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ENERGY MINIMIZING SECTIONS OF A FIBER BUNDLE
SHIAH-SEN WANG

0. Introduction

Interior partial regularity for minimizers of functionals having nonquadratic growth
between Riemannian manifolds has been extensively studied. See [2], [6], [8], [9] and
references therein for details. Here we study sections of a fiber bundle X that locally
minimize the L? norm of the gradient among all Lll‘;f sections when p € (1, 00).We
show that such a local minimizing section is Holder continuous everywhere except a
closed subset Z of the base manifold M, and that the set Z has Hausdorff dimension
at most m — [p] — 1, where m is the dimension of M.

It is a well-known topological fact that there is no continuous unit tangent vector
field on an even-dimensional sphere; thus continuity of a local minimizing section
on all of M may be impossible by topological obstructions. In the trivial bundle
case, i.e.,, X = M x N with N as the fiber, and p = 2, the problem studied here
can be easily reduced to study minimizing harmonic maps from M to N; therefore,
continuity of local minimizing sections may be impeded by energy considerations
(see [7]), even without the topological obstructions.

In contrast with harmonic sections (see [1], 2.39), we do include the “horizontal”
energy in the energy functional. This causes a major problem in proving the partial
regularity for minimizing sections of the simplest form of functionals having non-
quadratic growth discussed here because we have to deal with the map constraint—the
projection map 7 of the fiber bundle.

The methods used to prove the results are described as follows:

In Section 1, first we locally associate an L!'? section ¥ with each map v €
L'?(Q, N) for some bounded open subset 2 of M by the local trivialization property
of the bundle. Then we construct a new functional G defined on L"?($2, N) from
the original one—the L? norm of the gradient. Via this reformulation, we can study
G-minimizers with submanifold N constraint instead of p-energy minimizers with
the mapping constraint 7.

In Section 2, we prove that small normalized p-Dirichlet energy of a G-minimizer
u implies Holder continuity using the De Giorgi blowing up argument outlined in
Luckhaus’ paper [9]—where he studies general functionals with nice blow-ups. The
key ingredients of the proof are Lemma 2 and Lemma 3. We show the blow-up
functional F of G is nice (in fact, our blow-up functional F is nicer than the one
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studied in Luckhaus’ paper) in Lemma 2 by applying Tolksdorff’s results on systems
of degenerate elliptic p.d.e.’s (see [13]). Then we show energy decay inequality in
Lemma 3 by the De Giorgi blowing up argument. In order to use this argument, we also
use Luckhaus’ comparison map lemma (see Lemma 1) and rescale both the domain
and the target manifolds as in Proposition 1 of [9]. Once the energy decay inequality
is established, we can iterate this inequality and get Morrey’s growth estimate, and
so the Holder continuity follows. Also, by a standard covering argument and partial
Holder continuity result, we see that the singular set Z defined by

Z= {x EM|OX) = limsupr”""‘/ |Vul? > 0} ,
r—0 B, (x)
is a closed subset of 2 and has Hausdorff dimension at most m — p.

In Section 3, we show that the Hausdorff dimension estimate on Z can be improved.
By rescaling the domain near a point in Z , we show that the blow-up map v of u
minimizies a functional D, and a monotonicity formula hold for u,, obtained from
u by rescaling the domain; and thus 9 is radially homogeneous of order 0, i.e.,
9,0 = 0. Hence Federer’s dimension reduction argument can be applied here, and so
the assertion on the Hausdorff dimension of Z follows.

Concerning the higher regularity of a G-minimizer u where u is Holder continuous,
we can quote the results in Giaquinta and Modica’s paper in case p > 2 (see [6] in
which they study maps between coordinate neighborhoods ) by the fact that we already
establish Holder continuity. Unfortunately we are not able to extend this result to the
case when p € (1, 2) at this moment because some technical inequalities are not true
when p € (1, 2) (see Section 2 of [6]).

1. Preliminary setup and notations
Suppose B is a fiber bundle consisting of:

(1) abase space M—an m-dimensional C?> Riemannian manifold;

(2) a fiber space N—a closed n-dimensional C? submanifold of some Euclidean
space R¥;

(3) atotal space X—an (m + n)-dimensional C? Riemannian manifold;

(4) a projection map w: X — M—a C? submersion from X onto M so that N, =
w~Yx} is C? diffeomorphic to N forall x € M.

