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ENERGY MINIMIZING SECTIONS OF A FIBER BUNDLE

SHIAH=SEN WANG

O. Introduction

Interior partial regularity for minimizers offunctionals having nonquadratic growth
between Riemannian manifolds has been extensively studied. See [2], [6], [8], [9] and
references therein for details. Here we study sections of a fiber bundle X that locally

1,pminimize the Lp norm of the gradient among all Llo sections when p (1, o).We
show that such a local minimizing section is H61der continuous everywhere except a
closed subset Z of the base manifold M, and that the set Z has Hausdorff dimension
at most rn [p] 1, where rn is the dimension of M.

It is a well-known topological fact that there is no continuous unit tangent vector
field on an even-dimensional sphere; thus continuity of a local minimizing section
on all of M may be impossible by topological obstructions. In the trivial bundle
case, i.e., X M x N with N as the fiber, and p 2, the problem studied here
can be easily reduced to study minimizing harmonic maps from M to N; therefore,
continuity of local minimizing sections may be impeded by energy considerations
(see [7]), even without the topological obstructions.

In contrast with harmonic sections (see 1 ], 2.39), we do include the "horizontal"
energy in the energy functional. This causes a major problem in proving the partial
regularity for minimizing sections of the simplest form of functionals having non-
quadratic growth discussed here because we have to deal with the map constraint--the
projection map rr of the fiber bundle.

The methods used to prove the results are described as follows:
In Section 1, first we locally associate an LI’p section

L ,P (f2, N) for some bounded open subset f2 ofM by the local trivialization property
of the bundle. Then we construct a new functional ; defined on L 1,p (", N) from
the original one--the Lp norm of the gradient. Via this reformulation, we can study
-minimizers with submanifold N constraint instead of p-energy minimizers with
the mapping constraint

In Section 2, we prove that small normalized p-Dirichlet energy of a -minimizer
u implies H61der continuity using the De Giorgi blowing up argument outlined in
Luckhaus’ paper [9]--where he studies general functionals with nice blow-ups. The
key ingredients of the proof are Lemma 2 and Lemma 3. We show the blow-up
functional .T of is nice (in fact, our blow-up functional " is nicer than the one
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studied in Luckhaus’ paper) in Lemma 2 by applying Tolksdorff’s results on systems
of degenerate elliptic p.d.e.’s (see [13]). Then we show energy decay inequality in
Lemma 3 by the De Giorgi blowing up argument. In order to use this argument, we also
use Luckhaus’ comparison map lemma (see Lemma 1) and rescale both the domain
and the target manifolds as in Proposition of [9]. Once the energy decay inequality
is established, we can iterate this inequality and get Morrey’s growth estimate, and
so the H61der continuity follows. Also, by a standard covering argument and partial
H61der continuity result, we see that the singular set Z defined by

Z=[xMl(R)(x)=limsuprp-mf IVulP > 0],r---O r(X)

is a closed subset of fl and has Hausdorff dimension at most m p.
In Section 3, we show that the Hausdorffdimension estimate on Z can be improved.

By rescaling the domain near a point in Z, we show that the blow-up map of u
minimizies a functional D, and a monotonicity formula hold for up, obtained from
u by rescaling the domain; and thus is radially homogeneous of order 0, i.e.,
Or 0. Hence Federer’s dimension reduction argument can be applied here, and so
the assertion on the Hausdorff dimension of Z follows.

Concerning the higher regularity of a -minimizer u where u is HOlder continuous,
we can quote the results in Giaquinta and Modica’s paper in case p > 2 (see [6] in
which they study maps between coordinate neighborhoods ) by the fact that we already
establish Htilder continuity. Unfortunately we are not able to extend this result to the
case when p (1, 2) at this moment because some technical inequalities are not true
when p (1, 2) (see Section 2 of [6]).

I. Preliminary setup and notations

Suppose B is a fiber bundle consisting of:

(1) a base space M--an m-dimensional C2 Riemannian manifold;
(2) a fiber space N--a closed n-dimensional C2 submanifold of some Euclidean

space
(3) a total space Xman (m + n)-dimensional C2 Riemannian manifold;
(4) a projection map zr" X ---> M---a C2 submersion from X onto M so that Nx

zr- {x} is C2 diffeomorphic to N for all x M.

