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MEAGER-NOWHERE DENSE GAMES (VI)"
MARKOV k-TACTICS

MARION SCHEEPERS

Let J be the ideal of nowhere dense subsets of a Tl-space. Then (J), the
completion of J, denotes the collection of meager subsets. Two players, ONE and
TWO, play the following game of length o: In the n-th inning, ONE first chooses
a meager subset On; TWO responds by choosing a nowhere dense subset Tn of X.
TWO wins the play (O1 T1 On Tn ...)ifU On c Un=l n=lTn" TWO has a
winning perfect information strategy. Does TWO really need so much information
to win?

This question has been considered for games of this sort in the papers ], [2] and
[4] through [9]. We now continue these studies by considering strategies forTWO that
use as information the number of the inning in progress, as well as a bounded number
of earlier moves of ONE. Telgirsky calls a strategy of the form Tk F(Ok, k) for
the second player a Markov strategy. Fix a positive integer k. By analogy we define
a Markov k-tactic for TWO to be a function F such that Tj F(O1 Oj, j) for
j < k, and Tm+k F(Om+I On+k, rn + k) for each m. A strategy for TWO
which depends on only the < k most recent moves of ONE (and not also the number
of the inning in progress) is said to be a k-tactic. For both of these notions we omit
mention of k when k 1; thus, "l-tactic" is replaced by "tactic".

Various special versions of the game described above result from imposing ad-
ditional constraints on the players. One such game is denoted MG(J)" For each n
player ONE is required to choose On+ in such a way that On C On+. Here, as ev-
erywhere else in the paper, C means proper subset of. Another such game is denoted
WMEG(J)" For each n ONE is required to choose On+ such that On c__ On+ and
TWO wins ifU Onn=l n=l Tn"

The paper is organized as follows. In Section we introduce the coherent assign-
ment problem for partially ordered sets. In Section 2 we use coherent assignments
in conjunction with coherent decompositions. In Section 3 we recall a few relevant
facts from [3] about a Ramseyan type partition relation. These facts are used in the
fifth section. In Section 4 we study the existence of winning Markov k-tactics for
TWO in the game MG(J). In Section 5 we prove theorems concerning the existence
of winning k-tactics in the game MG(J).
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Notation, terminology and conventions follow those of ]. All mentioned con-
sistency results presuppose the consistency of ZI::. For a cardinal number L we use
the following notation: )+0 ., and for each n < oJ, .+(n+) is the least cardinal
number larger than )+n; .+,o is the supremum of the set {.+n: n < o}. We used
topological terminology in the description of our game. This description is equivalent
to the combinatorial one where J is taken to be a (proper) free ideal on a set and (J) is
its or-completion. Throughout this paper we reserve the symbol J to denote a proper
free ideal. The symbol add(J) denotes the least cardinality of a subcollection of J
whose union is not a member of J. The symbols Iq and N denote the sets of real
numbers and of natural numbers, respectively.

I. The coherent assignment problem

Let (P, <) be a partially ordered set and let Q

_
P be a cofinal set. A function

K: P Q with the properties that p < K(p) for each p P and K(p) < K(q)
whenever p < q is said to be a coherent assignment. A set Q

_
P is said to be

representative if Q is cofinal in P and there is a coherent assignment K: P ---> Q.
The coherent assignmentproblemfor (P, <) is the question of whether every cofinal
subset of (P, <) is representative.

LEMMA I.
representative.

If P, <) has a cofinal chain, then every cofinal subset of P, <) is

Proofi Let Q

_
P be a cofinal set of minimal cardinality, x. Let (c,: c < ))

enumerate a cofinal chain such that c < c whenever ot < / < ., and . is the
minimal cardinal for which this is possible. Then c . and c is a regular cardinal
number. Choose a sequence (q: ot < c) from Q such that ot < / implies that
q < q and c < q. Then {q: c < :} is cofinal in P. For p P, define K(p) to
be q, where c is minimal with p < q.

Let ;k < t be infinite cardinal numbers. The symbol CAz(c) denotes the assertion:

For every set X such that IXI , every cofinal subset of [X] is
representative.