Let N, = {y € R¥ | dist(x, N) < ) for some t > 0, be a neighborhood of N so
that the unique nearest point projection £: N, — N is well defined and let I} be a
positive constant depending on N only so that

IVEQ) — Aep)ll < Tily — EW)I,

where Ag(,) is the orthogonal projection of R* onto Tan(N, £(y)).
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Forapointa in M, let 2 CC M be aneighborhood of a equipped with the standard
Euclidean metric of R”, and let h: @ x R* - X beaC>mapsothatg =h |, , is

a C? diffeomorphism from  x N onto V = g( x N), a neighborhood of N, in X.
Let m: © x R*¥ — R¥ be the standard coordinate projection.
For p € (1, 00), define
SL'"P(Q,X)={@ e L"?(Q,X) |moW =x ae. x € Q),

and
LY (Q,N) = {w e L"?(Q,R*) | w(x) € N a.e. x € Q).
Define ®: L?(Q2, N) - SL?(Q, X) by

O (w)(x) = glx, w(x)), Vx € Q and w € L"?(, N).
Clearly, @ is bijective with inverse map defined by
N (W)(x) =m0 g7 o W(x), Vx € Q and W € SL'P(R, X).

Define £: SL'? (2, X) — R by
EW)(x) =/ |Vw|P, Vi € SLYP(Q, X).
Q

Let M (m, k) be the space of linear maps from R”™ to R¥ and define G: L''7(Q2, N) —
R by

G(w) = fQG(x, w, Vw)dx,  Yw e L'"?(Q, N),
with
G(x,y,m) = A&, )+ B, )nl’, Y&, y,m) € QxR x M(m, k),
where

A(x,y) = Dyh(x,y): Tan(R2, x) — Tan(X, h(x, y)),
B(x,y) = Dyh(x,y): R* - Tan(X, h(x, y)),

V(x, y) € Q x R¥. Notice that if (x, y) € Q x N, then
rankA (x, y)ITan(SZ,x)= m, and rankB(x, y)|Tan(N,y) =n

This fact will be used in proving Lemma 2.2. Observe that u is a G-minimizer in
LYP(S2, N) iff ®(u) is a E-minimizer in SLY? (2, X) because G(u) = £(D(u)).
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Let I'; and I'; be two positive numbers so that

(6]

and

€))

r;' < IDhGx, y)I, 1Dg~ ()|l < Ty,
V(x,y) € Q x N,Vz € g71(Q x N),

r;l < "A|Tan(9,x)” ) ”BlTan(N,y)” =< F3s Vx € Q,V}’ €N

Next, we make some observations to simplify our exposition of the following two
sections.

6]

¢))

3

The compactness assumption on N can be replaced by the hypothesis that the
image of a small ball for an G-minimizer is contained in N CC N (compare
[12], Theorem I).

It can be easily checked that the integrand G of the functional G defined above
satisfies all the growth conditions studied by Luckhaus in [9] and [10], also
studied by Giaquinta and Modica in [6] for the case when p > 2 and when the
maps are between coordinate neighborhood. However, we will carry out most
of the computation in the proof, since some of them are simpler here without
referring to the general hypotheses of G these papers imposed; i.e., here we
provide an example that these hypotheses on G are “natural”.

For notational simplicity, we will confine our study to the case that B,(0) C
© C R™ with the standard Euclidean metric, because the general case can be
easily modified by first shrinking 2 if necessary so that the general metric is
C! close to the Euclidean one and then by rescaling the Euclidean metric as in
the minimizing p-harmonic case studied by Hardt and Lin in [8], Section 7.

We complete this section with a discussion on scaling:
For w € L'?(B,(a), R¥) witha € B;(0) and r € (0, 1), the expression

Wy q(x) = w(rx +a) (= w,(x), when a =0), Vx € B1(0) =B

defines a map in L7 (B, N).
If u is a G-minimizer in L"?(B, N), then u,, is minimizes the functional G, ,
among maps in L7 (B, N), defined by

gr,a(w) = / Gr,a(x’ w, Vw)dx, w e Ll‘p(Ba N),
B

where

Gra(x,y,m) = Grx +a,y,n/r), V(x,y,n) € QxR x Mk, m).

For w € LYP(B,(a), R¥), write

E,.(w) = r”“’"f |[Vw|?dx (= E,(w), when a = 0).
By (a)
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Note that

Ep(wr,a) = Erp,a(w)’ o € (0,1].