Let N {y ltk dist(x, N) < r} for some r > 0, be a neighborhood of N so
that the unique nearest point projection " N ---> N is well defined and let I’1 be a
positive constant depending on N only so that

IIV((y)- A(y))ll _< l"lly- (Y)I,

where A(y) is the orthogonal projection of IRk onto Tan(N, (y)).
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For a point a in M, let f2 CC M be a neighborhood ofa equipped with the standard
Euclidean metric of Iim, and let h" f2 x Ik X be a C2 map so that g h laN is

a C2 diffeomorphism from f2 x N onto V g(fl x N), a neighborhood of Na in X.
Let zr2"fl x IRk k be the standard coordinate projection.

For p e (1, o), define

SLI’p("2, X { e LI’p(, X) o ) x a.e. x 2},

and

L I’P(, N) {w L I’P(f2, IRk) w(x) N a.e. x }.

Define : L,P (f2, N) SL ’P (f, X) by

(w)(x) g(x, w(x)), Yx 6 and w e Ll’p(f2, N).

Clearly, is bijective with inverse map defined by

t-1 ()(X) 7/’2 0 g-lo (X), Yx 6 f2 and 6 SLI’p(, X).

Define ," SL 1,p (,-, X) .-e, 1 by

g()(x) fa IVIp, SL ’p(, X).

Let M(m, k) be the space of linear maps from IRm to IRk and define " LI’p(, N) --+
N by

(w) fa G(x, w, Vw)dx, Vw . LI’P(, N),

with

G(x, y, rl) IA(x, y) + B(x, y)rll p, V(x, y, r/) e x IRk x M(m, k),

where

A(x, y) Dxh(x, y)" Tan(f2, x) Tan(X, h(x, y)),

B(x, y) Dyh(x, y)" IRk Tan(X, h(x, y)),

(x, y) e fl x IRk. Notice that if (x, y) e flx N, then

rankA(x, y)[Tan(a,x)= m, and rankB(x, Y)lTan(N,y) n

This fact will be used in proving Lemma 2.2. Observe that u is a -minimizer in
LI’p(2, N) iff (u) is a E-minimizer in SLI’p(, X) because (u) E((u)).
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Let 1-’2 and 1"3 be two positive numbers so that

(1) F- < IlOh(x, Y)II, IIDg-l(z)ll < I"2,

V(x, y) e x N, Vz e g-1 (2 x N),

and

(2) I"-1 < IIAlTan(a,x)ll, IlnlTan(N,y)ll < F3, YX r, Yy N

Next, we make some observations to simplify our exposition of the following two
sections.

(1) The compactness assumption on N can be replaced by thehypothesis that the
image of a small ball for an -minimizer is contained in N CC N (compare
12], Theorem I).

(2) It can be easily checked that the integrand G of the functional defined above
satisfies all the growth conditions studied by Luckhaus in [9] and [10], also
studied by Giaquinta and Modica in [6] for the case when p > 2 and when the
maps are between coordinate neighborhood. However, we will carry out most
of the computation in the proof, since some of them are simpler here without
referring to the general hypotheses of G these papers imposed; i.e., here we
provide an example that these hypotheses on G are "natural".

(3) For notational simplicity, we will confine our study to the case that B2(0) C

’ C ]1{m with the standard Euclidean metric, because the general case can be
easily modified by first shrinking 2 if necessary so that the general metric is
C close to the Euclidean one and then by rescaling the Euclidean metric as in
the minimizing p-harmonic case studied by Hardt and Lin in [8], Section 7.

We complete this section with a discussion on scaling:
For w LI’p(Br(a), ]k) with a B(0) and r (0, 1), the expression

Wr,a(X w(rx + a) (= tor(X), when a 0), Yx B(0) B

defines a map in L l,p (B, N).
If u is a G-minimizer in L I’p(B, N), then Ur,a is minimizes the functional r,a

among maps in L’P (B, N), defined by

r,a(W) fB Gr,a(X, to, Vw)dx,

where

Gr,a(X, y, O) G(rx + a, y, o/r),

For to 6 LI’p(Br(a), IRk), write

rP-mf IVwlPdxEr,a(to)
r(a)

to LI’P(B, N),

V(x, y, r/) e x Ak x M(k, rn).

(= Er(w), when a 0).
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Note that

Ep(wr,a) Erp,a(to), p (0, 1].

2. Small energy implies Htilder continuity

The following lemma is due to Luckhaus (see [9], Lemma 1), which extends
Lemma 4.3 of [12].

