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RIEMANNIAN SUBMERSIONS WHICH PRESERVE THE
EIGENFORMS OF THE LAPLACIAN

E B. GILKEY AND J. H. PARK2

Let zr" Z -+ Y be a Riemannian submersion where Y and Z are closed Riemannian
manifolds. Let E(Z, Apr) C CAPY and E(,k, Apz) C CAPZ be the eigenspaces
of the p form valued Laplacians on Y and on Z. We say the pullback

r*" CAPY --+ CcAPZ (1)

preserves the p eigenforms of the Laplacian if for any ,k E , there exists
so that

7r*E(), A)
__

E(/()0, AZ); (2)
z although with a possibly different eigen-in other words 7r* is an eigenform of Ap,

Yvalue, for every eigenform , of Ap.

THEOREM 1. Thefollowing conditions are equivalent:

(a) Thefibers ofr are minimal submanifolds.
(b)
(c) zr* preserves the eigenfunctions ofthe Laplacian A.
THEOREM 2. Thefollowing conditions are equivalent:

(a) The fibers of 7r are minimal submanifolds and the horizontal distribution ofrc
is integrable.

(b) For all 0 _< p _< dim(Y), ApZrr * 7t’* Ap.Y
(c) There exists p with <_ p < dim(Y) such that re* preserves the p eigenforms

Yofthe Laplacian Ap.

These results deal with the totality of the eigenspaces; the following result deals
with a single eigenform.
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THEOREM 3. (a) If zr" Z -- Y is a Riemannian submersion and if there exists
0 F E(., A) so that rr*F E(IX, A), then tx ).

(b) If 2 < p, then there exists a Riemannian submersion r" Z -- Y and an
zeigenform E(), Apr) so that 7r* E(Ix, Ap) for ) < Ix.

Watson [9] proved that (a) and (b) of Theorem are equivalent; see also [10] for
related work. Goldberg and Ishihara [5] generalized Watson’s result and showed (a)
and (b) of Theorem 2 are equivalent; see also Y. Muto [8] for related results. Furutani
[2] proved that maps which intertwine elliptic differential and even pseudo-differential
operators are necessarily Riemannian submersions. Ishihara [6] characterized maps
which preserve local harmonic functions. We refer to Bergery and Bourguignon [1]
for a careful discussion of the relationship between the complete spectrum of A
and A if the fibers of zr are totally geodesic. The major result of this paper is
the equivalence of (a,b) with (c) in Theorem 2. This shows that one can not in fact
intertwine all the eigenspaces unless all the eigenvalues are equal; if zr* preserves the
eigenforms of the Laplacian, then zr* intertwines the Laplacians and preserves the
eigenvalues as well. We will use the Hopf fibration to show it is possible to change
eigenvalues and prove Theorem 3; we refer to Y. Muto [7] for other examples. We
acknowledge with gratitude helpful conversations with J. Leahy about this paper.

Establish the following notational conventions. Decompose the tangent bundle
TZ V H into vertical and horizonal distributions where

Vz "= kemel(zr." TzZ TrzY) and Hz "= VzX; (3)

by assumption zr." Hz -- Tr(z)Y is an isometry. Dually, decompose the cotangent
bundle T*Z V* @ H* where

Hz* "= image(rr*" T*zY TZ)and Vz* := (Hz*) +/-. (4)

We use the metric to identify the tangent and cotangent spaces henceforth. Let pH
be orthogonal projection on H.

If(I) e CAY is a p form on Y, lettp zr*(I) be the pull back to Z. Let
indices {a, b} range from to dim(Y) and index local orthonormal frames {Fa} for
T*Y T Y. Let fa rc*Fa be the corresponding local orthonormal frames for
H* H. Similarly, let indices {i, j} range from dim(Y) + to dim(Z) and index
local orthonormal frames {el for V* V. We adopt the Einstein convention and sum
over repeated indices. Let l".r., and l-’..z, be the Christoffel symbols of the Levi-Civita
connections on Y and on Z. The mean curvature vector is defined by

19 "= pn (Veiei) riafa (5)

we omit the usual normalizing factor of dim(V)-l as it plays no role. Then 0 vanishes
if and only if the fibers of zr are minimal; as noted in [1], this means the structure
group of the fiber bundle reduces to the group of volume preserving diffeomorphisms
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of the fiber. Let

O)--OOab ;’-- 1/2(raZbi Fa/).
The tensor a) vanishes if and only if the horizontal distribution H is integrable.

