . , z;,_,): the map induced by restricting
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this functor to the open set Spec G, (i.e., the open set where z;, does not vanish) has

.....

In particular, this long exact sequence is easily derived via the snake lemma (the
maps 9 are the connecting homomorphisms) from the short exact sequence induced by
the inclusion of the complex of the form (4.2.2.) for G 2, ON the elements z;,, . .., 2;,_,
(with index shifted by —1) into the similar complex on the elements z;,, ..., z;,. The
cokernel complex is easily checked to be a complex of the form (4.2.2.) for G on the
elements z;,, ..., Z;,_,-

Assuming the lemma fails to hold, choose k smallest possible such that » is gen-
erated by k of the z;’s, relabeled z;, z2, ..., 2, and such that H,';(G) is non-zero in
some degree § ¢ S for some i < k. Because H¥~1(G) is zero in degree §, we may
assume that i < k — 1. Because of the minimality assumptiononk, H/, , . (G)
is zero in degree 8. The inductive assumption also guarantees that H(’z_llz2 wn(Q)is

zero in all degrees § ¢ S in particular H(‘z'I 122 2y (G) is zero in all sufficiently large

degrees and thus H(iz_|,1z2,...,zk_.)(GZk) = H(iz_,,lzz....,zk_.)(G) ® G, is the zero module. It

follows from the long exact sequence (4.3.1.) that H/(G) = 0 in all degrees § ¢ S.
a

We are now ready to prove the main theorem.

Proof of Theorem 4.1, Let J = ((x1, ..., x4)"2)* and fix the notation as in the
preceding paragraphs, with respect to the filtration F: R D J D J? D .... Set
yi = xlfi'2. The degree one elements y; fori = 1,2,...,d form a homogeneous
system of parameters for G. We will show that R[J¢] is Cohen-Macaulay by checking
the criterion (4.2.3.) on the local cohomology modules ,f,“l (G), computed via the
system of parameters yi, y2, ..., Ya.

In general, even if (R, m) is assumed only to be reduced, excellent ani equidimen-
sional and xy, . . ., x, is an arbitrary system of parameters, the elements x}¥ are always
non-zero-divisors on the associated graded ring with respect to the tight closure fil-
tration for IV = (x1, ..., x)V: R/UINY* @ (VY /(IPNy @ (1PN Yy (IPM)* . . . For
if x¥Z = 0 in G, where 7 is assumed to be homogeneous of degree a, then since x,¥
is homogeneous of degree 1, we must have x"z € ((IV)%+2)*. But colon capturing
then implies that z € ((x1, ..., x4)Y@*D)* contrary to the fact that 7 had degree a.

Applied to our situation, this says that each y; is a non-zero-divisor on G. Using
Lemma 3.1, we see that for all integers N,

((xlv ey xd)N)* = (XI, e 9xd)N_l(x1a e ,.X'd)* = ((xl’ ey -xd)*)N;
in particular, we see that
4.3.2) IV = (@1, - x) N = (I

whence that each y; is a non-zero-divisor on G follows. Note that the local cohomol-
ogy module H;? (G) is therefore the zero module, when 7 is an ideal generated by any
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subset of the y;’s. This takes care of condition (4.2.1.) when i = 0, or alternatively,
condition (4.2.3.) when k = 1.

We next show that H- (G) is zero using only the hypotheses of normality and
excellence, where 7 is generated by any subset of {¥1, ..., Ya}, provided it has cardi-
nality k at least two. Let n = (+, GARREE ) € @" 1G5, represent an element of the

cohomology module H,I (G). Wlthout loss of generality, we may assume that each 7;
is degree a, so that 1 is homogeneous of degree a — ¢. That 7 is in the kernel of §; is
equivalent to

1’— — —’:’- =0 inG

y; y]

foralli, j =1,2,...,k. Because each y; is a non-zero-divisor, this is equivalent to
(4.3.3) F,&; —7¥J =0 inG,
which is in turn equivalent to
riy; —rjyi € J*V*! in R,
Using Lemma 3.2, we see that then
i€ (JMH 4 OD): ¥ C (Y +y T oo