LEMMA 2.1. For ([p l]/p, 1),thereisapositiveconstantcl c(m, k, p, )
so that ifO < <_ 1/2, 0 < p, < 1, a B, and vl, v2 L’P(OBp(a), N), then
there is a map to Ll’p(Bp(a) B(1-t)p(a), ]k) satisfying

v(x)
w(x)

U2((X a)/(1 t) + a)

x OBp(a);
x OB(1-t)p(a).

dist(w(x), N) < r, x Bp (a) B(1-t)p (a),

and

(3) fn; (a)-- B<I-,)o (a)
[Tto[p clKP(1 -b (e/p)P)t,

where r cl gl-#p[p-1]-(n-1)/p

v21P/eP).
Kp fo()(lVtn0lp + lTtantzlp -IOl-

The next lemma shows that the blow-up function is nice (actually Htilder continuity
is sufficient to apply Luckhaus’ results; see Hypothesis (A2) in [9]).

LEMMA 2.2. There isapositive constantc2 c(m, k, p, 1"3) such thatif(xo, Yo)
2 x N, v L’P (B, IRk) with v(B) C Tan(N, yo)(

_
IRn), and v minimizes " among

maps in L’P(B, Tan(N, yo)), then v cl’ for some ?’ 6 (0, 1) and

(4) llTVllL(2(,)) _< c2f (1 -!-IXTv])p
B3(a)

whenever B3R(a) 6 B, where

.Y’(w) fs F(w), Vw 6 L 1,p (B, Tan(N, Yo)),

with

F(O) IB(xo, y0)r/I p, 0 M(k, rn + n).
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Proof. Since v minimizes the functional " among maps in L l,p (B, Tan(N, Y0)),
it satisfies the following degenerate elliptic system of equations:

[B(x0, yo)VvlP-2(B(xo, y0)Vv, B(xo, y0)Vq)) 0, Ytp E L’P(B, Tan(N, Y0)).

Hence, the conclusions follow immediately from Theorem 5.1 and Theorem 6.1 of
[131.

LEMMA 2.3. For ( (0, 1), there are positive constants c3 > 1, 6o depending
only on m, p, k, 1-’i=1,2,3, and , such that ifu is a -minimizer and rap < Er,a(U) <

with 0 < r < 1, a B, then we have

(5) Er/c3,a(It) <_ c-ap Er,a(u).
Proof Weretheconclusionfalse, therewouldexistasequenceofballs {Br,(ai)}i,

for some constant c3 to be chosen later, so that

Eri,a (l,l) .
(6) Esi,a (u) > cpeip, where Si ri /C3,

r < i

and that as -+ cx, 5 (x).

Let Yi j2 nri (ai) U. Then we have

dist(Yi, N) < c45],
for some C4 c(m, p, k) by the Poincar6 inequality. Hence Yi (Yi) is well
defined, when is sufficiently large.

For these i’s, let

Ui (u(rix -+- ai) Yi)/ei and 1,l 6iUi -t- Yi"

By the Poincar6 inequality again, we have

Ilvi II,,,(,a) c5 for some c5 c(m, p, k, FI).

Note that N is compact. Passing to subsequences without changing notations, we
may assume that

ai -+ xo B,

Yi - YO N,

VUi -"> Vu

ot[PG(ai, Yi, olir]) F(O)

strongly in Lp (B, Rk) norm and pointwise a.e. on B,

weakly in LP(B, M(m, k)),

for all Rk, where ti ei/ri.
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Claim. v satisfies the hypothesis of Lemma 2.2 (and so its conclusion), and for
each/9 (0, 1),

(7) 5 Prip G(x, u, Vu) dx -- F(v).
pr (ai) p(O)

Assume the claim is true for the moment. Then by Lemma 2.2 (4) with a
0, R 1/3, and requiring c3 > 3/2, we have

El/c3(1)) < c6,

It follows that

c’-p F(v) < c7cp

I/c

Thus by (7), we see that

with C6 (m, k, p, 1-’3).

where c7 c(m, k, p, 1"3).

p-m G(x, u, Vu) dxSi fBs (ai)
lim < c7cp

p-m fn G(x, u, Vu)dxi---o ri (ai)

By taking sufficiently large, one has

so

P-m fB fl G(x u Vu) dx,S G(x u Vu)dx < 2C7Cp p-mr
(ai) (ai)