2. Small energy implies Holder continuity

The following lemma is due to Luckhaus (see [9], Lemma 1), which extends
Lemma 4.3 of [12].

LEMMA 2.1. ForB € ([p — 11/ p, 1), thereisapositive constantc; = c(m, k, p, B)
sothatif0 <t <1/2,0 < p,e <1,a € B,and v, v, € Ll'P(aB,,(a), N), then
there is a map w € Ll'P(Bp(a) — B(-np(a), R¥) satisfying

v (x) x € 3B,(a);
w(x) =
v((x —a)/(1—=1)+a) x €93Bu-n,(a)-
dist(w(x), N) <r, x € By(a) — B(i-n,(a),
and
3) / Vwl? < KP(1+ (/o))
B,(a)—B(i-np(a)

where r = c;Ke!=Pplp=11-=D/p  gp — 38, Van¥11? + [Vianv2|? + |vi—
v2|P/€P).

The next lemma shows that the blow-up function is nice (actually Holder continuity
is sufficient to apply Luckhaus’ results; see Hypothesis (A2) in [9]).

LEMMA 2.2. Thereisapositive constant c; = c{m, k, p, I'3) suchthat if (xo, yo) €
Q x N,v € L?(B, R¥) with v(B) C Tan(N, yo)(=~ R"), and v minimizes F among
maps in L1?(B, Tan(N, yo)), then v € C"" for some y € (0, 1) and

@ IV 0l iy < €2 ][ (1+ Vo))
Big(a)

whenever Big(a) € B, where
F(w) = f F(w), VYw e L"?(B, Tan(N, yo)),
B

with

F(n) = |B(xo, yo)nl”, n € Mk, m+n).
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Proof. Since v minimizes the functional F among maps in L!:? (B, Tan(N, o)),
it satisfies the following degenerate elliptic system of equations:

/ | B(x0, 0) Vv |P~XB(x0, y0) Vv, B(xq, Yo)Vg) =0, Vg € Lé"’(B, Tan(N, yo)).
B

Hence, the conclusions follow immediately from Theorem 5.1 and Theorem 6.1 of
[13]. O

LEMMA 2.3. For a € (0, 1), there are positive constants c3 > 1, €y depending
onlyonm, p,k,Ti—1 23, and a, such that if u is a G-minimizer and r*? < E, ,(u) <
€l with0 <r < 1,a € B, then we have

4) Er/C3,a (u) < C:,'—apEr,a ().

Proof. Were the conclusion false, there would exist a sequence of balls { B,, (a;)};,
for some constant c¢3 to be chosen later, so that

Er,»,a,» (u) = Gip
(6) Es.0(u) > c;*P€l, wheres; =r;/c3,
rlf" < €

and thatas i — 00, € — 00.
Lety; = f5 . % Then we have

diSt(yi’ N) =< c4€ip,

for some c4 = c(m, p, k) by the Poincaré inequality. Hence y; = &£(¥;) is well
defined, when i is sufficiently large.
For these i’s, let

vi = (u(rix + a;) — y;)/€; and u; = €;v; + y;.
By the Poincaré inequality again, we have
lvillLirrey < cs  for some cs = c(m, p, k, T'1).

Note that N is compact. Passing to subsequences without changing notations, we
may assume that

a; > xo € B,

Yi > Yo €N,
v > v strongly in L? (B, R¥) norm and pointwise a.e. on B,
Vv; = Vv weakly in L? (B, M (m, k)),

o; ’G(ai, yi,a;n) — F(n) forall n € R¥, where o; = €;/r;.
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Claim. v satisfies the hypothesis of Lemma 2.2 (and so its conclusion), and for
each p € (0, 1),

@) ef”ri”_m/ G(x,u,Vu)dx — F(v).
Bpr, (ai) B,(0)

Assume the claim is true for the moment. Then by Lemma 2.2 (4) with a =
0, R = 1/3, and requiring c3 > 3/2, we have

Ey/,(v) < ce, with c¢ = (m, k, p, ['3).

It follows that
5 "/ F(v) < c7¢c;”  where ¢7 = c(m, k, p, T'3).
B'/cg
Thus by (7), we see that

i -p_me (a)G(x u,Vu)dx
e i G(x,u, Vu)dx
B,. (a)

<crey?

By taking i sufficiently large, one has
s / G(x,u, Vu)dx < 2cic; 'rf™" / G(x,u, Vu)dx,
Bx, (ai) Br, (a;)
sO
sV + E, 0,(u) < csc; P (r] + E,, 0, (w))  for some cg = c(m, p, T2, T'3)
Hence by (6) and the definition of s;, we have
coc;Pel > c;%€’ for some co = (m, p, [i=123).