The normality of R ensures that principal ideals are tightly closed, whence r~, elJ “+~’ +
(¥). Thus each 7; € (5})G, so we may assume that n has the form (3, %, ..., 3).
But then because 7 is in the kernel of §;, we conclude, as in (4.3.3.) above, that
§i = §; = §forall i, j. This implies that n = 8o(5), whence 7 represents the zero
element in H~ (G). Since n was an arbitrary homogeneous element, we conclude that
H}(G) =

We now show that Hd (G) is zero in all non-negative degrees. Since Hj 4(G) is
the cokernel of the last non-trivial map in the complex (4.2.2.), each homogeneous
element is represented by

- %
G1y2---ya)'
where the degree of 7 is equal to a — dt for a = degree of . We need to show that if
a >dt,thenn = 0.
It is easy to see that in general, if an ideal K is generated by d elements z, .. ., zq,
andb > ds —d + 1, then Kb = (23, ..., z5) K®~*. Hence provided a(d —2) — 1 >
d(d — 2)t — d + 1 (which holds if a > dt), we have

Ia(d—2)—](1)* — (xgd—Z)t’ el x‘(id—Z)t)Ia(d_2)_(d_2)t_l(I)*,

where [ is the ideal (x{, ..., xs)R. Now let z € (J%)*, where a > dt. This says that
z € (19@=Dy* = J9@=-D-1(1)* whence z € (y},...,y;)J*". Thus we can write
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any degree a element Z € G as Z = 71§} + 7"y, + - + Fq yj This shows that n
represents zero in the cokernel of 8, of (4.2.2.), and hence in HZ (G). This completes
the proof that HZ 4(G) is zero in non-negative degrees.

The proof is now complete when R has dimension two or less, so we assume
that d > 3. Take any k > 3 of the elements from the set {yi, ..., ¥4}, which for
convenience we re-label as jy, ..., yx. The ideal they generate will be denoted 2. We
need to show that, as in condition (4.2.3.), the module H;’l“1 (G) is zero in all degrees
except possibly degree —1.

Suppose that
Vi1 Yai2 Vifk
= ~ ~ =t ? ~ ~ VI ~ ~ ~\f ®1 ]Gy...)‘;...y
G1y2--- ) hy2--y) y2--+ 3 Yk

represents a non-zero element of H;f"l(G) of degree # —1, with notation as in
complex (4.2.2.). We make the following inductive assumption: the representative

cocycle n is chosen so that it has as many zero components y—yy‘—), as possible.
Relabel so that 7| = Fpyo = - - - = F = 0 with A minimal (if # = k, this condition

is vacuous).
Without loss of generality, we may assume that each 7; is homogeneous of degree
a, so that n has degree a — (k — 1)¢. Because n € kernel §;_;, we know that

Wi+ Pofa + -+ JiFn
Oy2--- Y

=0 in Gy,3,.5-

Since the j;’s are all non-zero-divisors, we know that y{7| + y572 + -+ + J,74 = 0
in G, which we may interpret, equivalently, as

4.3.4) yiri+yira 4+ yhrn € I in R,
Rearranging and applying colon capturing, we see that
€ (T O YD) O NTEC U Oy N TS

in terms of the x; and I = (x, ..., x4), we have
@435) e UPED 4 @D TP 0 ey,

Our goal is to show that n = 0, provided its degree is not —1. We first treat the
case where the degree of 7 is non-negative. In this case, a — (k — 1)t > 0, so that
a(d-=2) > k—-Dtd—-2) > d-2tk—1)—(k— 1)+2(becausek > 3). Applying

Lemma 3.4, we conclude that r, € (1@~ 2)(““Ll))*+z:j<h J(d_ " ([1@=-D@=D)* which
implies that 7, € (7}, ..., ¥,_,)G.
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Write 7, = a1y, + - - - + @n—1yn—1, for some elements @; € G. One easily checks
that there exist boundaries (elements in the image of 8;_,) of the form