Si
p -I- Esi,ai (U) < C8Cp (r + Eri,ai (u)) for some c8 c(m, p, 1"2, F3)

Hence by (6) and the definition of Si, we have

c9c-pei
p > c-pei

p for some c9 (m, p, Fi=1,2,3).
(c--l)p <This leads to a contradiction to (6) by further requiring that c9c3

Proofof the claim. The proof here is due to Luckhaus (see p. 358 of [9]). Let
be any comparison function coinciding with v in B Bl-x for some . (0, 1). By
Fatou’s lemma and Fubini’s theorem, we may assume that there is a t3 (1 ),
such that

fo ’vi--)’P-+O, asi--+o, f (.VvilP+lVOlP)<clo<oo
B Bk

Furthermore, choose a sequence of positive numbers Ri o as o such that

II(Id- ) [B,iti(yi)(Wan(N,yi).t.yi) Ii O(ei)

IIV(Id- ) (yi)gTan(N’vi)+vi I1. o(:i)/i



288 SHIAH-SEN WANG

Define

3i Ri/max(Ioil, Ri), li (Yi d--i)i), Ui Yi d--i1)i,

and apply Lemma 2.1 to bi, Ui, i and/3 in place of v, 1)2, and p. We find a map
i such that

)i(x) I i(x/(1
I ui(x)

Iv)il p c11i6/p,

for Ixl </3(1 .i),

for Ix > ,

’i "’> 0 and dist (y, N) -- 0 uniformly as cx.
Thus

F(V) .lim ol
p G(ai, Yi, OliVe)i)

lim rf/ef fB G(ai -+- rix, ()i), V(()i))/ri)

i--+xlim rflef SB G(ai -!- rix, Ui, Vui/ri)

_> fB F(Vv),

where the last inequality follows from the lower semicontinuity of .. Hence the
claim holds by taking 1) in the above inequalities.

THEOREM 2.4.
thefollowing"

Ifu is a -minimizer, thenfor t (0, 1) and Br (a) e B, we have

(1) If Ea,r (u) <_ rap, then u is Ca in Br (a).
(2) If rap < Ea,r (U) < 6g with 60 given as in Lemma 2.3, then there is a positive

constant c2, depending on m, k, p, ot and I’i, for 1, 2, 3, such that

Enrt(b)(U cl2(r’/r )ap, Vb Br(a) and r’ (0, r)

and u is Ca on Br/2(a).

Proof Case (1) follows immediately from Morrey’s growth estimate Lemma
(see 11 ], 3.5.2). The first assertion of Case (2) is from iterating (5), and the second
one is from the first one and Morrey’s growth estimate Lemma. I-’1
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COROLLARY 2.5. Any -minimizer is H61der continuous on M Z, where Z is

defined as in Section O. Moreover, Z is relatively closed in M and has (m p)-
dimensional Hausdorffmeasure zero in case < p < m.

Proof. The closedness of Z and H61der continuity of u follow immediately from
Theorem 2.4, and the Hausdorffdimension estimate on Z is from the standard covering
argument. []

3. Improvement on the Hausdorff dimension of the singular set Z

In this section we will assume that p (1, m). By Theorem 2.4, we know that u
is H61der continuous at a point in M if the normalized p-energy E tends to 0 when
the radius tends to 0. Hence we only need to study the case when a Z, where Z is
defined as in Section 0 and

(8) Er,a(U) > 0, Yr (0, 1).

For simplicity, we assume thata 0 6 Z. Define the functional 79" L 1,p (B, N) R
by

79(w) fB IB(0, w)Vwlp w LI’P(B, N),

(compare Hypothesis (A3) in [9]). We write Dr(w) fB, IB(0, w)Vwlp, Yt (0, 1).

THEOREM 3.1. There exists a sequence ri 0 so that the rescaled maps Uri
L 1,p (B, N) satisfy thefollowing properties:

(9)

Uri -- UO - L 1,p (B, N) strongly in Lp norm,

VUri "- VUo weakly in LP(B, M(m, k)),

riP-m fB G(x, u, Vu) -- 79(uo),

as - cx. Furthermore, uo minimizes 79 with respect to a fixed trace on 0B, and
OrU0 O.

Proof. To show that Uri converges to some uo weakly in L 1,p (B, N), we notice
that, by (2),

FlfB IVurl p 79t(Ur)F3fB IVurl p, Vt, r 6 (0, 1].

Hence, it is sufficient to show that 79(Ur) is bounded by Rellich compactness theorem.
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Choose a constant C13 c(m, p, k, N, I"i=1,2,3) > such that

IrPGr,o(x, y, 0)-IB(0, y)oIP[ < cl3rP(l+lrllP), V(x, y, rl) E BxNxM(m,k).

Let E (0, 1) and define

Ur(X) for Ixl > t,
Ur,

Ur(tX/Ixl) for Ixl _< t.

Thus, by the homogeneity on the gradient variable of the integrand for D and Fubini’s
theorem, we have

(10) IB(0, Ur,t)VUr,t]p t/(m p) fa IB(0, ur)Vur] p.
Bt

Note that by (1), (2), and (10), we have

(11)

(12)

(1 cl4rP)rPar,o(x, Ur,t, VUr,t) <_ In(0, Ur,t)VUr,tl p -]- c14rp,

(1 clarP)lB(O, Ur)VUr] p <_ rPG(x, Ur, VUr) "" C14rp,

where 14 max(cl3, Cl3F’, c131’).
By (11), (12), and r,o-minimality of Ur, we have

(1- c15rp) fB IB(0, Ur)VUrl p < t/(m p)fo IB(0, Ur)TUrl p + cl5rPtm,
Bt

where c5 c214ffm(B). By (8) and taking larger c5, the last term in the above
inequality can be absorbed into the left-hand side to get

(1 Cl5rP)Dt(Ur) < tim p fa IB(0, Ur)VUrl p.
Bt

Hence we obtain the following monotonicity inequality:

(13) Ot ( log[tp-mDt(ur)] + Cl5rp logt )>_ 0.

Apply (13) to the sequences ri e-i, ti ri+l/ri e-l in place of r, respec-
tively. Write ui Ur,. Note that em-PT)e- (Ui) Z)(Ui+l) and that

r/p log (r/+l/ri)

Therefore lim 7)(ui) exists, D(ui) is bounded and

promlim r ri,O(U) lim D(ui).
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Hence, by passing to a subsequence without changing notation, we have

ui - uo strongly in LP(B, N) and Ui "-> UO weakly in LI’p(B, N).

This completes our proof of the first assertion.
To show uo minimizes 79, let v L l,p (B, N) be such that u0 v 0 on B Bl-t

for some (0, t). Choosing another subsequence of u and p (1 t, 1), if
necessary by Fatou’s lemma and Fubini’s theorem, we may assume that

fa (tVuilP -l- lVvlP) < cl6 < o and f lui tlP --+ O as --+ o.
B Bp

By Lemma 2.1, we have a sequence wi LI’P(B, N), so that

Wi(X) [ V(X/(1 Ji)) for x

I Ui(X for x B- Bp,

IWil p C17i,
p--B_xip

where i 0 as (X). By (10), the lower semicontinuity of 79, and the r,,O-
minimality of ui, we obtain

79(uo) < lim 79(ui) < lim 79(wi)= 79(0).

Hence u0 minimizes 79.
Notice that (13) also implies that OrrP-m’)r(UO) O, and thus

(14) rP-m79r (Uo) 79(U0).

Since uo minimizes 79, compare with

u0(x) for x B Br,
UO,r(X

uo(rx/Ixt) for X Br;

we have

79r(UO) < rim p f IB(0, uo)VtanUol p.
Br

This inequality and (14) imply that rUo =- O.

1,pCOROLLARY 3.2. Suppose that u Lo (M, N) locally minimizes thefunctional
; then it is locally Hiilder continuous on M Z, where Z is defined as in Section O.
Furthermore, the singular set Z has Hausdorffdimension at most m [p] 1. In
particular, Z is discrete ifm [p] + 1.
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Proof. The proof is as in 4.5 of [8] or [3].

Remarks. (1) Concerning the higher regularity of a -minimizer u where it is
continuous, we can quote the results in Giaquinta and Modica’s paper in case
p > 2 (see [6] in which they study maps between coordinate neighborhoods
by the fact that we already establish H61der continuity in Corollary 2.3. Un-
fortunately we are not able to extend this result to the case when p (1, 2) at
this moment because some technical inequalities are not true when p (1, 2)
(see Section 2 of [6]).

(2) In case the base manifold M has nonempty smooth boundary, the boundary
regularity of the corresponding Dirichlet problem can be obtained by arguing
as in Section 5 of [8] with some necessary modifactions.
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