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1. Introduction

As is well known, the abstract prime number theorem for an algebraic function
field is proved in the context of an additive arithmetic semigroup since the concept of
the latter was introduced by Knopfmacher [7], [8]. Thus it is essentially a theorem
about prime elements in additive arithmetic semigroups.
We recall that an additive arithmetic semigroup G is, by definition, a free com-

mutative semigroup with identity element such that G has a countable free gener-
ating set P of "primes" p and such that G admits an integer-valued degree mapping
0: G N t_J {0} satisfying

(1) 0(1) 0 and O(p) > 0 for all p 6 P,
(2) O(ab) O(a) + O(b) for all a, b 6 G, and
(3) the total number t(n) of elements of degree n in G is finite for each n _> 0.

In [6], 11 ], abstract prime number theorems are proved under a variety of condi-
tions. The theorems assume mainly that

(n) Aqn + O(qvn) as n --+ cx (1.1)

with constants A > 0, q > 1, and 0 < v < 1, and that the generating function Z#(y)
in (1 1). Letof ((n) has no zeros on the circle [y[ q- or assume that 0 < v <

P(n) be the total number of primes of degree n in G. The theorems state that

13(n) q"/n + O(qOn) as n --where v < 0 < 1, or, equivalently, that

/(n) := E O(p) E r(r) qn + O(qOn).
pEP,r> rln
O(pr)=n

In 12], elementary proofs of the abstract prime number theorem are given.
Also, in 11 ], subject to the weak condition

G(n) Aqn + O(qnn-y)
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with the constant y > 1, an upper estimate/5 (n) << qn/n, or, equivalently,/ (n) <<
qn is proved. From the upper estimate, Chebyshev type estimates for (n) :=
Y-]=l/(s), i.e., qn << p(n) << qn, can be deduced.

It is now interesting, by analogy with the theory of Beurling generalized prime
numbers [2], to investigate the prime element theorem and the upper estimate in
additive arithmetic semigroups in which the more general condition

or

J(n) qn A,n,,- + O(qVn) (1.2)
v--1

r(n) qn AvnP,-I + O(qnn-) (1.3)
v--’l

is given, where/91 < < Pr and A Ar are arbitrary real numbers, q >
1,/Or > 0, Ar > 0, 0 < 1) < 1, and ?, > 1. In this case, a generalization of the
abstract prime number theorem (henceforth, P.E.T.) states that/5(n) prqnn-1, or
equivalently, A (n) IOrqn.
We recall that if f (n) and g(n) are two arithmetic functions defined for all non-

negative integers, the functions h (n) defined by setting

h(n) f(k)g(n k),
k=O

n=0,1,2

is called the additive convolution of f and g and denoted by f g. As in [10], an
operator L on all arithmetic function f is defined by setting

(Lf)(n) nf (n), n O, 1, 2

The arithmetic function ((n) is an elementary combinatorial function of/5 (n).
This can be expressed explicitly by

Z#(Y) "= -. (n)yn H (1 ym)-’(m). (1.4)
n=0 m=l

From (1.4), we can deduce

Yk(n)yn Z (n)yn yn(n)yn.
n=l n=0 n=l

This can be rewritten in an additive convolution version as

an analog of Chebyshev’s identity in the classical prime number theory.
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Thus we are essentially dealing with two nonnegative arithmetic functions ((n)
and/ (n), not necessarily integer-valued, which are related by (1.5). This considera-
tion leads to an investigation of a general formulation of the prime element theorem in
additive arithmetic semigroups. In this investigation, we shall release the constraint
q > and assume that q > 0 although results for q > are still of main interest.
As in [11 ], we shall only prove results for (n). When/5 (n) is the main object of
interest, the results on/(n) can be easily converted to ones on /5(n) (subject the
condition q > 1, say) by using

(n) _1 y k(r)#(n/r).
n

rln

This is particularly true when we apply theresults to prime elements in additive
arithmetic semigroups.

The present paper is the first part of the results of this investigation. In this paper,
we shall establish the P.E.T. in Theorems 6.1, 6.2, and 6.4. The key to the P.E.T.
is to determine the number of zeros of the generating function Z#(y) on the circle
lyl q-1. We shall show in Theorem 4.1 that the "total number" of zeros of Z#(y)
on the circle is at most Or in some sense. Thus, Theorems 6.2 and 4.1 are analogs
of Beurling’s Th6orbmes VI and II’ respectively [2]. Theorem 4.1 has a general
formulation in Theorem 4.2. In this theorem we shall depart from the framework of
additive arithmetic semigroups since the subject matter rather belongs to the theory of
holomorphic functions. The periodicity in 0 of the generating function Z#(rei), or,
in a different way, the periodicity in of the associated "zeta function" ((or + it) :=
Z# (q-a-it), shows a major divergence from the classical zeta functions and represents
new difficulties. Thus, our proof of Theorem 4.2 depends on a representation of the
solution set of a linear diophantine equation with real coefficients. As in the theory
of Beurling generalized prime numbers, we shall show in Example 6.5 that in case

Pr > even the hypothesis (1.2) with zero remainder term does not generally entail
the P.E.T. We remark that this example presents new arithmetic features in some sense
too.

Since this paper may be regarded as a continuation of 11 ], we shall continue the
same notations. In particular, the generating function Z#(y) is defined in (1.4).

The constant , in the remainder term of (1.3) determines the "degree" of smooth-
ness of Z#(y) on the circle lYl q-1. It is subjected to different conditions through
this paper.

The author thanks Professor Warlimont for valuable comments and suggestions
which help to significantly clarify or simplify the original proofs in many places.

2. An equivalent form to the asymptotic expansion

The essential part of the asymptotic expansion (1.3) (or (1.2)) is the partial sum of
the terms with p positive. In this section we shall introduce an equivalent form to
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the essential part in Lemma 2.1. This form is easy to deal with by using generating
function techniques. We shall work with it in most parts of this paper.

As usual, we define

(Xn) { x (x -1) (x n + if n>0;
1, otherwise

for real numbers x and nonnegative integers n.

(2.1)

LEMMA 2.1. Let Pl Or bepositive numbers with Pl < < Or and A
Ar be arbitrary real numbers.

(1) If Pl Dr are all integers then there exist positive integers r < < rs
with "s Dr and ru pv kfor some nonnegative integer k such that

Avnv-l=Bu(n+ru-1), (2.2)1
v=l /z=l

n

where Bs Ar (Pr 1) !.
(2)/fp Pr are not all integers, then for any positive integer m there exist a

positive integer s s (m), real numbers rl < < rs with rs Pr and ru pv k
for some nonnegative integer k(<_ m + [p] 2) such that, as n --+ ,

(2.2)2

where c max{pv [Pv], v r}, B Ar(pr), and r is the Euler gamma
function.

Equality (2.2)2 must be known. However we are unable to locate where this
occurs. As substitution, here we give a proof of it with the help of the next lemma.