YiF YaFy Yp(@iyi + - +an-15,-1)
GiJ2- )" Gide--- 90 G- ’
(h)';slot
0,0,...,0

for some choice of 7;. Subtracting u from 5, we get a different cocycle representing
the same cohomology class, contradicting the minimality of #. This shows that
;f" (G) is zero in non-negative degree.
We now treat the case where the degree of 7 is at most —2. Applying the Main
Lemma to (4.3.5.) above, we see that

436) e Y @ixy %) AP 0, X )

where the sum ranges over all subsets {iy, i2, ..., i{;} of {1, ..., h—1}. Infact, (4.3.6.)
can be refined as follows: forh < k, we may assume thatr, € JH + (3!, ..., yi_));
whereas for h = k, we may assume that

= (xy o) 4P e T 4 (0L YD),

for some u € (x1,x3,...x,—1)*. The reason is that (multiplying numerators and
denominators of the components of n by ¥ - - - ¥) we may rewrite n as

yits i+, AN o G. : .
GiFz- - 3O Giga- -3 T G S =S

where each s; = y;--- 3 -+ yeri = (%1% - - - x)? 2r;. Since each x; is a test
element, we see that when j < k and N and M are any integers,

A

N M-1
Core e Eie e xi) ™ e Xy o 20)7 7 (i X w5 X))

N N+M-1 *
C (xlrxlz ce xl;,) (xhxiz e xl',') (xi| s Xigy e v xij)

re-group ¢

cisatestelement



ARITHMETIC MACAULAYFICATION 325

where {i, ..., ;} is a proper subset of {1, ..., f, ..., k}and {l, ..., 1} is its (non-
empty) complement. In particular, multiplying (4.3.6.) by y; - - - J - - - Y&, we see that
the element sy, is in the ideal

+k (d=(t+1) d=2)(+1)
T+ (xy e X )

¢
.y xh
in the event that 2 < k; similarly, when & = k, we see that s, is in
d-2)(t+1 d-2)(t+1 - -
[ A W A N7 e ) TR € TRERS TY LG e C TSR

Noting that (JV)* = J¥ for all integers N, and changing notation so as to replace sy,
by r, and ¢ + 1 by ¢ (and implicitly changing a also), we conclude the verification of
this refinement. In other words, in the notation for the cocycle n, we may assume that

rn € JH (], YD+ (axg s ) @D (g xg, L, xik—1)*, whether or
noth = k.
Furthermore, we can assume that r;, € J%! + ¥}y Y4_1), even when h = k.

To see this, consider an element s = xu where x = (x;x - - x,-1)' @2~ and
u € (x1, X2, ...xk—1)*. Clearly,

s € ((x1, %2, ..., Xgop) ETDE=DI—k=DF1yx
)y (k= 1)1
C (X1, Xy« vy xgg) @)= DE=lyx
C Ja+1

since (k — 1)d—-2)t—(k—2)>Wd—-2)({(k—1t—1) > (d—2)a+1), the
latter inequality following since the degree of n, which is a — (k — 1)¢, is at most —2.
We conclude that r, may be assumed in J atl (y{, e y;l_l). (The same argument
shows an analogous statement for each r;, but we won’t need this fact.)

Finally, because r;, € (J%! + .-, Yh_p) N J%, we can use Corollary 3.4 to
conclude that r, € Jt! + (y!, ..., y5_,)J%". This means that 7, may be assumed
to be in (¥{, ..., ,_;)G. The argument that H;(G) vanishes in degrees less than
—1 can now be concluded exactly as above for the non-negative degree case, by
subtracting off the boundary y to contradict the minimality of 4. This completes the
verification of condition (2) of (4.2.3.) and the proof of Theorem 4.1. O