LEMMA 2. If CAx (to) is true, then so is CA(c+).

Proofi By Lemma we may assume that < c. Let .A be a cofinal subset of
[c+]. Define a function f" c+ --> c+ so that for each X [or] there is an A .A
such that X c_ A

_
f(ot).

There is a closed, unbounded set C c+ such that f(v) < whenever V, C
and ?’ < 3. The set B { C" cof() )+} is unbounded in t+. For each
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/ B let e4 {A A: A _/5}; then4 is cofinal in [/5]x. For each/ B choose
a coherent assignment K" [/5]x -- .A.

For each/ B, choose another coherent assignment r" [/5]x -+ Jt as follows:
When/5 min(B), let zr K. Assume that/5 B is larger than min(B), and that
for each 3 /5 q B we have already chosen a coherent assignment r" [6]
such that if V, 6 /5 fq B and ?, _< 6, then rv

_
zr. Then zr is selected thus:

Consider X [/5]4. Let (X) be the least element of B such that IX
and define

zr (X)
K(X)
r,(X)
K(X U (U{v(X n y)"

y [(x), p) n B}))

if(X) =/5,
if 6 [(X),/5) f) B and X [6]4,

otherwise.

Then zr is a coherent assignment which extends zrv for each ?, / N B, and so the
inductive selection procedure continues. Then K tApBrp is a coherent assignment.

THEOREM 3. CAx(x) is true whenever c < Z+.

Proof. Lemma and Lemma 2. r-1

PROBLEM 1. Is every cofinalfamily jt C_ (A/’I/VT)Ft) a representativefamily?

2. Coherent decompositions

Let/3 be a subset of J. A family Jt
_

(J) has a coherent decomposition in terms

of 13 if for each A 6 Jt there is a sequence (An" n N) such that:

(1) A tA=IAn.

(2) If m < n, then Am C An.
(3) Each Am is in/3.

(4) If A

_
B are in A, then there is an m such that An c_ Bn for all n > m.

If (J) has a coherent decomposition in terms of J, then J is said to have the
coherent decomposition property, and (J) is said to have a coherent decomposition.
These two notions were introduced in 1 because oftheir relevance to the construction
of certain sorts of winning strategies in the game MG(J).

THEOREM 4. Thefollowing statements are equivalent.

(1) There is a cofinal subset of (J) which is representative and which also has a
coherent decomposition in terms of J.
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(2) J) has a coherent decomposition in terms of J.
(3) There isfor each A e J) afunction fA A -- o9 such that:

(a) for each n, {x E A: fA(x) < n} J, and

(b) ifA C B, then there is an m < 09 such that {x A: fA(x) < fn(x)} C_
{x B: fB(X) < m}.

Proof (1) = (2) Let C be a cofinal subset of (J) satisfying the two hypotheses.
Let K" (J) --> C be a coherent assignment. For each C 6 C, choose a sequence
(Cn" 0 < n < co) such that the chosen sequences witness the existence of a coherent
decomposition in terms ofJ. ForX 6 (J) and for0 < n < o9, defineXn
X N K(X)n. This defines a coherent decomposition for (J) in terms of J.

(2) = (3) For each A E (J), select a sequence (An" n < o9) of sets from J such
that the selected sequences witness the existence of a coherent decomposition for (J).
Then define fa(x) min{n: x An}.

(3) = (1) Let (fa" A (J)) be as in (3). For each n < co and for each A 6 (J)
define An {x A: fA(X) <_ n}. D

Let,k be an uncountable cardinal number ofcountable cofinality. We use Theorem 4
to show that [Z+]x has a coherent decomposition in terms of [.+]<. To begin, fix an
increasing sequence ;kl < Z2 < < )n < of infinite cardinal numbers which
converges to ,k. LetC {or: . < < )+}. Then C is a cofinal chain in [)+], and so
is representative (Lemma 1). We check that C has a coherent decomposition in terms
of [,k+]<" For each ot E C, choose a preliminary sequence (Sa,n" n < o9) such that
ol I,.Jn<ooSot,n if m < n then S,m C S,n, and for each n, [S,n[ .n. Then modify
each as follows:

Tot,n Sa,n U (Uecns,, S,n).