LEMMA 2.2.
0, such that:

(1) Ifp is a nonnegative integer then

n+l-k n+l-k
n= a a l-k

n> 1,
k=0

n
k=0

where a0 l! (0! 1) and ak are all integers.
(2) Ifp is not an integer then,for any nonnegative integer m,

no ak + O(nO-m- as n ---> o,
n

k=0

where ao I" (p + 1). The O-constant in (2.4) depends on p and m only.

Let p be a real number. There exist coefficients ak ak(P), k

(2.3)

(2.4)



PRIME ELEMENT THEOREM 249

Proof. The identity (2.3) is a specific form of a well-known finite-difference
formula [3]. It is a representation of the integer-valued polynomial x in terms of

integer-valued polynomials (x + k)k [5]. Dividing both sides of (2.3) by n and

taking limits as n -+ , we obtain

=a0., i.e.,a0=l!.

To prove (2.4), it is sufficient to show that there exist coefficients ck ck(p) such
that, for any nonnegative integer m,

n + p
Cknp-k + O(np-m-l) as n -- oo (2.5)

n
k=0

with co / f’ (p + 1). Then,

np f’(p + 1)
n + p

Ck+lf’(P + 1)np-l-k + O(np-m-l)
n

k=0

and (2.4) follows by induction on m.
We begin with the well-known formula

F (p) -e-p + -/9 k=l

It follows that

n + p) (1 + p)(2 + p)... (n + p)
n

exp{p("l/k-y)} fi (1+-)-’e/.(2.6)F(p + 1) k= k=n+

We have [41

k=l
Y log n +

k=l
dkn-k + 0 (n-m-l)

and hence

exp p / k y no exp dkn-k + Op (n-m-l)
k=l k=l

(2.7)
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Also, we have

n
k=n+

-1
ep/k exp -log(1 + -) + -k=n+l

[ (--l)t (/O) }exp
k=n+l t=2

exp
t--2

oo )]tot Z F-}-Op,m(n-m-
k=n+l

-k (n-m-exp akn + Op,m

since, by the Euler-MacLaurin summation formula 10],

(2.8)

oo m-t+

E k Z Ctsn-t-s-I-1 -JI- O(n-m--l).
k=n+l s=0

From (2.6), (2.7), and (2.8), we arrive at

( )n + p
np + cnn F(p + 1)

m

Z CknP-k -+- 0 (np-m-l)
k=O

with co / F (p + 1). [21

ProofofLemma 2.1. If/91 Pr are all positive integers, we simply set Pv
in place of p in (2.3) and (2.2)1 follows directly.

If pv is not an integer, we set p in place of p and replace rn by rn / [p 2
in (2.4). We note that (2.4) is obviously true when rn is a negative integer. Thus we
obtain

m+[pv]-2

( )n+pv-k-1
np"-I ak + O(rt-[P’l+p’-m). (2.9)

n
k=0

Then (2.2)2 follows from (2.3) and (2.10). H

3. The prime element theorem and zeros of the generating function

If (9(n) << qnnp for some constant p, the power series 2n2O (n)y" converges
and hence Z#(y) is holomorphic in the disk lYl < q-.
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THEOREM 3.1. Suppose that (n) << qnnp for some constant p. Then Z#(y)
has no zeros in the disk ]Yl < q-1.

Proof. Let A#(y) be the generating function of/(n). From (1.5), we have
k(n) <_ (n) L(n) << q’n+ since /(n) and ((n) are nonnegative.
Hence A#(y) is holomorphic in the disk [y[ < q-. Also, from (1.5),

d
Y-y Z#(Y

Z#(y)
A#(y). (3.1)

Thus, Z#(y) has no zeros in the disk. []

Suppose that (1.3) holds with , > 1. Then without loss of generality, we may
assume Pl 0 in (1.3). From (1.3) and (2.2) with m 2, we have

Z#(y) B.
u=l (1 _qy)r,

log(1 qy) + R(y), (3.2)

where R(y) YnC=o rnqnyn with rn O(n-) and

fl min{,, 2- ru + [ru], /z s} > 1.

Thus Z#(y) has a continuous continuation on {y 6 C: lyl < q- and y 5 q-}.
Although Z#(y) has no zeros in the disk lYl < q-l, it may have zeros on the circle

lYl q-1. The connection of the EE.T. with the zeros of Z#(y) on the circle
lyl q- is of interest and is given in the following Theorems 3.2 and 3.4, which
are generalizations of Theorems 2.1 and 2.3 in 11 respectively.

THEOREM 3.2. Suppose that (1.3) holds with , > 1. If fk(n) prqn (P.E.T.)
then the generatingfunction Z#(y) has no zeros on the circle lYl q-.

To prove Theorem 3.2, we need the following lemma.

LEMMA 3.3. Let r > 0 and

(1 qy) log(1 qy) Z anqnyn’ lyl < q-.
n=l

Then

an O(n-r+-l) (3.3)

for any > O.
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Proof. It is easy to see that

flz (1 z) log(1 z)
an--

2yri i= Zn+l
dz, (3.4)

where 0 < r < 1. For n > / r, we can shift the integration contour in (3.4) to the
one consisting of the upper and lower edges of the cut of the complex plane along the
real axis from to cxz. Then we have

(x- 1)r(I log(x- 1)l-+- 1)
lan << xn+

(x- 1)r- + (x- 1)r+
dx << xn+ dx,

since log(x 1)l << (x 1)- + (x 1) for < x < cx. Finally we have

dx B(r -e + l,n- r +e)

F(r e + 1)l"(n r + )
r(n + 1)

O,(n-+’-),

where B and 1-’ are Euler’s beta and gamma functions.

Proofof Theorem 3.2. Let D be the domain formed by cutting the complex plane
along the real axis from q-1 to cxz. If r, is not an integer, the function

(1 qy)r.
exp{r,(log l1 qYl + arg(1 qy))}

assumes at y 0 and is the single-valued branch in D of the associated multiple-
valued function. We consider the function

Z(y) := (1 qy)rZ#(y)
s-1

Bs + Bu(1 qy)r-r,, + (1 qy)r (A1 log(1 qy) + R(y)),(3.5)
/z=l

where r Pr Zs, which has a continuous continuation to the circle lY] q-. It
is sufficient to show that Z(y) has no zeros on lYl q-.