5. Parameter test elements

In this section we contribute to the understanding of test elements, proving that,
under some mild assumptions on R, any elementc € R such that R, is F-rational has
a power which is a test element for any ideal generated by monomials in parameters
X1, ...,xq for R. This fact enables us to complete the proof of Corollary 4.2. In fact,
what we actually show is something stronger: any such ¢ will be a test element for
any m primary ideal I of R such that R/ has finite phantom projective dimension.
Velez has shown that some power of ¢ will be a test element for any ideal generated
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by parameters. Our improvement is a technical improvement of his result, building
on the ideas of Aberbach [Ab2], which in turn stem from Hochster and Huneke’s
results on phantom acyclicity. We refer the reader to [Ab1] for the basic definitions
and properties of phantom projective dimension and to Section 9 of [HH1] for more
on phantom acyclicity. For more information on parameter test elements, the reader
is referred to Section 8 of [HH3], [S1], and [V].

THEOREM 5.1. Let (R, m) be a reduced and equidimensional excellent local ring.
If ¢ € RC is such that R, is F-rational, then some power of c is a test element for all
m primary ideals I such that R/1 has finite phantom projective dimension.

COROLLARY 5.2. Let (R, m) be a reduced, equidimensional excellent local ring
and suppose that R, is F-rational. Then some power of c is a test element for all
ideals generated by monomials in any system of parameters for R.

Proof. 1Ingeneral,if I = ﬂ , Irandd € R multiplies each I} into I, then d mul-
tiplies 7* into /. Moreover, if 119! = N, I{q], then any test element for {I,: A € A}
must be a test element for /.

Fix the power ¢V of ¢ guaranteed by Theorem 5.1 to be a test element for all m
primary ideals of finite phantom projective dimension, a class of ideals that includes
all m-primary ideals generated by monomials in any system of parameters. Take
any system of parameters xi, ..., x4 and consider an arbitrary monomial ideal / in
these parameters. Any such [ is an intersection of m primary ideals generated by
monomials in xi, ..., x4; in particular, I = ("),y(I + (x,...,x})). For each g,
19 = N, T+ (x?, ..., x7)), and these ideals are also generated by monomials
inxy, ..., xs. We conclude that ¢V is a test element for I. The corollary is proved.

]

Corollary 5.2 was exactly the technical improvement we needed to finish off the
proof of Corollary 4.2. It remains to prove the main theorem of this section. The
proof follows that of Aberbach in [Ab2].

Proof of 5.1. 'We first show we may assume without loss of generality that R is
complete. Suppose that ¢ € RO such that R, is F-rational. Since R, — R, ® R=
(ﬁ)c is a smooth map, it follows from [V] that (ﬁ)c is F-rational. Assume Theorem 5.1
holds for complete rings and let ¢V be the power of c that is a test element for all
ideals Z of R with R /Z of finite phantom projective dimension over R. Suppose that
z€I*inR where I C R is such that R/I has a finite phantom resolution. After
tensoring with R, we get a finite phantom resolution for R/IR. Since the image of z
in Risin (1 R)* we see that cVz9 € IR in R. It follows from the faithful flatness
of R C R that c¥z% € I'9) in R as well. We conclude that ¢V is a test ideal for all
ideals I C R such that R/I has finite phantom projective dimension.
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Assume R is a complete local equidimensional ring of dimension d. By Theo-
rem 11.8 of [HH1], there is an ideal A C R such that AH!(F.) = 0 whenever the
homology of the complex F. is phantom. The radical of this ideal .4 defines the non-
Cohen-Macaulay locus of R. Let B be the parameter test ideal of R. By definition,
the elements of B are the test elements for any ideal generated by any parameters
(equivalently, any full system of parameters) for R. We claim that B.A? is contained
in the test ideal for all m-primary ideals I such that R/ has a finite phantom resolu-
tion. That is, B.A2¢(1*)[41 ¢ 1191, for all such I. Since the class of ideals I such that
R/ has finite phantom projective dimension is closed under Frobenius powers, this
is equivalent to B.A%(I*) C I, for all such I.