The set {(Tot,n" n e N)" c e C} defines a coherent decomposition for C in terms
of [,k+] <x. (Though this argument was given for ) > b0, a fairly similar argument
shows that [o91] has a coherent decomposition in terms of [o91]<.)

In Theorem 4, 3(b) cannot in general be replaced by the following condition"

3(b’)" if A C B, then there is an m < o9 such that {x A: fa (x) <

fs(X)} C_ {X e B" fs(X) < m}.

To see this, take a cardinal ,k > 2 of countable cofinality. Then [.+]x has a coherent
decomposition in terms of [)+]<. Suppose that there were functions fa: A --->
o9 which witness this, and satisfy 3(a) and 3(b’). Choose an ascending sequence
.1 < 2 < < ,.n < of cardinals which converges to .. Define a coloring
: [.+ \ ,k]2 --+ o9 so that for ot < /3, ({ot,/3}) min{n: I{x < or: f(x) <

f(x)}l n}. AS a weak consequence of the Erd6s-Rado theorem we find an
ascending sequence . < ot < < O/m < < ,+, and an n < o9, such that



186 MARION SCHEEPERS

(I)({Cgm, Cgm+ }) n for all m. But then we find x E c1 such that fOlm (X) > fOlm+l (X)
for each m, a contradiction.

PROPOSITION 5. For an infinite cardinal number x thefollowing are equivalent:

(1) [c] has a coherent decomposition in terms of [c] <s.
(2) For each A [to]s there is a finite-to-one fa" A 09 such that {x

A" fa (X) < fB (X) is finite whenever A C B.
(3) For each A [to] there is a finite-to-one fA" A 09 such that {x

A" fa (x < fB(x)} is finite whenever A C B.
(4) Let (L, <) be a linear order ofcountable cofinality. For each A [c] there is

afinite-to-onefunction fa" A L which has onlyfinitely many values below
each q L, such that {x A" fa (x) < fn(x)} isfinite whenever A C B.

Proof. (1) = (2) Let (An: n < to) be a decomposition of A into finite sets such
that these decompositions witness the existence of coherent decomposition. Then
define fa(x) min{m: x Am}. Consider A C B, andx A. If fa(x) < fn(x),
then AfA (x) BfA (x); by hypothesis there are only finitely many such events.

(2) := (3) For each A, let ha: A to be as in (2). By Theorem 12 of [9] there
is for each countable subset A of x a function ga: to to such that if A C B, then
gn(n) < ga(n) for all but finitely many n. By replacing each ga by g which is
defined so that g’a (n) n + ,jzn ga (j), we see that we may assume that each ga is

increasing. Now put fa ga o ha for each A. Then the family (fa: A [x]s) is
as required.

(3) = (4) Let (n: n < to) enumerate in increasing order a cofinal subset of L.
Let (fa: A [c]s) be as in (3). Setting f (x) ’Ym(x) for each A [c]s and for
each x A works.

(4) = (1) Let fa: A -- L be as in (4). Let {n: n < to} enumerate in increasing
order a cofinal subset of L. For each A and each n < to, let An {x A: fA (X) <_

}. Then this defines a coherent decomposition for the countable subsets of c.

In [2], Koszmider introduces the notion of a coherentfamily offinite-to-onefunc-
tions: Let tc be an infinite cardinal number. A family (fA: A [to]) is a coherent
family of finite-to-one functions if for each A, fA: A --+ to is a finite-to-one function,
and for all A and B, {x A N B: fA(x) fn(x)} is finite. He then proves there
is a coherent family of finite-to-one functions on [to] for each infinite tc < bo and,
granting additional hypotheses, for each tc there is a coherent family of finite-to-one
functions on [K]. Applying (2) of Proposition 5, we see:

COROLLARY 6. If there is a coherent family offinite-w-one functions on [to],
then [to] has a coherent decomposition in terms of [to]<.