On the one hand, the generating function A#(y) of the arithmetic function/ (n)
satisfies

d Z#(y Z’dy qy (y)
_

A#(y) y r -t-y lYl < q
Z#(y) qy Z(y)’
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Hence,

Z’(y) E(,(n rqn)yn.Y Z(y) n=l

As in the proof of Theorem 2.1 in 11 ], we then obtain

IZ(rei) > e-C(1- rq)’, (3.6)

where c c(e) is a constant.
On the other hand, we have

(1--qy)r-r E r ru (_l)nqnyn

n
n=0

(3.7)

and

(_1)n(r-rv)=n (n-r+rt*-l)"n
O(n-r+r,-, -1)

n-r+ru-1

(3.8)

as n oo if r is not an integer. Also, we have

(1-qy)rR(y)= (--1)nqnyn rnqnyn=Eanqnyn
n=0 n=0 n=0

(3.9)

where

an (-- 1)k rn-i
k=O

since

<< n-a
Ir(-r 1)1k=l

+ n-r-I Ir,-kl << n-’ + n-r-l, (3.10)
k=[n/2]+l

(_l)n ()., n-r-1
r(-r- )

as n o if r is not an integer. It follows, from (3.5), (3.7), (3.8), (3.3), (3.9), and
(3.10), that

Z(y) _, bnqnyn
n=0



254 WEN-BIN ZHANG

with bn O(n-) and 6 min{fl, + r Ts_I} > 1. Hence,

ei0IZ(rl Z(rei)l << E --g((qrl (qr)n) << (qrl --qr)-1

n=l

(3.11)

for 0 < r < rl < q-l, by Lemma 2.2 in [11].
Now suppose Theorem 3.2 is false and Z(q -leiO) O. Then, letting rl q

(3.11), we would obtain

IZ(rei) << (1- qr)-1.
Taking e (6 1)/2 in (3.6), we would have

--1 in

e-C(1 qr)(-1)/2 <_ K(1 qr)-1,

or

e-C/K <_ (1 qr) (-1)/2"

this is certainly absurd for r sufficiently close to q-l. [-I

Conversely, we have the following result which is a "conditional" prime element
theorem and an inverse of Theorem 3.2 in some sense.

THEOREM 3.4. Suppose that

(n)q-n v:l Avnpv-112 < cxz, (3.12)

where tol < < Dr and A1 Ar are arbitrary real numbers,/Or Z" > 0, Ar >
O. If (1 qy) Z#(y) is continuous on the closed disk lYl < q-1 and has no zero on
the circle lYl q-1 then

X (n) prqn (P.E.T.).

in (3 12). FromProof Without loss of generality, we may assume/91 >_ -(3.12) and (2.2) with m 3, we have

Z(y) := (1 qy)r Z# (y)

s--1

Bs+EB(1-qy)-"+(1-qy)
/z=l

x Alog(1 qy) + _1/2Z_<v<oAv Zn=l n-lqnyn + R(y)
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where A A in case p 0 and A 0 otherwise, and where

R(y) Z (n)- qn AvnPv-1 yn + rnqnyn
n=l v=l n=O

with rn O(n-) and fl min{3 ru + [ru], /z s} > 2 if p are not all
integers and rn 0 otherwise. Then, as in the proof of Theorem 3.2,

Z’(y)q-----YY -I- y E k n yn lYl < q-.A#(y) r
qy Z(y) n=

It suffices to show that

Z’(y)
Z(y----y-" dy o(qn) (3.13)

as n --+ cx, where 0 < r < q-1.
The function Z(y) is continuous on the disk lYl < q-l and has no zeros there. For

lYl < q-l, we have

s-I

Z’(y) E Bu(r ru)q(1 qy)r-r,,-
/z=l

-q(1 -qy)r-(Arlog(1 -qy) + H(y)) + (1 -qy)rR’(y),(3.14)

where

I Au
o

npv-lqnynH(y) "= r Z Z + R(y) + A
-1/2<Pv<0 n=l

E Av q- E ((n-k- 1)’’ nP")qnyn

<Pv <0 n=

To show (3.13), we first note that for 0 < r ru < 1, in a small neighborhood of
0=0,

I(1 ei)r-r"-ll 101 *-’*-I

as0 --> 0. Hence, f_ (1 -ei)-,’- dO converges absolutely. We consider a contour

Ca,, consisting of the part of the circle Ca" lYl 8(< q-l) which is outside the small
circle c," lY q-ll , and the part of the circle c, which is inside the circle C8.
Then

(1 qy)r-r,,- fc (1 qy)r-r,,-
[--r Z(y)

y-n dy
Z(y)

y-n dy.
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Upon letting -- q-l_, we obtain

(1 qy)r-r,,-I
[=r Z(y)

y --n dy

4-
() Z(q-lei)

qy)r-ru-I
4-

Z(y)
y-n dy,

qn-le-i(n-l)i dO

where c() and -c() are the arguments of intersection points above and below the
x-axis of c with the circle lYl q-1 respectively, and where c’ is the part of c
inside the circle lYl q-. The modulus of the integrand of the last integral is

Since r ru > 0, the last integral tends to zero as --+ 0. Letting 0, we
conclude that

(1 qy)r-r,,- f_
i=r Z(y)

y dy iqn-
(1 --ei)r-ru-1-n e-i(n-1)O dO. (3.15)

r Z(q-leiO)

Plainly, (3.15) holds for _< v va.
We then note that R(y) has a continuous continuation on the closed disk lYl _< q

Actually,

-1

IR(rei) -R(pei)l <
n=l

(n) qn Avnpv-I
v---1

+ Z Irnlqnlrn pnl
n=0

(n)q-n Avn-1
v--1

((qr)n (qp)n)2 }
x Z - 4- Z Irnll(qr)n (qp)nl

n=l n=0

by the Cauchy-Schwarz inequality and hence IR(rei) R(pei) 0 uniformly
as r, p --+ q--. This implies the existence of the continuous continuation on the
circle lYl q-l. Thus H(y) has a continuous continuation on the same disk too. An
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argument similar to the one deducing (3.15) shows that

(1 qy)r-l(Av log(1 qy) -t- H(y))

I-r Z(y)
y-n dy

iqn_l f rr_ (1 ei)-l(Ar
Z(q -leiO)lOg(1 eiO) -t- H(q-lei)) e-i(n-ll dO. (3.16)

We finally note that

IR’(rei) R’(pei)12 dO n2rnq22n(rn-I pn-l)2 0
yr n=l

as r,/9 q-l_. There exists a function F(O)
_

L2[-zr, zr] such that R’(rei)
F(O) in L2[-zr, zr] as r q-1. Thus,

(1 qrei) R’(reiO) (1 ei) F(O)
Z(reiO) Z(q-leiO)

in L2[-zr, zr] as r -- q-l_.
Now, from (3.14) to (3.17), we obtain

Z’(y)

I=r Z(Y’y-n dy

=iq -lf_ { s-1

Z(q_leiO )
B#(r zz)q(1 ei)r-r’-I q(1 ei)r-l

yr bt=l

x (At log(1 eiO) + H(q-lei)) -t- (1 ei)r F(O) } e-i(n-l)O dO

o(qn),

for the last integral tends to zero as n x by the Riemann-Lebesgue lemma. I-’!

(3.17)

COROLLARY 3.5. Suppose that (1.3) holds with ?’ > . If Z#(y) has no zeros on
the circle lYl q- then

A (n) prqn (P.E.T).

4. The total number of zeros of the generating function

The generating function Z#(y) has no zeros in the disk lYl < q-i but may have
zeros on the circle lYl q-l. If q-le2ri is a zero of Z#(y), the number

ct(0) :=sup{a: limsup(q-r---q-’- -r)-alZ#(re2ri)[< o],
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or equivalently, following Beurling [2],

log Z#(re2ri)
ct (0) := lim inf

r-"q-I- log(q- r)
(4.2)2

is called, by definition, the order ofq-e2riO.
In this section, we shall prove the following theorem which gives the "total number"

of zeros of Z#(y). This theorem is an analog of Beurling’s Th6orime II’ [2]; the latter
is a generalization of a theorem of Hadamard.