This leads to a contradiction to (6) by further requiring that C9c§°’"l)” <1.

Proof of the claim. The proof here is due to Luckhaus (see p. 358 of [9]). Let ¥
be any comparison function coinciding with v in B — Bj_, for some A € (0, 1). By
Fatou’s lemma and Fubini’s theorem, we may assume that thereisa p € (1 — A, 1)
such that

/ lvi —0|?P = 0, asi — o0, / (IVv;|p+lV6|”)5c10 < o0
aB; aB;

Furthermore, choose a sequence of positive numbers R; — 0o as i — oo such that

1dd — &)

B o0 (Tanqy,sy) 16 = O(€)

1904 =) [, o (Tangwuyay) 1% = 0€0/e
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Define
U; = Riv/max(|vi|, Ri), i =& +€0:), ui =y +e€v;,

and apply Lemma 2.1 to #;, u;, A; and p in place of v;, v,, f and p. We find a map
w; such that

ai(x/(1 = A)) for [x| < p(1 — A),

u;i(x) for |x| > p,

W (x) = I

/ [VW;|? < crihiel,
Bs—Bj1-1;)

A; — 0 and dist (y, N) — O uniformly as i — oo.
Thus

1—>00

f F(V?) = lim ai_”f G(a;, yi, o; V;)
B, B,

= lim 17 /¢! /B Glai +rix, E@), VE@))/r)

v

lim r,.”/e,."f G(ai +rix, ui, Vu;/ri)
1—=>00

I3

f F(Vv),
B,

where the last inequality follows from the lower semicontinuity of . Hence the
claim holds by taking 9 = v in the above inequalities. [

v

THEOREM 2.4. Ifu is a G-minimizer, then for o € (0, 1) and B,(a) € B, we have
the following:

(1) IfE, . (u) < r°, thenuis C* in B,(a).
Q) Ifr? < E,;,(u) < e(’,’ with €, given as in Lemma 2.3, then there is a positive
constant cy3, depending onm, k, p, o and T';, fori =1, 2, 3, such that

Ep, iy < cia(r'/r ),  Vbe B.(a)andr' € (0,r)
and u is C* on B, j2(a).
Proof. Case (1) follows immediately from Morrey’s growth estimate Lemma

(see [11], 3.5.2). The first assertion of Case (2) is from iterating (5), and the second
one is from the first one and Morrey’s growth estimate Lemma. O
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COROLLARY 2.5. Any G-minimizer is Holder continuous on M — Z, where Z is
defined as in Section 0. Moreover, Z is relatively closed in M and has (m — p)-
dimensional Hausdor{f measure zero in case 1 < p < m.

Proof. The closedness of Z and Holder continuity of # follow immediately from
Theorem 2.4, and the Hausdorff dimension estimate on Z is from the standard covering
argument. [

3. Improvement on the Hausdorff dimension of the singular set Z

In this section we will assume that p € (1, m). By Theorem 2.4, we know that u
is Holder continuous at a point in M if the normalized p-energy E tends to O when
the radius tends to 0. Hence we only need to study the case when a € Z, where Z is
defined as in Section 0 and

® E,o(u) =€,  Vre(0]l).

For simplicity, we assume thata = 0 € Z. Define the functional D: L':»(B, N) — R
by

D(w) = f |B(O, w)Vw|? w e L"?(B, N),
B
(compare Hypothesis (A3) in [9]). We write D, (w) = f B, |BO, w)Vw|?,Vt € (0,1).

THEOREM 3.1.  There exists a sequence r; — Q so that the rescaled maps u,, €
LYP(B, N) satisfy the following properties:

U, —> Ug € LY“?(B, N) strongly in LP norm,

Vu,, — Vug weakly in LP(B, M (m, k)),

© o / G(x, u, Vi) — Dlug),
B,

as i — oo. Furthermore, uy minimizes D with respect to a fixed trace on 3 B, and
3ru0 =0.

Proof. To show that u,, converges to some uo weakly in LYP(B, N), we notice
that, by (2),

ry! f Vi, P < Do) <Ts [ [Vul?, Vere (O 11,
B, B,

Hence, it is sufficient to show that D(u,) is bounded by Rellich compactness theorem.
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Choose a constant ¢j3 = c¢(m, p, k, N,T';=12,3) > 1 such that
|r?Gro(x, y, m)—|B©, y)nl?| < cisr?(A+Inl?),  Y(x,y,n) € BXNxM(m, k).
Lett € (0, 1) and define

ur(x) for |x| > ¢,
" uex/ix) forix] <t

Thus, by the homogeneity on the gradient variable of the integrand for D and Fubini’s
theorem, we have

(10) BO, uy,)Vitr|? = t/(m — p) f BO, uy)Viu|P.
B, aB,

Note that by (1), (2), and (10), we have

(1 (1 = cuar®)r? G o(x, ups, Vuy) < |BO, uy, ) Vur,|? + crar?,
(12) (1 — c1ar?)|BO, u,)Vu,|? <r’G(x, u,, Vu,) + ciar?,

where Clqg = max(c13, 013115, C13F§)).
By (11), (12), and G, o-minimality of u,, we have

a- cl5r”)/ IB(O, u,)Vu,|? < t/(m— P)f |B(O, u,)Vu,|P + c1sr?t™,
B, 3B,

where ¢;5 = cf4£”‘(B). By (8) and taking larger c;s, the last term in the above
inequality can be absorbed into the left-hand side to get

(1 —c15r”)Di(u,) < t/m — p/ |B(O, u,)Vu,|?.
3B,

Hence we obtain the following monotonicity inequality:
(13) 8, (1og[t?™"Dy(u,)] + c15r” logt )= 0.

Apply (13) to the sequences r; = e™', t; = riy1/r;i = e~ ! in place of r, t respec-
tively. Write u; = u,,. Note that €™ PD,-1 (u;) = D(u;+1) and that

- Zr,.” log (rip1/ri) = er < 00.
Therefore lim D(u;) exists, D(u;) is bounded and
11— 00

lim r/™"G,, o(u) = lim D(u;).
1—>00 =00
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Hence, by passing to a subsequence without changing notation, we have
u; — ug strongly in L?(B, N) and u; — uy weakly in LY?(B, N).

This completes our proof of the first assertion.

To show u minimizes D, letv € L1:?(B, N) be such that uy—v = O on B — B, _,
for some ¢t € (0,1). Choosing another subsequence of u; and p € (1 — ¢, 1), if
necessary by Fatou’s lemma and Fubini’s theorem, we may assume that

(|Vu;|? + |Vv|?) < c16 < oo and / lu; —v|P > 0asi — oo.

3B, 3B,

By Lemma 2.1, we have a sequence w; € L!"?(B, N), so that

w~(x) _ v(x/(l — A.,')) forx € B(I—A,)m
T u;(x) forx € B— B,

/ lwil? < c17hi,
B,—Ba-xpe

where A; — 0 asi — oo. By (10), the lower semicontinuity of D, and the G,, o-
minimality of u;, we obtain

D(up) < lim D(u;) < lim D(w;) = D(v).
1—>00 1—>00

Hence uo minimizes D.
Notice that (13) also implies that 3,7”~™"D, (up) = 0, and thus

(14) r?~" D, (ug) = D(uo).
Since u¢ minimizes D, compare with

up(x) forx € B — B,,
uo,r(x) =

uo(rx/|x|) forx € B,;
we have
D, (ug) <r/m— P/ |B(0, uo) Viantol” .

3B,
This inequality and (14) imply that 9,uo =0. O

COROLLARY 3.2. Suppose that u € Lll(;f (M, N) locally minimizes the functional
G; then it is locally Holder continuous on M — Z, where Z is defined as in Section 0.
Furthermore, the singular set Z has Hausdorff dimension at most m — [p] — 1. In
particular, Z is discrete if m = [p] + 1.
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Proof. The proofisasin4.5of [8]or[3]. O

Remarks. (1) Concerning the higher regularity of a G-minimizer u where it is
continuous, we can quote the results in Giaquinta and Modica’s paper in case
p = 2 (see [6] in which they study maps between coordinate neighborhoods )
by the fact that we already establish Holder continuity in Corollary 2.3. Un-
fortunately we are not able to extend this result to the case when p € (1,2) at
this moment because some technical inequalities are not true when p € (1, 2)
(see Section 2 of [6]).
(2) In case the base manifold M has nonempty smooth boundary, the boundary
regularity of the corresponding Dirichlet problem can be obtained by arguing
as in Section 5 of [8] with some necessary modifactions.
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