PROBLEM 2. Is the existence of a coherent decomposition for [to]s in terms of
[to]<s equivalent to the existence ofa coherentfamily offinite-to-onefunctions?
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3. The co-path partition relation

Let (P, <) be a partially ordered set and let x be a cardinal number. For positive
integer r the symbol (P, <) --+ (co path)/<o denotes the statement:

Forany coloring O: [p]r to, there is a strictly increasing w-path Pl <

P2 < < Pk < in P, such that the set {({pi+l Pi+r}): <
co} is a finite subset of

The negation of this assertion is denoted (P, <) 7z (co path),/<o.
There exists a least ordinal c such that ot -- (co path)2 <,o (by the Erd6s-Rado

theorem); it is denoted M(tc). It was proven in [3] (see Corollary 14 there) that M(x)
is at at least tc++ and is at most (2)+.
We begin by recalling Proposition 15 of [3]:

THEOREM 7. Let L be an infinite cardinal. Thenfor every infinite set X,

([X] -<x, C) 7/+ (co- path)2x/<o.

By making the necessary minor changes in the proof of Proposition 17 of [3], one
obtains:

THEOREM 8. Let (P, <) be a partially ordered set of cardinality to. Then the
following statements are equivalent.

(1) (P <) 7z (co 2-path)o/<.
(2) There is afunction : P %c+ such that:

(a) for each p P, (p) is weakly increasing, and

(b) ifp < q, thenthereisanm < cosuchthat(q)(n) < (p)(n)whenever

4. Markov k-tactics in the game MG(J)

In the game MG(J) player ONE is required to choose meager sets On such that
On C On+ for each n. If we are interested in Markov k-tactics for player TWO, this
requirement on ONE may be somewhat relaxed to requiring only that
for each n (the game is then denoted WMG(J)), and the requirements on TWO
may be made more demanding, by specifying that TWO wins a play exactly when
U On U= Tn (in which case the game is denote WMEG(J)); from the pointn=l
of view of Markov k-tactics these are all equivalent games. Since this remark is
used below only for the case when k 1, we indicate a proof for only that case.
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The following statements are equivalent:

(1) TWO has a winning Markov tactic in WMEG(J).
(2) TWO has a winning Markov tactic in MG(J).

To see that (2) implies (1), let F be a winning Markov tactic for TWO in MG(J).
We may assume that (J) is a proper ideal. For each B 6 (J) choose a sequence

n whenever rn - n Define for each(xff" n N) from S \ B such that xff Xm
n, or(B, n) B f3 g=IF(B, i) U F(B {x x}, i)) Then cr is a winning
Markov tactic for TWO in W/14EG(J).

4.1. Markov tactics. Fix a J for which TWO has a winning Markov tactic in
the game WMEG(J) and let F be such a winning Markov tactic for TWO.

THEOREM 9. There are subsets X X2, Xn ofX such that: X tA Xnn=l
andfor each n, [Xn] <add((J)) J.

Proof Observe that for each x, there is a Bx 6 (J) and an nx 6 N such that
x Bx, and for each C 6 (J) such that Bx c_ C, we have x F(C, nx). (If
not, consider a contrary x. Then, for each n 6 N, and each B 6 (J) such that
x 6 B, there is a C 6 (J) such that B

_
C, and x ’ F(C, n). Let ONE choose

01 c_ 02 c_ c_ On c_ such that x 6 O1, butx q[ F(On, n) for all n. ThenTWO
loses the play (O1, F(01, 1), 02, F(02, 2) F(On, n) ), a contradiction.)

For each x, choose the least nx as above, and a corresponding Bx 6 (J). For each
n, let Xn {x 6 X" n n}. Consider a subset Y of Xn, with [El < add((J)).
Then C tAxrBx (J), and Y c_ F(C, n). ff]

COROLLARY 10. TWO does not have a winning Markov tactic in MG(A/’WDFI).

Proof. Consider a partition FI I,.Jn?_ 1Xn. By the Baire Category Theorem there
is an n, and a nonempty open interval J such that Xn q J is a dense subset of J. But
then X, contains a countable set which is not nowhere dense. Now apply Theorem 9.

COROLLARY 11. Let ) be an infinite cardinal number of countable cofinality.
Then TWO does not have a winning Markov tactic in MG([tc] <z) for any tc > ,.

Proof Let tc > . be given, and consider a partition tc t2 X Then there isn=l
an n such that Xn has cardinality larger than ,k. Apply Theorem 9.

4.2. Markov k-tactics for k > 1. Let jt be a subset of (J). Then the games
WMG(4, J) and WMEG(Jt, J) are the versions of WMG(J) and WMEG(J)
respectively in which ONE must choose from
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THEOREM 12. Ifjr C_ J) has a coherent decomposition in terms ofJ, then TWO
has a winning Markov 2-tactic in WMEG(flt, J).

Proof. For each A ,4, choose a decomposition (An" 0 < n < co) such that the
family of sequences so chosen witnesses the existence of a coherent decomposition.
To define a winning Markov 2-tactic F for TWO, consider sets A

_
B from A, and

n N. Then define

F(A B n) I Bn
| Bmin{m>_n: (Vj>m)(AjBj)}

ifA=B
otherwise.

If there is a representative family in (J) which also has a coherent decomposition,
then (J) has a coherent decomposition; in this case we can conclude that TWO has
a winning Markov 2-tactic in WMEG(J).

Since it is consistent that the ideal of meager subsets of the real line has a cofinal
chain, it is consistent that TWO has a winning Markov 2-tactic in WMG(N’WDR).
In ], Theorem 15, it was shown that there is a cofinal family .A

_
(N’A;DR) which

has a coherent decomposition. However, it is not known if this ,4 is a representative
family. If it were representative, that would solve the following problem positively.

PROBLEM 3. Is it a theorem ofZFC that TWO has a winning Markov 2-tactic in

WMG(AfPVDR)?

Let (S," n 6 N) be a sequence of pairwise disjoint infinite sets. For each n 6 N
let Jn be a free proper ideal on the set S,. Then define J so that X 6 J if for each n,
XNSn 6Jn The symbol -n=l J will be used to denote J, the sum of the J’s.

In the next proposition we use the following fact:

LEMMA 13. If TWO has a winning Markov k-tactic in WMEG(J), then TWO
has a winning Markov k-tactic G in WMEG(J) such thatfor all X1 c_ Xk,
andfor all > k,

G(X1, 1)U...UG(X1 Xk, k)U. .UG(X1 Xk, - 1) _c G(Xl Xk, g.).

Proof. Let F be a winning Markov k-tactic for TWO in WMEG(J). Define G
by recursion on so that G(X1, Xi, i) F(X1, 1)LI...t_JF(X1 Xi, i) when
< k, and so that G(X1 Xk, i) (Uj<_kG(X1 Xj, j))U(Uk<j<iG(X1

Xk, j)) F(X1 Xk, i) for > k.

PROPOSITION 14. Let k be a positive integer. If, for each n, TWO has a win-
ning Markov k-tactic in WMEG(Jn), then TWO has a winning Markov k-tactic in

GWME (Zn=l Jn)
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Proof. For each n, let Fn be a winning Markov k-tactic forTWO in WMEG(Jn).
We may assume that each Fn has the property described in Lemma 13.

For rn < k, X c_ Xm in (Y’n= Jn) and for*m < < o)we define

F(XI, Xm, e) [(Jj<_kFj(Sj 0 X Sj N Xm, m) ifm < k
[ (.Jj <_e Fj Sj 1 X1, Sj

Then F is a winning Markov k-tactic for TWO.

COROLLARY 15. lf; is a cardinal ofcountable cofinality then TWO has a winning
Markov 2-tactic in WMEG([tc]<z) for each

Proof Consider an infinite cardinal number tc < )+,o. By Corollaries and 8
of [1 ], some cofinal subset of [to]x has a coherent decomposition in terms of [to] <.
Then by Theorems 3 and 4, [tc] -<x has a coherent decomposition in terms of [to] <x.
Apply Theorem 12.

For ,k+, the result follows from Proposition 14 and what had just been proved.

PROBLEM 4. Is it true that whenever ; has countable cofinality, then for each
TWO has a winning Markov 2-tactic in WMEG([tc]<)?

5. k-tactics in MG(J)

Let C be a subset of (J) such that C has no maximal element. The game MG(C, J),
introduced in ], is played just like MG(J) except that now ONE must pick from
C. The following theorem distills the essential features from most constructions of
winning k-tactics in the game MG(J) carried out in papers in the bibliography.

THEOREM 16. Let k > 2 be an integer and let J C 79(S) be a free ideal. If J)
has a representative cofinal subset C then (1) implies (2), where:

(1) TWO has a winning 2-tactic in MG(C, J) and for each C C TWO has a
winning k-tactic in MG(J [c).

(2) TWO has a winning k-tactic in MG(J).

Proof For each C 6 C, let Fc be a winning k-tactic for TWO in MG(J[c).
Also, let G be a winning 2-tactic for TWO in MG(C, J). Let K: (J) C be a
coherent assignment.

Define a k-tactic F for TWO as follows: Let j < k, and let X1 C C Xj be
given. Then

0 ifj <k
F(Xl Xj)= G(K(Xk_I)) t_l G(K(Xk_I), K(Xk)) if K(X_I) C K(Xt)

FK(xk)(Xl) t.J U FK(xk)(X1 Xk) otherwise.
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To see that F is a winning k-tactic for TWO, consider an F-play O, T Om,
Tm of MG(J). Then compute K(01) K(Om) C__ ...; either this
sequence is eventually constant, or else it has infinitely many terms.

In the first case, select the first m > k such that K (Oj) K (Ore) (= C say) for
all j > m. Put On’ On+m-k+l for each n. Then O’l, O is a sequence of moves
by ONE in the game MG(J [c), and by the third clause in the definition of F, TWO
has played against these moves using the winning k-tactic Fc. Thus, TWO wins such
plays of MG(J).

In the second case, the infinitely many terms ofthe sequence K(O) K(O,)
constitute a sequence of moves by ONE in the game MG(C, J); by the second clause
of the definition of F, TWO has played according to the winning 2-tactic G against
these moves. Thus, TWO also wins such plays, rl

THEOREM 17. Let be a cardinal number ofcountable cofinality and let k >
be an integer. Thefollowing statements are equivalent:

(1) TWO has a winning k-tactic in MG([,k+]<4).
(2) ([.+]_<4, C) 7 (w path)/<o.

(3) .+ (w path) and (P(X) C)7 (09 path)oo/<o.k
(4) TWO has a winning k-tactic in MG([.+n] <4) for all n < o9.

Proof. When . R0, each of items (1), (2) and (3) is individually a theorem of
ZFI3: (1) is a special case of Corollary 4 of [4], (2) is a special case of Theorem 7,
and (3) is implied by (2) and Corollary 10 of [3]. For uncountable . the equivalence
of these three items was proven in Theorem 23 of ]. It is also clear that (4) implies
(1). We show that (3) implies (4).

Fix < n < o9, let J [/,+n]<4 and assume (3). It follows from Proposition 3 of
[4] that TWO has a winning k-tactic in MG(JFA) for each A 6 (J). By cardinality
considerations there is a cofinal subset {Da" ot < +n} C [)+n]4 of (J). Inductively
choose Ca 6 [.+n]4 such that Da c_ Ca t-Jt<aC. The family C (Ca" ot < )+n)
is cofinal in (J) and is well-founded under the C relation. Observe that for each
B e (J), I{C C: C

___
B}I < ). Since the rank function for (C, C) embeds it in ,+,

we see that (C, C) -/ (o9 path)/<,o. By Corollaries and 6 of [1] for . R0 or
Theorem 7 of for ,k uncountable, C also has a coherent decomposition in terms of
J. Then Theorem 16 of [1] implies that TWO has a winning 2-tactic in MG(C, J).
By Theorem 3, C is also representative. Apply Theorem 16. I"l

Theorem 17 extends Theorem 23 of in that it gives another non-trivial equiv-
alence of the assertions of Theorem 23. In [2], Koszmider proved that 4 of Theorem
17 is true for . R0.

Let . be a cardinal number of countable cofinality. We saw in Corollary 15 that
TWO always has a winning Markov 2-tactic in WMEG([.+’] <4). If,k is uncountable
then existence of winning k-tactics for TWO in MG([.+]<4) is independent of ZF(3:
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this follows from Theorem 17 and the remarks near the bottom of p. 59 and at the top
of p. 60 of [3], and Theorem 23 of ].

PROBLEM 5. Let ) be a cardinal number of countable cofinality. If TWO has
a winning k-tactic in MG([L+]<x), does TWO then have a winning, k-tactic in
MG([x]<x) for each infinite to?

For . R0 item 4 of Theorem 17 could also be obtained in another way:

THEOREM 18. Let J C 79(S) be a free ideal such that J C) 7z (o9
h kpat ),o/<o, and J) has a coherent decomposition in terms of J. Then TWO has

a winning k-tactic in MG(J).

Proof. For each A (J) \ J choose a sequence (An" 0 < n < o9) such that
the set of selected sequences witnesses the existence of a coherent decomposition of
(J). Also choose a coloring O" [(J)]k -- o9 which witnesses the partition relation
for ((J), C).

For j < k and for X C C Xj (J), define

F(X

Xj

x)= 0
min{n>({X X }):

(Vi>n)(X C_..._X )}

ifXj J
ifXJc’Jandl{i < j" Xi J}l <k
otherwise

To see that F is a winning k-tactic for TWO, consider an F-play (O1, TI Orn,
Tm of MG(J). We may assume that no Om is in J.

For each n let

X,,+k min{p >_ O({On+l On+k})" (j > P)(On+l,j

_ _
On+k,j)}.

Because (J) has a coherent decomposition, each Xn+i is well defined. Because (J)
satisfies the negative partition relation, the set {Xn+k" n < o9} is infinite. Consider

Om. Every time xi+i, > m reaches a new record high, Om,xi/k is a subset of TWO’s
response. We see that TWO covers On. Since m was arbitrary it follows that TWO
wins.

Now for J [x]< Koszmider’s result follows from Theorem 18 in the following
way: By Theorem 7 we know that for every infinite cardinal number x, ([to]<, C

2-/-> (o9 path ),o/<o- Thus, one of the hypotheses of Theorem 18 is satisfied. If
x is less than b,o, then by cardinality considerations and Theorem 3 also the second
hypothesis of Theorem 18 is satisfied.

The existence of a winning 2-tactic for TWO in the game MG(J) was described
in combinatorial terms as follows in Proposition of [9]: Let o9 be the cardinality
of (J). Then there are functions fA: A -- ogot+l, A 6 (J), such that if A C B are



MARKOV STRATEGIES 193

in (J) then {x A: fa(x) < fB(X)} is in J. Here is how one constructs such a
family of functions directly from the hypotheses of Theorem 18 for k 2: Since
(J) has a coherent decomposition, for each A (J) fix a function ga: A -- co as
in Theorem 4.3. From the hypothesis that ((J), C) 7 (co path),o/<,o,2 for each
A (J), by Theorem 8, we find a function ha: co co+l having properties (2) (a)
and (b) of that theorem. For each A, put fa ha 0 ga.

Also, note the distinction between Proposition l(b) of [9], and Proposition 5.3
above: starting from a coherent decomposition of [c] in terms of [c]< we obtain
functions which witness the existence of a winning 2-tactic, with ranges co instead of

co+ This raises the following question:

PROBLEM 6. Does the existence of a winning 2-tactic for TWO in MG([c]<)
imply the existence ofa coherent decompositionfor [c] in terms of [tc]<?
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