To prove this claim, let . be a finite phantom resolution of R/I, so that Ffy = R and
the subsequent F; are all free R modules. Using Aberbach’s “Phantom Auslander-
Buchsbaum” theorem [Ab1], we know that the length of F. is exactly d = dimension
R. Choose any system of parameters xi, ..., xy contained in I. Let K. denote the
Koszul complex on the parameters x;, ..., x4;. Takeanyu € I* — I. By Lemma9.16
of [HH1], we know that for any a € A?, the map Ko = R —> F; = R given by
sending the generator 1 € K to the element au extends to a map of the complexes
0: K. — F. Applying the functor @R to this map of complexes preserves the
phantom exactness. We denote by 8[9): ¢K. — F. the new map of complexes.
The abutment map is the map R/(x7,...,xJ)R —> R/I'! given by sending the
equivalence class of 1 to the equivalence class of (au)?.

Let ¢’ be any test element for R. Since u € I'*, we know that ¢’(au)? € 119! for all
q. It follows that both the zero map and the map ¢’8!%! from K. to °F. extend the zero
map on the abutments R/(x{,...,x5)R — R/I9. Lemma 9.16 of [HH1] then
guarantees the existence of a phantom homotopy: for eacha’ € A% and each g = p*,
there exists a homotopy h;: ¢K; —> ¢F;,; such thata'c’6;'! = ¢, .1\ Ph; +h;_ ;@)
where «. is the boundary map for K. and ¢. is the boundary map for F..

Consider what this says about the last map 6,;: K; = R —> F in the original map
0: K. — T. of complexes. For each g, we have a commutative diagram coming
from the homotopy h:

eFd D S— eKd_l
ha-y

5:2.1) Taesls “
€ Kd =Z=R —— ¢ Kd_]
agla!

Let indicate the dual functor Homgz(—, R). Applying this to (5.2.1.), we get

K
M d~1 N
eFd eKd—l

(5.2.2) wenls| “

‘K, =R «—— °K, |
aglal
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Using the commutativity of diagram (5.2.2.), we see t}lat the image of the map

a8’ ¢ ¢K, = R is contained in the image of &' = (x7,x7,...,xd). We

conclude that the image of 0:, is contained in the tight closure of (xi, ..., x4) in R.

Consider again the original map of complexes 8: K. —> F. which extends the
map from Ky = R to Fy = R given by multiplication by au. Let ¢ be any parameter
test element. Multiply the map 6 by ¢ and apply the dual functor . We get a
map of complexes cd: F. — K.. The map on the abutments Fd /(im ¢d) —
Kd/(lmed) = R/(xy,...,xq) induced by ced is the zero map, since (im ¢d) C
(x1,...,x4)* and c is a parameter test element.

Again using Lemma 9.16 of [HH1], we see that after multiplication by a” € A¢,
the map (c6) is homotopic to the zero map. Again we consider what happens at
the tail end of the complexes. The last map in the homotopy 4.": F. — K._; cuts
diagonally across the following diagram from F; to K;) = R:

F, <«— Fy,=R
¢

(5.2.3) |aeor |aoas
K, =R «—— K,=R

9]
The upper right hand triangle here is a commutative diagram (although the lower left
triangle may not be). Dualizing again, and now writing in the map induced by the
homotopy 4’, we get a commutative diagram coming from the upper right triangle of
diagram (5.2.3.):

Fi, —— R
4}

Thf Ta”cau

R R
This final commutative diagram shows that aa”cu € im¢, = I C R. Since u was
an arbitrary element of /*, a and a” are arbitrary elements of A and c an arbitrary
parameter test element, we conclude that .4>¢B multiplies /* into I. Thus .A%*/B
is contained in the test ideal for all m-primary ideals of I such that R/I has finite
phantom projective dimension.