THEOREM 4.1. Suppose that (1.3) holds with y > 1. The "total number" of
zeros of Z#(y) on the circle [Yl q-1 is at most r ,Or in the sense that

0<0

or

2 Z or(O) < r (4.2)2
0<0

according as -q- is or is not a zero of Z#(y), where the summation is taken over
all zeros of Z#(y) on the upper halfofthe circle lYl q-1.

Remark. The upper bound of the total number of zeros given in (4.2) is best
possible as Example 4.1 in [11] and Examples 6.5 and 6.7 of this paper show. We
note that c (1/2) is the order of zero -q-.

We shall first prove the following general formulation of Theorem 4.1 and then
Theorem 4.1 follows directly.

THEOREM 4.2. Let f(z) be afunction continuous on {z 6 C" Izl and z :/:
and holomorphic in the disk Izl < 1. Suppose that f (z) has no zeros in the disk and

log f(z) Z ckzk’ Izl < (4.3)
k=l

with coefficients Ck >_ 0 and that, for some constant z > O,

lim f(r)(1 r) (4.4)

exists and is positive. Let 0 < O1 < < Ok < be arbitrary. Then

k

ylim inf
r---),

j=l

log If(re2ij
< Z. (4.5)

log(1 r)
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The following proof of Theorem 4.2 is a simplification of the author’s original
proof of Theorem 4.1 due to suggestions of Warlimont.
We begin with the representation of the solution set of the diophantine equation

Ol l191 "- + OkOk m

LEMMA 4.3.
arbitrary, let

Given 0 (O1 Ok) Rk with 0 < Ol < < Ok <

S S(O) :-- {o (o Ok) ( Zk" (o, t9) ( Z} (4.6)

where (z, O) otlO1 +...--Olk19k. IfS {0} then there exist a positive integer m <_ k
(m is the "dimension" ofS) and a matrix C C(0) M(m x k, Q) ofrank m such
that

s (c:

Proof. We consider two possible cases separately.
Case I. The equation c01 + + tkOk Z has no solutions in Zk for all z

Z, z 0. Then the homogeneous equation c01 + + tkOk 0 has non-zero
solutions. We consider a maximal subset of elements linearly independent over Q of
the set {0 0k}. Upon changing the subscripts, we may assume {191 Ol} is
such a subset. Then < k. There exist as,t Q, l, s + k such
that

191+1 al+l,1191 A. _[_ al+l,1191,

(4.7)

Ok ak,1191 -[" -[- ak,1191.

If ot 6 S, then

0 Otl01 -’[- -+- Olk19k

(Ctl -[- Oll+lal+l, A_ _[_ otkak, l)01 + + (Oll -- Oll+lal+l,l -["’’" -" Olkak,l)Ol.

It follows that

Oll q- Oll+lal+t,l -Jr- -+- Otkak, 0,

Ol -q- Oll+lal+l, -+- -- Otkak, 0,
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and hence

Ol --Oll+lal+l, Otkak, l,

Letm =k-l,

Oil --Otl+lal+l,l Olkak,l.

al+l,l

X, --ak,1 ak,l 0

and then S {1C: 1 Zm}.
Case H. The equation O/lO + - OlkOk Z has solutions in Zk for some z 6

Z, z 7 O. Then the set M {z: 0 < z (or, O) for some ct 6 S} is non-empty Let
zo min{z" z 6 M} and ot =(Otl c) 6 S such that Otl01 +... + otOOk ZO.
We claim that, for each c 6 Zk, ct 6 S if and only if there exist t6 Z and r/
(r/l Ok) 6 Zk such that ot tot + r/and

r/101 +... + Ok0k 0

and that if c 6 S the representation ot tt + r/is unique Actually, if
OtkOk 0 then c Oot + r/with r/= or. If OtlO1 + + otkOk Z 6 Z and z # O,
then z zo for some 6 Z. Otherwise, z zo + r with t, r Z and 0 < r < zo.
Then t’ ct tot 6 Zk and

(or’, O) z tzo r.

This contradicts the definition of zo. Thus z tzo and r/ ct tot satisfies
(r/, O) O. Plainly, and r/are unique and the claims hold.

Now, if the homogeneous equation Otl01 + + OtkOk 0 has only the solution
(0 O) Zk thenr/ Oandot tot. Letm 1, C otandthenS
{tc: t e z}.

Thus we may assume that the homogeneous equation tx101 + + ck0k 0 has
non-zero solutions in Zk. Then, as in Case I, we may assume that {01 01 be
a maximal subset of elements linearly independent over Q of the set {01 0k}
and that there exist a,,t, l, s + k such that (4.7) hold. Let
rn =k-1 + and

eel
o 0 0 0

Olk_ Olk_l+ Olk

al+l,l 0

\ --ak, ak,l 0
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and then S {/C" / zm}. Finally, it is easy to show that the rank of C is
m=k-l+l. I’-1

We now turn to the proof of Theorem 4.2.
For x (x Xk) Rk, y (y y) R, we set Ilxll maxl_<j_< Ixjl

and (x, y) xy +...+xyk. Let K be a positive integer. We consider the inequality

<_

_
eill’x) n(t, K) cos(o, x) (4.8)0

tNk otZ
tI/II<K

where c (ot ot) and

0, if I111 >_ K,
n(ot, K) := i (4.9)

,.,’Z I"Ij=l(g -Iotjl), if IIo11 < g.
IIIlI,IIIPlI<_ K
I-It

When k l, this inequality reduces to the one in ],

K-l

0 _< K + 2(K l)os(/x).
/=l

Using the inequality (4.8), we can give a more direct proof of the theorem of Beurling
mentioned before. Here we shall utilize (4.8) to prove Theorem 4.2.

ProofofTheorem 4.2. Let x 2rn(01 Ok) with n N in (4.8). We multi-
ply both sides of (4.8) by Cnrn and sum up over n. Then we obtain, from (4.3), for
0<r<l,

0 < n(ot, K) log If(re2i(’l)l
otZ

tn(ot, K)tlogf(r)+ _n(ot,
<,o)z’Z

(4.10)

It follows that

t t log f(r)_, n(a, K)lg lf(re2ri<’>)l < n(a, K)
z log(1 r) z log
(,o)Z

Let

(4.11)

N(O,K):= n(a,K)=n(a,K),
(,o)Z
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where S is defined in (4.6), and

Nj(O,K) Z n(ot, K)-- Zn(ot, K), j--1 k
Z S

(a,O)--Oj .Z

(4.12)

where

Sj Sj(O) := {or Zk" (or, O) -Oj
_

Z}, j k.

We note that S, Sj, j k are mutually disjoint and that

Sj {or + ej" ot S}, j k,

where ej is the jth vector of the standard basis of W. From (4.11), we have

Nj(O, K) log [f(re2riJ)[
N(O K) log(1 r)

We note that, from (4.4),

and that

oeZ
su(u= sj

n(c, K) log If(re2ril’l)[
N(0, K) log(1 r)

log f (r)

log

(4.13)

lim
log f(r)

rl- log -r

log If (re2=i(’l)[lim inf > 0
r- 1- log(1 r)

for (ct, 0) ’ Z since f(z) is continuous on {z C" Izl _< 1, z }. It follows, from
(4.13), that

Nj(O, K) liminf
log If(re2=iJ)

< r. (4.14)
o= K) r-l- log(1 r)

We claim that

Nj(O, K)
N(O, K)

+ O(K-1), j k. (4.15)

Actually, if S {0}, from (4.9) we have

N(O, K) n(O, K) K

and

Nj(O, K) n(ej, K) Kk-l(K 1).
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If S # {0}, by Lemma 4.3, there exists a matrix C C(0) 6 M(m x k, Q) of rank
rn > 0 such that S {/5C: /5 6 zm}. We note that

Km>>0
tsZ
IIfCll_<K

since IICII II/11Yi%l =1 Icij[. Hence

k

N(O,K)= H(K-I,BCj]) >>o Km+k

fiZ j=
II/CII<K

where Cj is the jth column of C. Also,

Nj(O, K)
EZrn

IlDC+ej II_<K i#j

N(O, K) + O(Km+l-l), j=l k.

Thus the claim holds.
Now, (4.5) follows from (4.14) and (4.15) by letting K --+ oo on the left-hand side

of (4.14). [2

ProofofTheorem 4.1. We consider f(z) := Z#(q-lz). Then, from (3.5),

f(z)
Z(q-lz)
(1 Z)

where Z(q-lz) is continuous on the disk Izl and holomorphic in the disk Izl <
and Z(q -l) B., ArF(r) > 0. It follows that

lim f(r)(1 -r) Z(q-) > O.

Also, it is easy to see that, from (3.1),

X (:)
_

zklog f(z) log Z#(q-lz)
k

q
k=l

Izl <

and (4.3) holds with Ck q-k/(k)k-I >_ 0. Thus (4.2) follows from Theorem 4.2.
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5. The orders of zeros of the generating function

If , > / r then the orders of zeros of the generating function Z#(y) are positive
integers as the following theorem shows. This theorem is an analog of a result of
Beurling [2] and its proof follows the general idea of Beurling too. It is essentially
best possible as Example 5.4 will show.

THEOREM 5.1. Let q-le2ri be a zero of Z#(y) with order a a(O) where
0<0<1.

(1) If (1.3) holds with , > then > min{ 1, ?, 1 }.
(2) If (1.3) holds with , > + , in particular, if 0 1/2 and (1.3) holds with

r
?’ > + or if 0 and (1.3) holds with , > + r then ot is a positive integer
Moreover,

lim
Z#(re2ri) (-1) Z#(a)(q-te2ztiO) 0

r-q-’- (q-I r)ae2rriao or!

and Z#(y)/(q-le2riO y) is continuous on {y" [y[ _< q
some > O.

-1, lY q-le2ril < e} for

As in Section 4, we shall prove a general formulation of Theorem 5.1 in the
following theorem and then Theorem 5.1 follows directly.

THEOREM 5.2.
Z[ < land

with rn 0 (n-y).

Let f (z) S(z) + R(z) where S(z) is holomorphic in the disk

R(z) E rnZn, Izl <
n=0

(1) Suppose that S(z) is also holomorphic in a neighborhood ofe2riO and e2riO is
a zero of f (z). If , > then

c ct(0):= sup{ft" (1 -r)-lf(re2ri)[ << 1}

satisfies t > min{ 1, ,- }.
(2) Furthermore, suppose that S(z) is continuous on {z" Izl

for some constant r > O,

lim S(r)(1 r)
r--* 1-

exists and is positive, and that f(z) 0 in the disk Izl < and

and z =/= and

log f(z) E ckzk’ Izl <
k=l
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with coefficients ck > O. If ?, > + , in particular, if 0 < 0 < 1,0 :/: and
ry > + or ifO and ?’ > + r, then c is a positive integer. Moreover,

lim f (re2ri) (-1)f(a)(e2ri) 0 (5.1)
r---l- (1 r)ae2riaO or!

and f(z) / (e2riO Z) is continuous on {z" Izl 1, Iz e2Zri < with some > O.

ProofofTheorem 5.2. To prove (1), we note that the function R (z) is continuous
on the disk Izl _< 1. Hence

]f (re2ri)l If(re2ri) f(e2ri)l

I(S(re2riO) S(e2ri)) + (R(re2zriO) R(e2ri))

<<0 (1- r) + (1- r) n-+t+Zn-l<n<M n>M

<< (1 r) + (1 r)M-+2 + M-+1.

Let M (1 r)- 2. Then we obtain

[f(re:Zri)[ << (1 r) + (1 r)’-1 << (1 r)min{l’’-l}

and ot >_ min{ 1, , 1} follows.
To prove (2), without loss of generality, we may assume that , is not an integer.

We have to show that c is an integer. Suppose on the contrary that t is not an integer.
Then, from the definition of

[f(re2ri)l
lim 0 (5.2)

r--+l- (1 r)k

for all integers k < o.
We note that all derivatives fk)(z), k < , 1, are continuous on {z: Izl _<

1, Iz e2’il < } for some e > 0. Hence, for < k < ?’ 1, we have the Taylor
formula

k-I

(e2riO)e2rinO )nf(re2rio) .. f(n) (r
n=l

f(k) (te2ri)e2rikO (r t)k-I dt. (5.3)+(k -1)!
Moreover, if k [,] 1, then

ifk) (teZrio) f(k) (eZrrio)l I(S(k) (te2triO) Sk) (e2rriO)) %- (Rk) (te2triO)

R (k) (e2io))

<<0 (1 t) + (1 t)’-[] << (1 t) -[r’],
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since

[R (k) (te:zi) R(IO (e2io)[ , rnn(n 1)... (n k + 1)e2i(n-) (1 n-k)
n--k

k<n<M n>M

<< (1 t)M-++2 + M-+k+

<< (1 t)--l (1 t)-t

with M (1 t) -l. Hence, if k [?,] 1, the last term of (5.3) equals

lf(k)(e2zriO)e2ZriiO(r- 1)k -b O((1- r)-1)
k!

and we obtain

f(re2riO) [1 .1 f(n)(e2riO)e2zrinO(r 1)n -l-O((1- r)r’-l).
n=l

Since ct < , 1, from (5.2) and (5.4), we obtain, by induction,

f(n)(e2riO) 0, for _< n _< [or].

Now, from (5.4) and (5.5), if [or] < [/] then

[f(re2i)[
<<1

(1 r)t=+

f(reZi)
(1 r)-l << 1.

and if [a] [y]- then

(5.4)

(5.5)

f f(k) ((1 t)e2i + tz)(z e2i)k (1 t)- dt
(- 1)! J0

with k [y] and the continuity of f(z)/(e2i z) follows. I’-!

k-I

(e2zriO) e2riO)nf(z) Z _.. f(n) (z

formula

This implies that ct > min{[ct] + 1, , which contradicts ot < ?, 1. Therefore,
ct must be a positive integer.

Finally, since a is a positive integer and ot < , 1, (5.1) follows from (5.4).
Moreover, for z in {z: Izl _< 1, lz e2il < E} with some E > 0, we have the Taylor
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ProofofTheorem 5.1. Without loss of generality, we may assume that/91 >
-, + in (1.3). Let f(z) := Z#(q-lz). Then, from (1.3) and (2.2) with rn >

’ + max{pv [pv], v r}, we can write

f(z) S(z) + R(z),

where the function

S(z) B,
tz=l (1 z)r,

zn
log(1 z) + Ck -,

k=2 n=l
Izl <

with rl < < r,,r r, > 0, A Ao in casep 0, Ck A in case
p -k / and where the function

R(z) y rnZ
n

n--0

with r,, O(n-). It is easy to show, by induction, that Y-=I znn-k is holomorphic
in the domain D formed by cutting the complex plane along the real axis from to
o. Hence so is S(z). Moreover, plainly,

lim S(r)(1 -r) B, Art’(v) > O.

Thus f(z) satisfies the hypotheses of Theorem 5.2 and Theorem 5.1 follows directly.

Theorem 5.1 or Theorem 5.2 has the following immediate consequence.

COROLLARY 5.3. IfO<r < land?’ > + then, forO < O < 1,0,

Z#(q-le2riO) 5 0 (or f (e2riO) 0).

If y > + r then Z#(y) (or f (z)) has no zeros on the circle lYl q-I (Izl 1).

The following example shows that c(1/2) may not be integral if (1.3) holds with, < / r and hence the result in Theorem 5.1 is essentially best possible in some
sense.

EXAMPLE 5.4. Let k and rn be arbitrary positive integers such that rn > 4k. We
set q m2 (ml 2,or= ) ,and

(n) qn (k -1- (- 1)n+l (k + o 1)), n=l,2
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Then/ (n) are all positive integers. We have/5 (1) =/(1) > 0 and, for n > 2,

13(n) Z (r)lz(n/r) > k(n) k(r)
tin <r<n/2

>_ qn(1 Or) 2k Z qr >_ qn/2 q(1 or) ---<r<n/2

> qn/2(2m- 1-4k) > 0.

Thus/5 (n) are all positive integers too.
It is easy to see that

dz#(y)
dy A#(y)Y Z#(y)

and hence

kqy (k -% ot 1)qy
qy + qy

Z#(y (1 + qy):-l+o
lYl < q-I

(1 qy)’
which has a zero y _q-I with non-integral order k -% c.

Then we have

(l+qy)k-l+a qn fz (I+z)k-l+a
G(n) / =r, yn+l( qy)k

dy
I=r zn+( --Z)

where 0 <rl <q-l 0<r < and hence

{ sin(k-l+)zrf_-lll+xl’-l+’ ]G(n) qn Pk(n) + xn+l(1 X)k
dx

where

(1 + Z)k-l+t
Pk(n) ReSz=l zn+(l z)k

(-1 A,n
t+ -1 rn v=J

with Ak l/(k 1)! > 0. The integral in (5.6), denoted by I, equals

Let

(- 1)n+l f0 uk-l+t
(1 + 1))n+l(2 + 1))k

du.

Uk-l+c

I1 (1 + V)n+l+k
dl).

dz

(5.6)

v-I
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Then

2-kll < III--< II
since 2 + v < 2(1 + v) for v > 0. We have

I1 B(k +ot, n + -)
l-’(k + a)l"(n + or)

F(n + k + 1)

zr (c + 1)... (or + k 1)(1 c)(2 c)... (n or)
sin czr (n + k)!

zr (oe + 1)... (c + k 1) -k-an
sin otr F (1

where B and F are Euler’s beta and gamma functions. Therefore

k

(n) E AvnV-I q- O(n-k-a)"
v=l

In this example, r k. For any g < + r + k, we can choose rn sufficiently
large so that k + a > y. Then (1.3) holds with ?, < + r and Z#(y) has a zero at
y -q- with non-integral order.

6. A generalization of the abstract prime number theorem

The key to establishing the abstract prime number theorem is to show that the
generating function Z#(y) has no zeros on the circle [y[ q-l. For0 < r < 1, from
Corollary 5.3, Z#(y) has no zeros on the circle lY[ q-l provided that ?, > / r.
Thus, the following theorem follows directly from Corollaries 5.3 and 3.5.

THEOREM 6.1.
(P.E.T.).

If (1.3) holds with r Dr < and g > then (n rqn

However, for r > 1, the Examples 6.5 and 6.7 show that, in the general case,
even a zero remainder of ((n) does not guarantee that Z#(y) is nonvanishing. Thus,
the following theorem is our best knowledge about/ (n) in the general case. This
theorem together with Theorem 6.1 is an analog of Beurling’s generalization of the
classical prime number theorem.

THEOREM 6.2. For r Pr > 1, the hypothesis

(n) qn AnP,-
v--.--I

does not generally entail A (n) rqn. However,for r > 1"
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(1) Ifthe condition (1.3) holds with 9/ > + v then there exist a nonnegative integer
k with k < [(r + 1)/2], k real numbers O Ok with 0 < 0 < < 0k < 1/2,
and k positive integers ct otk such that

A (n) qn r 2 cry cos 2nzr 0v (- 1)no/k + O(1)
v--1

(6.1)

and

k-1

ck + 2ot < [r]
v-’l

(6.2)

ifOk 1/2 or such that

/ (n) qn r 2 ot cos 2nyrO + o(1) (6.3)

and

k

2Zc < [r]
v-"l

(6.4)

ifOk < 1/2.
(2) If the generating function Z#(y) of O(n) has no zero at y -q- and (1.3)

holds with y > + then (6.3) and (6.4) hold with k < [r/2].

Remark. Wenotethatq-e+2riv, v k are zeros of Z#(y). In particular,
if Z#(y) has no zeros on the circle lYl q- then k 0 and (n)
However, this result is weaker than Theorem 3.4.

Proof We shall give only the proof of (1). The proof of (2) is almost the same.
Without loss ofgenerality, we may assume that / r < ?, < [r + 2. By Theorem 5.1,
the generating function Z#(y) has at most [r] zeros on the circle lYl q-.

Assume the case that -q- is one of its zero. Then Z#(y) has 2k distinct
zeros q-e+2riv, v k- 1, and _q-I with 0 < 01 <... < Ok 1/2. By
Theorem 5. l, the orders ct of q-l eEriO, are all positive integers. Hence, 2k _< r,
i.e. k <_ [(r + 1)/2], and (6.2) holds.

Let

Z#(y)(1 qy)*
F(y)

k-l
(6.5)

(1 + qy)k H( qye2rio)(1 qye-:Zrio)
v’--I
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Then F(y) is holomorphic in the disk lYl < q-l and, by Theorem 5.1, is continuous
on the disk Yl < q- and has no zeros there. Hence

qy k-1 ( qye2rio. -2zriOv )Z Otu qyeEriO
-t-

qyeA#(y) r
qy v=l qye-2riO"

Therefore,

qy F’(y)
+ak + qy F(y)

A(n) q" r 2 yotvcos2nzr0u (--1)nOOk -+--/ i=r F(y)
y-n dy (6.6)

v=l

where 0 < r < q-1. It remains to show that the last integral, denoted by I, is o(q").
We note that F’(y) is continuous up to the circle lYl q-1 except at points +q-i

and q-e+2riO’, V k 1. Consider a contour Ca,, comprising the parts of
the circle Ca" lYl 6 (< q-) which are outside all small circles co: lY q-l
co, c,," lY q-e2ri"l 1, C-v" lY q-le-2ri" :1, 13 k 1, and
ck" lY + q-ll e, and the parts of these small circles which are inside the circle
Then we can shift the integration contour of I to Ca,, and obtain

F’(y)
I

., F(y)
y-ndy" (6.7)

Upon letting q--, we obtain

F’ (Y)
I

F(y)
y-ndy’ (6.8)

where the contour C, is comprised in much the same way as Ca., but with the circle

lYl q-l in place of
We claim that, in a small neighborhood of Y0 q-le2ri" or q-le-2ri", v

k,

IF’(y)l << lY- Y0I -[r]-2 (6.9)
holds. To be concrete, we consider Yo q- e2riO"; a similar argument applies to the
case Yo q-e-2ri". It suffices to show that. in the neighborhood,

d (Z#(y) ) <<ly_Y0l-[r1-2-y (1 qye-:ri")"
and then the claim follows plainly. Actually, in the neighborhood,

z#(m_l)(yl)(y yl)m_Z#(y) Z#(yl) -[- Z#’(Yl)(Y Yl) -+ q-
im ’-- 1)!

[Y Z#(m) (u)(y g)m-1 du+
(m 1)’--- dy.
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where rn [r] and lYl, lYI < q-. Upon letting Yl Y0, we obtain

Z#(y) Z#(a. (Yo)(Y Yo) +"" +
(m- 1)!

iv z#(m)(u)(Y_ U)m-I du
(m- 1)! dyo

where oe otv, since Z#(yo) Z#(a-)(yo) 0. Then

Thus

z#(m-l)(Yo)(Y Yo)m-!

Z#(a z#(mZ#(Y) . (Yo)(Y Yo) +"" + -. (Yo)(Y YO)m

f/o(m 1)!
(z#(m)(u) z#(m)(yo))(y U)m-I du.

dy (1 qye-2ri")a

(m-l)! dy (y yo)
(--1)ay { P(Y) +

foe (Z#(m) Z#(m) u)m-I )}x (u) (Yo))(Y du (6.10)

where P(y) is a polynomial in y. The derivative on the fight-hand side of (6.10)
equals

Ol ff (z#(m) z#(m) )m-I-(Y yo)a+
(U) (Yo))(Y U du

-(Y y0)a
(Z#(m (u) Z#(ml (YO))(Y u)m- du.

By integration by substitution, the first integral in (6.11) equals

(Z#(m(yo + t(y Yo)) Yo)m dtz#(m (yo))(1 t)m-l(y

and hence its modulus is

<< ly yol v-I -m-I (1 t)m-I dt << [y yol r-I

z#(m (Yo + (y YO)) z#(m (Yo) << It (y Yo) r-m- 1,
since

(6.11)
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which can be shown as we did in the proof of Theorem 5.2. Similarly, the modulus
of the second integral in (6.11) is

<< lY- Y01-2.

It follows that, in a small neighborhood of y q-1 e2rioi),

-d-fy (1 qye-2riOI))a << lY Y01 -=-2 << lY Y01 -trl-z

from (6.10) and (6.11).
Now, since ?, > + v, [v] + 2 ?, < 1, from (6.9),

F’(y) , F’(y)
F(y)

y-n dy, F(y----y- dy ---> 0

as e --+ 0, where c’ and c’_ are the parts of cv and c_ inside the circle lY[ q
respectively. Upon letting e -- 0 on the right-hand side of (6.8), we reach

-1

F’ (y) --nI
F(y)

y dy,
0

(6.12)

where C, comprises the part of the circle lYl q-1 which is outside the small circle

co" lY q-ll e0, and the part of co which is inside the circle lYl q-1.
Finally, in a small neighborhood of y q-l,

F’(y) Z’(y) Q’(y)
F(y) Z(y) Q(y)

where Z(y) "= (1 qy) Z#(y) and

k-1

Q(y) (1 + qy)ak l-i( qye2rioi))ai)(1
v--1

Note that Q(y) is holomorphic and nonvanishing in the neighborhood. Also, note
that, from (1.3) and (2.2) with rn 3,

s-I

Z(y) Bs + yB(1 qy)-r, + (1 qy)r
/z=l

x Alog(1-qy)+ Ck nk. +R(y)
k=2 n=l

where R (y) yYn=0 rnqn with r O (n-t) and fl > 2, is continuous and has no
zeros on {y" lYl < q-l, ly_q-l < r/} for some > 0. Thus, an argument involving
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Z(y) similar to the one setting up (3.15) and (3.16) in the proof of Theorem 3.4 shows
that, upon letting e0 ---> 0 in (6.12),

I iqn-I f_,r F,(q-leiO)
r F(q-lei)

e-i(n-l)O dO, (6.13)

where F’(q-lei) L[-zr, zr]. Hence I o(qn) for the integral in (6.13) tends to
zero as n --+ cx by the Riemann-Lebesgue lemma. This proves the theorem in the
case that y -q-1 is a zero of Z# (y).

Similarly, we can prove the theorem in the case that y _q-1 is not a zero of
Z#(y). l-l

The following corollary is an immediate consequence of Theorem 6.2.

COROLLARY 6.3.
then

If < r < 2 and if the condition (1.3) holds with ’ > + r,

[k(n) qn(r (-1)n + o(1)) or qn(r + o(1))

depending upon whether _q-1 is or is not a zero of Z#(y).

Proof Since < r < 2, the number k in Theorem 6.2 is 0 or 1. If k
0,/(n) qn(r + o(1)). If k 1, then 0 1/2 and tl 1, and hence/(n)
q"(r (-1)" + o(1)). [3

If p Pr are all positive integers and q > 1, the remainder terms in (6.1) and
(6.3) can be improved.

THEOREM 6.4. /f

r(n) qn Avnkv- + O(qVn) (6.14)
v--1

holds with constant q > 1, positive integers k < < kr, constant At Ar-1
and Ar > 0, and constant v < 1, then

A(n) q’ k 2 ovcos2nr0 (-1)noe + O(q")

or

[k(n) qn k 2 ot cos2nrr0 + O(qun)
v--1

for some u with v < u < 1, where k kr and is a .nonnegative integer with
< [(k + 1)/2]. In particular, if the generating function Z#(y) has no zeros on the

circle lYl q- then 0 and

(n) kqn -q- O(qun).
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Remark. Theorem 6.4 may give rise to the problem of determining the quantity
u more precisely in terms of v. However, in the general case, there is not too much
we can say about this, as we know from 11 ].

Proof. From (6.14) and (2.2) 1, we have

Z#(y) )_ Bu
v=l (1 _qy)r, + R(y),

where r are all positive integers, ri < < rs and rs kr k, and where R(y) is
holomorphic in the disk lYl < q-V. Thus, (1 -qy)kZ#(y) is holomorphic in the same
disk and hence so is the function F(y) defined in (6.5). Since F(y) has no zeros in
the disk lYl < q-i, there exists some constant u’ with v < u’ < such that F(y) has
no zeros in the disk lYl < q If we shift the integration path in the formula (6.6)
to a circle with r q-U, where u’ < u < 1, then we arrive at the conclusion.

We conclude our discussion by giving the examples mentioned at the beginning
of this section. These examples are of independent interest, though they are artificial
constructions.

EXAMPLE 6.5. We consider an additive arithmetic semigroup with t (n) and/5 (n)
given as follows. Let (x, y, z) (av, by, cv), v 1, 2 be solutions of the
diophantine equation x2 + y2 z such that

(av, by)= 1, < av < by < cv, C < C2 <’’’.

Let 0v be given by cos Ov by/cv, 0 < 0 < -f. Then the 0v are all different. We set
k 4 andq I-Iv=l cv

/5(n 2 (1 cosrOv)q lz(n/r)
n v=l

n=l,2

where # is the M6bius function. Then

k

fk(n) E r(r) 2 E(1 cosnOv)qn.
rln v=l

kThus, the P.E.T. does not hold since Y’v=l cos nov has no limit as n cx. Actually,
on the one hand, an application of Dirichlet’s approximation theorem implies that

k

sup cos novlim k.
n-- cx v=l
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On the other hand, it is easy to see that cos nOl has no limit, as n --+ o and hence

k

lim inf cos nov < k.
n--+o

v=l

It is easy to see that

d
dyZ#(y) o k

A#(Y) E 2 Z(1 cosnOv)qnyn

Z#(Y) n=l v=l

k ( 2qy eiOvqyZ qy eiOvqyv--I

e-i"qY )e-i"qy

2kqy ( ei"qy
1-qy =l 1-ei,qy

e-ivqY )e-i"qy

Hence

Z#(y) I-Ikv= e O e-ivl(1 qy)(1 qy)

(1 qy)2k
has 2k zeros y q-le+iO, v k.

Let

Z#(Y) Z (n)yn
n=0

Z v(n)yn’
n=0

and

(1 eiqy)(1 e-ivqy)
(1 qy)2

Then r(0) and

v=l k.

by(n) 2(1 cosO)nq’ 2 nqn

Cv
n=l,2 (6.15)

are positive integers and so is

(n) __r $’’" * k(n).

We can show, by induction on k, that

2k

(n) qn AvnV-1
v--I

n=l,2 (6.16)
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and hence the "remainder term" of ((n) is zero. Actually, for k 1, from (6.15),
(6.16) is certainly true. Now, suppose

2h

O1 g * h(n) qn CvnV-1 n 2,

Then, from (6.15),

1 *"" * h * h+l(n) (1 *"" * h) * h+l(n)

qn Cony-1 + 2
v--1

We note that

Ch+l bh+l ( Cv m
Ch+l \v=l m=l

n-1 n-1 n-1

mV-l(n--m) nrnV-l--rnv

m=l m=l m=l

v-l(n-m)+n)}.(6.17)

with

2h+l h+ll._i cv by
A2(h+l)

(2h + 1)! 111 cv

We shall show that P (n) is actually a positive integer. To this end, we first show
that/5 (n) is positive. It suffices to show that

(1-cosrOv)qrlz(n/r) > O, v--- k.
rln

We note that sin nov 5 0 since

sin n0v Im
(by q- iav)n in

ImW (av bv)n
C C

n n n4- (av (2)av-2b2 +...),
1 n n-1 [nt.n-3 ..3

b--rv ((1)by av- +".),31uv v

if n is odd,

if n is even,

n
-(Bv(n) By(l))- (Bv+l(n)- By+l(1)),
v v+l

where Bk(x) is the kth Bernoulli polynomial of degree k [9], [10]. Hence
n-1

mv-1 (n m) Q(n),
m=l

where Q(x) is a polynomial of degree v + with the leading coefficient (v(v + 1))-1.
It follows that

2(h+l)

O1 $’’" $ Oh $ Oh+l (n) qn y AvnU-1
v--1
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and (av, by) 1. Hence -cos nov > 0. We have

-cosn0v --(c Re(by + iav)n) >
n n’C C

n=l,2

since cn Re(by + iav)n E Z. We conclude that

(1 cosrOv)qrlz(n/r) > (1 cosnOv)q 2 qr
rln l<r<n/2

> q3n/4 2q 1+n/2
> q3n/4_ 4qn/2 > 0

q--1

since q > 54.

It remains to show that/3 (n) E Z. This can be done directly through an elementary
argument. Let n parn where p is an ordinary prime number, ot >_ 1, and (p, rn) 1.
Then

-Z ( )= (m)n (k(Par)- k(Pa-lr))tz 7(n) nl
fin

(r)lz - pam
rim

It suffices to show that (pr) -/(pa-lr) 0 (mod p). If Plq, this is trivial.
Otherwise, (p, q) 1, and this can be shown by computation based on a well-known
theorem of Euler [5]. The computation of this proof is lengthy by comparison with
the following argument suggested by Warlimont. Thus we shall prove the following
proposition and then the assertion P (n) 6 Z follows.

PROPOSITION 6.6. Let the sequences a(n) and b(m) beformally related by

+ y a(n)tn H (1 tm) -b(m)
n=l m=l

Then a(n) Zfor all n ifand only ifb(m) Zfor all m.

Proof Assume that a(n) 6 Z for all n. We shall prove, by induction, that
b(m) Z for all m. The implication of the opposite direction is trivial.

Actually, we first have

-+- a(n)tn (1 t)-b)(1 -+- Ct +...)
n=l

(1 + b(1)t +...)(1 + ct2 +...)

l+b(1)t+....
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Therefore b(1) a(1) Z. Then, assume b(m) Z for < rn < k. We have

+ a(n)tn (1 tm)b(m) (1 tk)-bk)(1 +dtk+l +...)
n=l m=l

(1 -+-b(k)t +...)(1 +dt+l +...)

+b(k)t +....

The left-hand side is the product of two power series with integer coefficients and
hence is itself a power series with integer coefficients. Therefore, b(k) Z. D

Now, to show that/5(n) 6 Z, we simply take a(n) t(n) and b(m) =/5(m) and
note that t (n) 6 Z, n >_ 1.

EXAMPLE 6.7. Consider

where 0v, v k and q are defined in Example 6.5. Then,

Z#(y)
k1-’Ir=l (1 eivqy)(1 e-iOvqy)

(1 qy)2+l

Similarly, consider

n v=l

Then

Z#(y (1 + qy) 1-I=l (1 eiqy)(1 e-iqy)
(1 qy)Zk+l

Using the facts given in Example 6.5, we can show that in both cases/5 (n) and 0(n)
are both positive integers and

2k+l

(n) qn Z AvnV-l"
v--1
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