Let dr and dz be exterior differentiation on Y and Z respectively;

(6)

zr*dv dZrc * (7)

by naturality. Let 6 r and 6z be the adjoint operators on the spaces of smooth forms
C AY and C AZ. Let ext’ denote left exterior multiplication; if ot is a cotangent
vector and if/3 is a differential form, then ext (or)/3 ot A /3. Let int denote the
adjoint, left interior multiplication. Since r is a Riemannian submersion,

n’* o extY (F) extz (r* F) o zr*, and

rr* o intY (F) intz (r* F) o r* (8)

for all F T*Y. If , r/6 T* Z, then

I 12 extZ ()intz () + intZ ()extz ()

0 extz ()extz (r/) + extz (r/) extz ()

0 intz ()intz (7) + intZ (r/)intz ().

(9)

We shall need the following technical lemma to prove Theorems and 2; although
it follows from the work of [5, 9], we shall give a proof to keep this article self-
contained and also to establish some necessary notation.

LEMMA 4. Let f2 OgabiextZ(ei)intZ(fa)intz(fb). Then

8zzr* r*gv + intZ(o)zr * + f27r*.

Proof. We expand

3z _intz (el) VeZ/ intz (fa) Vf, (10)

see for example Gilkey [3] for details. Let FA be the corresponding local orthonor-
mal frame for AY where A {al < < ap} is a multi-index. We expand

C AY in the form di)A FA. Then

8zrc*O --intZ (ei){ei(rr*OA)rt* FA + riZab extZ (fb)intZ (fa)r*O}
--intz (ei) F/Zaj extz (ej)intz (fa)rr*
--intZ (fa){faOr*Oa)zr* Fa + I’ZabcextZ (fc)intZ (fb)rc*O}

intz (fa)I"aZbiextZ (ei) intz

(11.1)

(11.2)

(11.3)

(11.4)
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Since horizontal covector fields are annihilated by intz (ei), (11.1) vanishes. Further-
more in (11.2), j so

(11.2) riZiaintZ(fa)r** intZ(0)zr**.
zSince l"aYbc I’abc. (11.3) yields zr*3 r. Finally, we anti-symmetrize to see

1.4) O)ab extz (ei)intz (fa)intz (fb)rC *.
(12)

(13)

ProofofTheorem 1. Since vanishes on A Iz and A0 6d, by Lemma 4,

Arr* zr*A" intZ(O)dZrc * (14)

where we regard 0 as a horizontal form; let tO be the dual horizontal vector field.
We use (14) to see (a) implies (b) in Theorem 1. It is immediate that (b) implies (c).
Suppose (c) holds in Theorem 1. Let e(.) :=/z()) . Then

intZ(0)dZ* e(L)* V,V E(, AS). (15)

Let dvz be the Riemannian measure on Z and let *. Since intz (0) is the
pointwise inner product of 0 with ,

e(k) 2dvZ (0, dZ)dvz (0 (2))dv

fz z
g zOdv (16)

Let IIz011 be the maximum value of Zo. By (16),

I()1 2dvz 511 II 2d (17)

Thus I(Z)l llZ011 is unifoly bounded. Expand 6 C(Y) in a Fourier
series Ecxx for x 6 E(, A). Then

I1112 c (18)L2(y)

Let g() Ee()cx. Then

II()ll2 (Z)=c < llZ0112 I111<) (19)L2(y)

so g is a bounded operator on LE(y). Fuheore

(*) (0, dZr*) *g(). (20)
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Since r* is a continuous operator from L2(y) to L2(Z),

_< CIlZollllq, llz<)q, s c(Y). (21)

Such an estimate is not possible for a non-trivial horizontal vector field (R). We com-
plexify and let qn ein for C(Y). Then

nllO(rr*)llz) IlO(rr*%)llz) CIlZOIlll%llz_,r)
CIl,ZOIlvol(Y) Yn N (22)

This shows (R)(zr*) 0 for all 6 C(Y) so tO 0 and dually 0 O.

YProofofTheorem 2. Suppose (a) holds. Then 8zzr* zr*8 v so ApZzr * zr* Ap
for all p and (b) holds. Clearly (b) implies (c). Suppose (c) holds for some p with

_< p _< dim(Y). Let e(,) :=/x()) ,. Then
(23)

We use Lemma 4 to get the expansion

ApZTt’* 7t’* ApY dz (intz (0) + f2)zr* + (intz (0) + f2)dZr *. (24)

Let p+/- be orthogonal projection on the orthogonal complement of AH* r*AY;

Y/9-L(A.TT’* Y/" ApY)(I p/(/,)Y/"*(I) 0 V(I:) tE E(Z, Ap). (25)

r is dense in CAPY, (25) holds for allSince the span of the eigenforms of Ap
CAPY. Fix z0 6 Z and choose 6 CAPY so (zrz0) 0. We apply (25)

and suppress all terms which do not involve derivatives of since rr*(z0) 0.
Then

{p+/-(intZ(O)extZ(ei) + extZ(ei) intZ(o))Ve, rC*@
+p+/-(intZ(o) extZ(fa) + extZ(fa) intZ(o))Vfarr*dP
+p+/-(extZ (ei)f2 + f2 extZ (ei))Ve, Zr*

+p+/-(extZ(fa)f + extZ(fa))Vfarr*}(zo).

(26.1)

(26.2)

(26.3)

(26.4)

At z0, the vertical covariant derivatives of vanish so (26.1) and (26.3) vanish. At z0,

(26.2) is horizontal so it is annihilated by p+/- and vanishes. We use the commutation
relations of (9) to see that

extz (fa)f2 + f2extz (fa) --2Ogabiextz (ei)intz (fb). (27)
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This shows that

{O)abiextz (ei)intz (fb)VfaTr*}(Zo) O.

Since p >_ 1, OOab -- 0 and the horizontal distribution H is integrable.
Let

.T" := intZ (O)dz + dZintz (0) V).
Then .%- is a 0th order operator which is bounded on LE(z) and

(28)

(29)

* r(1) ve)Zzr*(I) +ApZTt"*- Ap

e(.)zr*(P ,k R, E(), Apt). (30)

Let zr*. We show le ())1 is uniformly bounded by computing

I()1" IIll:z < I1’11" 11112=, z + I(vZ, ):zl

](V, )L:Z)] lfz(, )dvz] lfz(O, dZ(, ))dvZl (31)

fzZO. z21 ( )dv I llZOIlfz(,)dvz.
Therefore Vow* is a bounded operator from LE(APY) to LE(APZ); the same argu-
ment as that given to prove Theorem then shows 0 0.

ProofofTheorem 3. Assume there exists F C (Y) so that

ASF ,kF and Affzr*F =/zzr*F (32)

for ) /z. We use Lemma 4 to see that

(/z k)zr*F Affzr* F zr*ASF intz (O)dZr* F. (33)

Choose y0 Y so that F(y0) is the minimal value of F and let zrz0 Y0. Then
(dr F)(yo) 0. This implies (dZzr * F)(zo) 0 and hence (intz (0)dZzr * F)(zo) O.
Since () -/x) :/: 0, we conclude 0 zr* F (z0) F(Y0). This shows F >_ 0. A similar
argument shows F _< 0 and hence F _---- 0; this completes the proof of Theorem 3 (a).

To prove Theorem 3 (b), we construct an example. Suppose first p 2. The Hopf
fibration Zrh" S -- CP is a Riemannian submersion. The fibers of 7/"h are great
circles; these are totally geodesic submanifolds of S and hence minimal so 0 0.
Let X be the volume element of CP; X is a non-trivial harmonic 2-form on Cp
generating the second cohomology group. Let e be a global orthonormal section
to the vertical distribution V. The transitive action of the unitary group U (2) on S3

preserves all the structures. This implies there exists a constant co so

co" exts3 (e). ints3 (rr)). (34)
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, _,.iCP AC2PSince dS3h ,,’( Sth u X 0 and X 0, we use Lemma 4 to see

S ,
A2 7t’h X ds3 (f2rrh )) cods3 (e). (35)

Furthermore,

dS3e I’ai exts3 (fa)eXts3 (f) corteX. (36)

S 2 H2This shows that A2 zrh X Corrh X. Since (S3) 0, there are no harmonic 2-forms
on S so Co

2 0. This completes the proof of (b) if p 2.
IfN Nl N2 is a Riemannian product manifold, we may decompose as follows:

APN r+s=pArN1 (R) A’Ne, and

NAp (r+s=p(ANr’@ + (R) AsN2 ), (37)

Let p 24-q for q > 0 and let M be any compact Riemannian manifold ofdimension
atleastq. Let Z S xM, Y =CP x M, andzr =Zrh x id. Let q E(., A)
be any q eigenform on M. Then by (37),

Y AP’Ap X A tq (X A (])q 4- X A AMq q ’’X. A ()q,

Z(Tr*(X A (I)q)) A (Tg/X) A (I)q 4- 7r/ x A AqM(I)qAp

(Co2 4- )V)Yr*(X /k (I)q).

(38)

REMARK. In the proof of Theorem 3 (b), Z is the circle bundle associated to a
vector bundle of rank 2 over Y. In [4], we show the eigenvalues do not change if Z is
the sphere bundle associated to a vector bundle of rank at least 3 over Y.
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