It remains only to show that if R, is F-rational, then some power of c is in AXB.
Juan Velez has shown that some power of ¢ is a parameter test element. On the other
hand, since F-rational rings are Cohen-Macaulay, we know that c is in the defining
ideal for the non-Cohen-Macaulay locus for R. In particular, some power of c is in
A. Tt follows that some power of ¢ is in .A%B, and the proof is complete. [J

REFERENCES

[Ab1] 1. Aberbach, Finite phantom projective dimension, Amer. Jour. Math. 116 (1994), 447-477.



ARITHMETIC MACAULAYFICATION 329

[Ab2] -, Tight closure in F-rational rings, Nagoya J. Math. 135 (1994), 43-54.

[Ab3] ., Arithmetic Macaulayfications using ideals of dimension one, lllinois J. Math., to
appear.

[Br1] M. Brodmann, A macaulayfication of unmixed domains, J. Algebra 44 (1977), 221-234.

[Br2] —— Local cohomology of certain Rees and Form rings 11, J. Algebra 86 (1984), 457-493.

[Br3] — A fewremarks on “Macaulayfication” of sheaves, Commutative Algebra, International

Conference, Vechta (1994), Vechtaer Universititsschriften, 29-32.

[BH] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Math., vol. 39,
Cambridge Univ. Press, Cambridge, 1993.

[F] G. Faltings, Uber Macaulayfizierung, Math. Ann. 238 (1978), 175-192.

[Fe] R.Fedder, A Frobenius characterization of rational singularity in two dimensional graded rings,
Trans. Amer. Math. Soc. 340 (1993), 655-668.

[GY] S. Goto and K. Yamagishi, The theory of unconditioned strong d-sequences and modules of finite
local cohomology, preprint.

[GrR] H. Grauert and O. Riemenschneider, Verschwindungsdtze fiir analytische kohomologiegruppen auf
komplexen Réiduman, Invent. Math. 11 (1970), 263-290.

[Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero
1, 11, Annals of Math. 79 (1964), 109-326.

[HH1] M. Hochster and C. Huneke, Tight closure, invariant theory, and the Briangon-Skoda theorem, J.
Amer. Math. Soc. 3 (1990), 31-116.

[HH2] ________, F-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346
(1994), 1-62.

[HH3) —___, Tight closures of parameter ideals and splitting in module-finite extensions, J. Alge-
braic Geometry 3 (1994), 599-670.

[HH4] | Tight closure in equal characteristic zero, in preparation.

[HS] C. Huneke and K. E. Smith, in preparation.

[IT]  S.IkedaandN. V. Trung, When is the Rees algebra Cohen-Macaulay?, Comm. Algebra 17 (1989),
2893-2922 .

[K] K. Kurano, Macaulayfication using tight closure, preprint.

[L] J. Lipman, Cohen-Macaulayness in graded algebras, Math. Research Letters 1 (1994) 149-157.

[LT] J. Lipman and B. Teissier, Pseudo-rational local rings and a theorem of Briangon-Skoda about
integral closures of ideals, Michigan Math. J. 28 (1981), 97-116.

[Rol] P. Roberts, Cohen-Macaulay complexes and an analytic proof of the new intersection conjecture,
J. Algebra 66 (1980), 225-230.

[Ro2} —__, Le théoréme d’intersection, C. R. Acad. Sc. Paris Sér. 1 304 (1987), 177-180.

[S1] K. E. Smith, Test ideals in local rings, Trans. Amer. Math. Soc. 347 (1995), 3453-3472.

[S2] —___, F-rational rings have rational singularities, Amer. J. Math., to appear.

[V] 1. Velez, Openness of the F-rational locus and smooth base change, J. Algebra 172 (1995), 425-
453.

[Vi] D. Q. Viet, A note on the Cohen-Macaulayness of Rees algebras of filtrations, J. Algebra 195
(1995), 425-453.

[W] K. Watanabe, Rational singularities with K*-action, Lecture Notes in Pure and Applied Math.,
no. 84, Dekker, 1983, 339-351.

UNIVERSITY OF MISSOURI
COLUMBIA, MISSOURI

PURDUE UNIVERSITY
WEST LAFAYETTE, INDIANA

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS



