COANALYTIC FAMILIES OF NORMS ON A SEPARABLE BANACH SPACE

BENOÎT BOSSARD

Introduction

We define a standard Borel structure on the set of all equivalent norms of a separable Banach space through the Effros-Borel structure on the closed subsets of this space. In this frame, R. Kaufman has shown, using tools from harmonic analysis, that the set of rotund norms on $c_0(\mathbb{N})$ is a coanalytic non-Borel set ([K1]). Here, we show by straight geometric methods that an analytic set which contains the norms which are uniformly rotund in every direction (URED) on an infinite-dimensional Banach space Y with a basis contains a norm which is not rotund, and as a corollary we obtain that the set of URED norms is coanalytic non-Borel. It follows that if Y is an infinite dimensional separable Banach space, then the set of rotund norms is coanalytic non-Borel. Thus we obtain that the set of the Gateaux-differentiable norms on a reflexive separable infinite-dimensional Banach space is coanalytic non-Borel.

In the first section, we define a norm $||\cdot||$ on $c_0(\mathbb{N})$ which is uniformly rotund in every direction but one. In the second section, following similar lines as in the construction of the James tree space ([J], or see [LS]), to every tree θ on \mathbb{N} , we associate a Banach space $E(\theta)$, isomorphic to $c_0(\mathbb{N})$ and such that every branch supports a copy of a segment in the unit sphere of $(c_0(\mathbb{N}), ||\cdot||)$. If θ is well founded, the norm of $E(\theta)$ is shown to be URED, and if not, it is not rotund. In the third section, we deduce our main results.

We refer to [K2] and [D-G-S] for related results.

The author would like to thank G. Godefroy for his help in preparing this article.

Notation. Let X be a Banach space. We will denote by B_X the closed unit ball of X. If $A \subseteq X$, then conv(A) denotes its convex hull, $sp_Q(A)$ the Q-vector space spanned by A, sp(A) the vector space spanned by A, $\overline{conv}(A)$ and $\overline{sp}(A)$ their closures. We will denote by A^{ω} and $A^{<\omega}$ the set of all sequences and the set of all finite sequences in A. By "norm" on X, we always mean equivalent norm. We refer to [K-L] for the definitions of trees, height. We denote by \mathbb{N} the set $\{0, 1, 2, \ldots\}$ and by \mathbb{N}^* the set $\mathbb{N} \setminus \{0\}$. The tree $\omega^{<\omega}$ of finite sequences in \mathbb{N} will be denoted T. The set of trees on \mathbb{N} , that is, the set of subtrees of T, is denoted \mathcal{T} . A branch of a tree θ means $\sigma \in \omega^{\omega}$ such that $s \in \theta$ if $s \prec \sigma$. The set of well founded trees is denoted

© 1996 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received November 17, 1993.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46B20; Secondary 04A15.

WF. An interval [s, t] in T, with $s \in T$ and $t \in T$, is the set of the sequences w in T with $s \leq w \leq t$. We define a total order on T as follows: for $s \in T$, of length |s|, let $\sum(s)$ be the sum of its elements. Then

$$s < s'$$
 if $|s| + \sum(s) < |s'| + \sum(s')$ or if $|s| + \sum(s) = |s'| + \sum(s')$,

and if s is strictly less than s' in the lexicographical order.

This order determines a strictly increasing bijection $s \mapsto \overline{s}$ from T onto N. The

inverse image of $n \in \mathbb{N}$ is denoted \underline{s}_n . We shall use this order for indexing bases. We use the notation Σ_1^1 (resp. Π_1^1, Δ_1^1) for analytic (resp. coanalytic, Borel) set. A Π_1^1 which is not Δ_1^1 will be true Π_1^1 (see [K-L] for instance).

We recall that a norm $\|\cdot\|$ on a Banach space X is uniformly rotund in the direction $z \in X \setminus \{0\}$ if one of these two equivalent properties is true (see [D-G-Z], II, 6.1 and 6.2):

(i) If $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ are two sequences in X, such that $\lim ||x_n + y_n|| = 2$, and for any $n \in \mathbb{N}$, $||x_n|| = ||y_n|| = 1$ and $x_n - y_n \in sp(z)$, then $\lim ||x_n - y_n|| = 0$.

(ii) If $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ are two sequences in X, and $(\lambda_n)_{n \in \mathbb{N}}$ a sequence in \mathbb{R} such that $(x_n)_{n \in \mathbb{N}}$ is bounded,

$$\lim (2 ||x_n||^2 + 2 ||y_n||^2 - ||x_n + y_n||^2) = 0,$$

and for any $n \in \mathbb{N}$, $x_n - y_n = \lambda_n z$, then $\lim \lambda_n = 0$.

If the norm is uniformly rotund in every direction $z \in X \setminus \{0\}$, the norm is said to be uniformly rotund in every direction (URED).

Of course, if a norm is URED, it is rotund.

1. Construction and properties of a norm on $c_0(\mathbb{N})$

We denote by E the Banach space $c_0(\mathbb{N})$ equipped with the equivalent rotund norm

$$\|(x(i))_{i\in\mathbb{N}}\| = \sup_{i\in\mathbb{N}} |x(i)| + \left(\sum_{i\in\mathbb{N}} \frac{1}{2^i} x(i)^2\right)^{\frac{1}{2}}.$$

We denote by $(e_i)_{i \in \mathbb{N}}$ the normalized basis of *E* obtained from the canonical basis of $c_0(\mathbb{N})$. This basis is 1-unconditional.

In this basis a vector x is written $x = \sum_{i \in \mathbb{N}} x(i)e_i$. We define the set

$$E^+ = \{x \in E; \forall i \in \mathbb{N}, x(i) > 0\}.$$

If $p \in \mathbb{N}$, let $E_p = sp\{e_i; i \leq p\}$, and π_p the natural projection on E_p .

We shall define two vectors $x_1, x_2 \in E^+$, and show the existence of a countable family $\mathcal{F} = \{f_n; n \in \mathbb{N}^*\}$ in E^* , which separates two vectors of E as soon as their difference is not in $sp(x_2 - x_1)$, and such that, for any $f \in \mathcal{F}$, $f(x_1) = f(x_2) =$ 1, ||f|| < 1, and $f(e_i) > 0$ if $i \in \mathbb{N}$. Then we shall define on E an equivalent norm which is uniformly rotund in every direction except in the direction $x_2 - x_1$.

We start with a few lemmas.

Let $x_0 \in E^+$ be such that $(x_0(i))_{i \in \mathbb{N}} \in \ell_1(\mathbb{N}), x_0(0) > 1$, hence $||x_0|| > 1$, and $y_0 = \frac{x_0}{||x_0||} \in E^+$. Let $g_0 \in E^*$ be such that $||g_0|| = g_0(y_0) = 1$, and $f_0 = \frac{1}{||x_0||}g_0$.

LEMMA 1. (i) If $i \in \mathbb{N}$, $f_0(e_i) > 0$.

(ii) There exists $u \in E$ such that $x_1 = x_0 - u$ and $x_2 = x_0 + u$ are in E^+ , and such that for $p \in \mathbb{N}$, $u \notin E_p$, and if x is in the segment $[x_1, x_2]$, then $x \in E^+$, $x(0) = x_0(0) > 1$, $f_0(x) = 1$ and $(x(i))_{i \in \mathbb{N}} \in \ell_1(\mathbb{N})$.

Proof. (i) Let $i \in \mathbb{N}$, and assume $g_0(e_i) \leq 0$. Since $y_0 \in E^+$,

$$g_0(y_0 - y_0(i)e_i) \ge g_0(y_0) = 1,$$

then

$$||y_0 - y_0(i)e_i|| \ge 1.$$

Since $(e_i)_{i \in \mathbb{N}}$ is 1-unconditional, we have equality, and

$$g_0(y_0 - y_0(i)e_i) = g_0(y_0) = 1;$$

thus

$$g_0\left(\frac{1}{2}[(y_0-y_0(i)e_i)+y_0]\right)=1.$$

Hence

$$\left\|\frac{1}{2}[(y_0 - y_0(i)e_i) + y_0]\right\| = 1$$

which is a contradiction, because the norm $\|\cdot\|$ is rotund. Thus $g_0(e_i) > 0$, and

$$f_0(e_i) = \frac{1}{\|x_0\|} g_0(e_i) > 0.$$

(ii) Let u(0) = 0, and for $j \in \mathbb{N}^*$,

$$u(2j-1) = \frac{1}{2^{j} \|f_{0}\|} \inf(x_{0}(2j-1), x_{0}(2j), 1) f_{0}(e_{2j})$$
$$u(2j) = \frac{-1}{2^{j} \|f_{0}\|} \inf(x_{0}(2j-1), x_{0}(2j), 1) f_{0}(e_{2j-1}).$$

Since

$$\sum_{i \in \mathbb{N}} |u(i)| \leq \sum_{j \in \mathbb{N}^*} \frac{1}{2^j ||f_0||} \left(|f_0(e_{2j-1})| + |f_0(e_{2j})| \right)$$
$$\leq \sum_{j \in \mathbb{N}^*} \frac{2}{2^j} = 2,$$

we have $(u(i))_{i \in \mathbb{N}} \in \ell_1(\mathbb{N})$, and $\sum_{i \in \mathbb{N}} u(i)e_i = u$ defines a vector of E.

Since $x_0 \in E^+$, and $f_0(e_i) > 0$ for all *i*, we have $u(i) \neq 0$ for all i > 0, and $u \notin E_p$ for all *p*. It is easily seen that $f_0(u) = 0$.

Let $x_1 = x_0 - u$, and $x_2 = x_0 + u$. Then

$$f_0(x_0) = f_0(x_1) = f_0(x_2) = 1,$$

and $x_1 \in E^+$, $x_2 \in E^+$. Indeed,

$$x_1(0) = x_2(0) = x_0(0) > 0,$$

and for j > 0,

$$|u(2j-1)| \leq \frac{1}{2^{j}} x_0 (2j-1) \frac{f_0(e_{2j})}{\|f_0\|} < x_0 (2j-1),$$

$$|u(2j)| \leq \frac{1}{2^{j}} x_0(2j) \frac{f_0(e_{2j-1})}{\|f_0\|} < x_0(2j),$$

then $|u(i)| < x_0(i)$ for all i > 0, and $x_1 \in E^+$, $x_2 \in E^+$. Since $(u(i))_{i \in \mathbb{N}}$ and $(x_0(i))_{i \in \mathbb{N}}$ are in $\ell_1(\mathbb{N})$, $(x_1(i))_{i \in \mathbb{N}}$ and $(x_2(i))_{i \in \mathbb{N}}$ are in $\ell_1(\mathbb{N})$ as well. Thus all our conditions are satisfied for $x \in [x_1, x_2]$. \Box

We denote by S the segment $[x_1, x_2]$ in E, and $A = \overline{\text{conv}}[B_E \cup \{\pm \pi_p(x_1), \pm \pi_p(x_2); p \in \mathbb{N}\}]$. Then we have $S \subseteq A$, and the Minkowski functional j_A of A is clearly an equivalent norm on E.

LEMMA 2. There exists a countable family $\mathcal{F} = \{f_n; n \in \mathbb{N}^*\}$ in E^* such that

- (i) If $y, z \in E$ are such that $z y \notin sp(u)$, then for some $f \in \mathcal{F}$, $f(y) \neq f(z)$.
- (ii) For any $f \in \mathcal{F}$, if $x \in S$, the f(x) = 1, and if $x \in A \setminus S$, then $-1 \leq f(x) < 1$. Thus $j_A(x) = 1$ if $x \in S$.
- (iii) For any $f \in \mathcal{F}$, $f(e_i) > 0$ for all $i \ge 0$.

Let \mathcal{G} be the family $\{g \in E^*; g(x_1) = g(x_2) = 1, ||g|| < 1, g(e_i) > 0$ for all $i \ge 0\}$.

We first show

FACT. If $y, z \in E$ are such that $z - y \notin sp(u)$, then for some $g \in G$ we have $g(y) \neq g(z)$.

Proof. If $z - y \notin \ker f_0$, since $f_0 \in \mathcal{G}$, we can take $g = f_0$.

Assume $v = z - y \in \ker f_0$. We look for $h \in E^*$ such that $h(x_0) = 1$, h(u) = 0, $h(v) \neq 0$, and $h(e_i) > 0$ if $i \in \mathbb{N}$. The three vectors x_0 , u and v are linearly independent, because $u, v \in \ker f_0$, $v \notin sp(u)$, and $x_0 \notin \ker f_0$. Then there exists $i_1, i_2, i_3 \in \mathbb{N}$ such that

$$\begin{vmatrix} x_0(i_1) & x_0(i_2) & x_0(i_3) \\ u(i_1) & u(i_2) & u(i_3) \\ v(i_1) & v(i_2) & v(i_3) \end{vmatrix} \neq 0.$$

The system

$$\begin{cases} \sum_{j=1}^{3} x_0(i_j)\xi_j = 0\\ \sum_{j=1}^{3} u(i_j)\xi_j = 0\\ \sum_{j=1}^{3} v(i_j)\xi_j = 1 \end{cases}$$

has a unique solution (ξ_1, ξ_2, ξ_3) . Let $\alpha \neq 0$ be such that $f_0(e_{i_j}) - \alpha \xi_j > 0$ for $j \in \{1, 2, 3\}$.

We define $h \in E^*$ as follows: For $j \in \{1, 2, 3\}$, $h(e_{i_j}) = f_0(e_{i_j}) - \alpha \xi_j$. If $i \notin \{i_1, i_2, i_3\}$, $h(e_i) = f_0(e_i)$. Thus $h(e_i) > 0$ if $i \in \mathbb{N}$. It is easily seen that:

$$h(x_0) - f_0(x_0) = 0; \text{ thus } h(x_0) = 1.$$

$$h(u) - f_0(u) = 0; \text{ thus } h(u) = 0.$$

$$h(v) - f_0(v) = -\alpha; \text{ thus } h(v) \neq 0.$$

If $\beta \in [0, 1)$, let $g_{\beta} = \beta f_0 + (1 - \beta)h$. If $\beta \to 1$, then $g_{\beta} \to f_0$, and $||g_{\beta}|| \to ||f_0|| < 1$. Thus for some $\beta_0 \in [0, 1)$, $||g_{\beta_0}|| < 1$, and $g = g_{\beta_0}$ clearly satisfies the required conditions. \Box

We now come back to the proof of Lemma 2.

The set \mathcal{G} is w^* -separable. Let $\mathcal{F} = \{f_n; n \in \mathbb{N}^*\}$ be a w^* -dense sequence in \mathcal{G} . If y and z are two vectors of E such that $z - y \notin sp(u)$, from the fact, the set $\{g \in \mathcal{G}; g(z - y) \neq 0\}$ is w^* -open, non empty, and thus (i) is satisfied, and (iii) follows from $\mathcal{F} \subseteq \mathcal{G}$.

It remains to show (ii). Let $f \in \mathcal{F}$. As $f(x_1) = f(x_2) = 1$, if $x \in S$, then f(x) = 1. For j = 1, 2, we have $x_j \in E^+$, and for $i \in \mathbb{N}$, $f(e_i) > 0$. Therefore, for $p \in \mathbb{N}$, we have

$$0 \le f(\pi_p(x_i)) \le f(x_i) = 1$$

and, as ||f|| < 1, if $x \in A$, then $-1 \le f(x) \le 1$.

Now let $x \in A$ be such that f(x) = 1. We are going to show that, for any $\varepsilon > 0$, there exists $z \in S$ such that $||x - z|| \le \varepsilon$. Since S is closed, that will show that $x \in S$, and (ii) holds.

Let $\varepsilon > 0$. There exists $N \in \mathbb{N}$ such that, if $p \ge N$, then $||x_j - \pi_p(x_j)|| \le \frac{\varepsilon}{2}$ for $j \in \{1, 2\}$.

Let ε_1 be such that $\varepsilon_1 < 1 - ||f||$ and

$$0 < \varepsilon_1 < \inf\{x_j(i) f(e_i); i \le N, j \in \{1, 2\}\}.$$

If $p \in \mathbb{N}$ is such that $f(\pi_p(x_j)) \ge 1 - \varepsilon_1$ for $j \in \{1, 2\}$, then $p \ge N$, and $||x_j - \pi_p(x_j)|| \le \frac{\varepsilon}{2}$.

The set

 ${x_1, x_2} \cup {\pi_p(x_i); p \in \mathbb{N}, j \in \{1, 2\}}$

is compact; consequently so is the set

$$M_{\varepsilon_1} = \{x_1, x_2\} \cup \{\pi_p(x_j); p \in \mathbb{N}, j \in \{1, 2\}, f(\pi_p(x_j)) \ge 1 - \varepsilon_1\}.$$

We let

$$M'_{\varepsilon_1} = B_E \cup \{\pi_p(x_j); j \in \{1, 2\}, p \in \mathbb{N}, f(\pi_p(x_j)) \le 1 - \varepsilon_1\}$$

 $\cup \{-\pi_p(x_i); j \in \{1, 2\}, p \in \mathbb{N}\}.$

We have

 $A = \overline{\operatorname{conv}}(\overline{\operatorname{conv}}(M_{\varepsilon_1}) \cup \overline{\operatorname{conv}}(M'_{\varepsilon_1})),$

and, as $\overline{\operatorname{conv}}(M_{\varepsilon_1})$ is compact,

 $A = \operatorname{conv}(\operatorname{\overline{conv}}(M_{\varepsilon_1}) \cup \operatorname{\overline{conv}}(M'_{\varepsilon_1})).$

As $\varepsilon_1 < 1 - ||f||$, if $y \in \overline{\text{conv}}(M'_{\varepsilon_1})$, then $f(y) \le 1 - \varepsilon_1$ because it is true if $y \in M'_{\varepsilon_1}$, and if $y \in \overline{\text{conv}}(M_{\varepsilon_1})$, $1 - \varepsilon_1 \le f(y) \le 1$.

Since f(x) = 1, this implies $x \in \overline{\text{conv}}(M_{\varepsilon_1})$. Pick

$$y = \sum_{i=1}^{m} \alpha_i \pi_{p_i}(x_1) + \beta_i \pi_{p_i}(x_2) \in \operatorname{conv}(M_{\varepsilon_1})$$

such that $||y - x|| \le \frac{\varepsilon}{2}$, with, for $1 \le i \le m$, $\alpha_i \ge 0$, $\beta_i \ge 0$, $\pi_{p_i}(x_1) \in M_{\varepsilon_1}$, $\pi_{p_i}(x_2) \in M_{\varepsilon_1}$, and $\sum_{i=1}^{m} (\alpha_i + \beta_i) = 1$. Then

$$z = \left(\sum_{i=1}^{m} \alpha_i\right) x_1 + \left(\sum_{i=1}^{m} \beta_i\right) x_2 \in S,$$

and

$$\|x - z\| \le \|x - y\| + \left\| \sum_{i=1}^{m} [\alpha_i (x_1 - \pi_{p_i}(x_1)) + \beta_i (x_2 - \pi_{p_i}(x_2))] \right\|$$

$$\leq \frac{\varepsilon}{2} + \sum_{i=1}^{m} (\alpha_i + \beta_i) \frac{\varepsilon}{2} = \varepsilon$$

and (ii) is proved. \Box

We define the norm $\|\cdot\|$ on *E* by

$$|||x|||^{2} = \frac{1}{2}j_{A}(x)^{2} + \sum_{n \in \mathbb{N}^{*}} \frac{1}{2^{n+1}}f_{n}(x)^{2}.$$

Then we have:

LEMMA 3. (i) The norm $||| \cdot |||$ and the canonical norm of $c_0(\mathbb{N})$ are equivalent. (ii) For $p \in \mathbb{N}$ and $x \in S$, |||x||| = 1 and $|||\pi_{p+1}(x)||| > |||\pi_p(x)|||$. (iii) The norm $||| \cdot |||$ is uniformly rotund in every direction except in the direction of $u = \frac{1}{2}(x_2 - x_1)$.

Proof. (i) Clear.

(ii) Let $x \in S$. By Lemma 2 (ii), we have ||x||| = 1. Let $p \in \mathbb{N}$. As $S \subseteq E^+$, and $f_n(e_i) > 0$ for $n \in \mathbb{N}^*$ and $i \in \mathbb{N}$, we have

$$f_n(\pi_{p+1}(x)) > f_n(\pi_p(x)),$$

and, as $(e_i)_{i \in \mathbb{N}}$ is $\|\cdot\|$ -monotone, by the definition of A,

$$j_A(\pi_{p+1}(x)) \ge j_A(\pi_p(x)).$$

And thus

$$\|\pi_{p+1}(x)\| > \|\pi_p(x)\|$$
.

(iii) Let $\xi \notin sp(u)$ be a vector of $E, n_0 \in \mathbb{N}$ be such that $f_{n_0}(\xi) \neq 0, (\lambda_m)_{m \in \mathbb{N}}$ be a sequence in $\mathbb{R}, (y_m)_{m \in \mathbb{N}}$ and $(z_m)_{m \in \mathbb{N}}$ be two sequences in E such that $\lim ||y_m + z_m|| =$

168

2, and, for any $m \in \mathbb{N}$, $|||y_m||| = |||z_m||| = 1$ and $y_m - z_m = \lambda_m \xi$. By Lemma 2 (ii), we have

$$\begin{split} \|y_m + z_m\|^2 &\leq \frac{1}{2} (j_A(y_m) + j_A(z_m))^2 + \sum_{n \in \mathbb{N}^*} \frac{1}{2^{n+1}} (f_n(y_m) + f_n(z_m))^2 \\ &= j_A(y_m)^2 + j_A(z_m)^2 - \frac{1}{2} (j_A(y_m) - j_A(z_m))^2 \\ &+ \sum_{n \in \mathbb{N}^*} \frac{1}{2^{n+1}} [2f_n(y_m)^2 + 2f_n(z_m)^2 - f_n(y_m - z_m)^2] \\ &\leq 4 - \frac{1}{2^{n_0+1}} [f_{n_0}(y_m - z_m)]^2 \\ &= 4 - \frac{\lambda_m^2}{2^{n_0+1}} (f_{n_0}(\xi))^2; \end{split}$$

thus $\lim \lambda_m = 0$ and we have (iii). \Box

2. Construction of the family $\{E(\theta); \theta \in \mathcal{T}\}$

In this section, to any $\theta \in \mathcal{T}$, we associate a Banach space $E(\theta)$, isomorphic to $c_0(\mathbb{N})$, and which has a URED norm if θ is well founded, and a non-rotund norm otherwise. The construction is inspired by the construction of the James tree space ([J] or see [L-S)]).

On the space $c_{00}(T)$ of the finitely supported functions from $T = \omega^{<\omega}$ to \mathbb{R} , we define the norm $\|\cdot\|_T$ by

$$\|y\|_{T}^{2} = \sup\left(\left\|\left\|\sum_{s < b} y(s)e_{|s|}\right\|\right\|^{2} + \sum_{s \in b^{*}} \frac{c_{|s|}}{2^{\overline{s}}}y(s)^{2}\right)$$

where we take the supremum on the branches b of T, where b^* is the complement in T of $\{s; s \prec b\}$ and where, for any $n \in \mathbb{N}^*$, c_n is in(0, 1], and satisfies

$$0 < c_n \leq (\sup_{x \in S} x(n))^{-2} \inf_{x \in S} \left(\||\pi_n(x)||^2 - \||\pi_{n-1}(x)||^2 \right).$$

According to Lemma 3 (ii), and since S is compact, such $c'_n s$ exist. The space E(T) is the closure of $c_{00}(T)$ in this norm.

If $y \in E(T)$, and if b is a branch of T, we let

$$b(y) = \sum_{s \prec b} y(s) e_{|s|} \in E,$$

BENOÎT BOSSARD

$$b^{*}(y) = \left(\sum_{s \in b^{*}} \frac{c_{|s|}}{2^{\overline{s}}} y(s)^{2}\right)^{1/2}$$
$$\|y\|_{b} = \left(\|b(y)\|^{2} + b^{*}(y)^{2}\right)^{1/2}.$$

Then

$$||y||_T = \sup\{||y||_b; b \text{ branch of } T\}.$$

If $s \in T$, $\chi_s \in c_{00}(T)$ is the characteristic function of $\{s\}$. If $V \subseteq T$, we denote by E(V) the closure of the set $\{\chi_s; s \in V\}$ in the norm $\|\cdot\|_T$.

Then we have:

THEOREM 4. Let $\theta \in \mathcal{T}$ be an infinite tree on \mathbb{N} . Then $E(\theta)$ is isomorphic to $c_0(\mathbb{N})$, and:

If θ is well founded, the norm of $E(\theta)$ is URED.

If θ is not well founded, the norm of $E(\theta)$ is not rotund.

First, we show some properties of $E(\theta)$.

LEMMA 5. (i) The sequence $(\chi_{\underline{s}_i}; i \in \mathbb{N})$ is equivalent to the canonical basis of $c_0(\mathbb{N})$.

(ii) Let β be a branch of T, and for any $i \in \mathbb{N}$, let $\beta_i \in \omega^{<\omega}$ such that $|\beta_i| = i$ and $\beta_i \prec \beta$. If $x \in S$, then

$$\left\|\sum_{s\prec\beta}x(|s|)\chi_s\right\|_T = \left\|\sum_{i\in\mathbb{N}}x(i)\chi_{\beta_i}\right\|_T = \|x\|\| = 1.$$

In other words, S provides us with a segment on the unit sphere of $E(\{s; s \prec \beta\})$.

Proof. Let $(\mu_i)_{i=0}^n \in \mathbb{R}^{<\omega}$, and i_0 be such that $\sup_{0 \le i \le n} |\mu_i| = |\mu_{i_0}|$, and $y = \sum_{i=0}^n \mu_i \chi_{\underline{s}_i}$.

The basis $(e_i)_{i \in \mathbb{N}}$ of $(E, ||| \cdot |||)$ is equivalent to the canonical basis of $c_0(\mathbb{N})$; it is unconditional, and there exists k > 0 and k' > 0 independent of y such that for all branches b such that $\underline{s}_{i_0} \prec b$,

$$\frac{1}{k} |\mu_{i_0}| \le \left\| \mu_{i_0} e_{|\underline{s}_{i_0}|} \right\| \le k' \left\| b(y) \right\| \le k' \left\| y \right\|_T$$

and for any branch *b*,

$$|||b(y)||| = \left\| \sum_{s < b} \mu_{\overline{s}} e_{|s|} \right\| \le k |\mu_{i_0}|,$$

170

and

$$b^*(y) \le \sqrt{2}|\mu_{i_0}|$$

Therefore

$$||y||_T = \sup\{(||b(y)||^2 + b^*(y)^2)^{1/2}; b \text{ branch of } T\}$$

$$\leq \sqrt{k^2 + 2}|\mu_{i_0}|$$

and $\{\chi_{\underline{s}_i}; i \in \mathbb{N}\}$ is equivalent to the canonical basis of $c_0(\mathbb{N})$.

We show (ii). If $b \neq \beta$ is a branch of T, the intersection $\{s \prec b\} \cap \{s \prec \beta\}$ is $\{\beta_0, \beta_1, ..., \beta_n\}$ for some $n \in \mathbb{N}$, and then

$$\left\|\sum_{i\in\mathbb{N}}x(i)\chi_{\beta_i}\right\|_T^2 = \sup_{n\in\mathbb{N}}\left(\left\|\sum_{i=0}^n x(i)e_i\right\|^2 + \sum_{i>n}\frac{c_i}{2\overline{\beta_i}}x(i)^2\right).$$

Using the definition of the c_i 's we obtain

$$\left\|\sum_{i\in\mathbb{N}} x(i)\chi_{\beta_i}\right\|_{T}^{2} = \left\|\sum_{i\in\mathbb{N}} x(i)e_i\right\|^{2} = \||x||^{2} = 1.$$

If $y \in E(T)$, we denote by $\sum_{i \in \mathbb{N}} y(\underline{s}_i) \chi_{\underline{s}_i}$ its decomposition in the basis $(\chi_{\underline{s}_i}; i \in \mathbb{N})$.

Proof of Theorem 4. Using Lemma 5 (i) and the definition of $E(\theta)$, we have $E(\theta)$ isomorphic to $c_0(\mathbb{N})$.

If θ is not well founded, there exists a branch β of θ . Then Lemma 5 (ii) shows that $E(\theta)$ is not rotund.

Let now $\theta \in \mathcal{T}$ be a well founded tree. We are going to show that the norm of $E(\theta)$ is URED. If not, there exists $(\lambda_n)_{n\in\mathbb{N}} \subseteq \mathbb{R}$, $(y_n)_{n\in\mathbb{N}}$ and $(z_n)_{n\in\mathbb{N}}$ two sequences in $E(\theta)$, a vector $v \in E(\theta) \setminus \{0\}$, and $\varepsilon > 0$ such that $\lim \left\| \frac{y_n + z_n}{2} \right\|_T = 1$, and for any $n \in \mathbb{N}, \lambda_n > \varepsilon, y_n - z_n = \lambda_n v$, and $\|y_n\|_T = \|z_n\|_T = 1$. Let $(b_n)_{n\in\mathbb{N}}$ be a sequence of branches of T such that $\lim \left\| \frac{y_n + z_n}{2} \right\|_{b_n} = 1$. Since, for $n \in \mathbb{N}$,

$$\left\|\frac{y_n + z_n}{2}\right\|_{b_n} \le \frac{1}{2} \left(\|y_n\|_{b_n} + \|z_n\|_{b_n} \right)$$
$$\|y_n\|_{b_n} \le \|y_n\|_T = 1$$
$$\|z_n\|_{b_n} \le \|z_n\|_T = 1,$$

we have

(1)
$$\lim \|y_n\|_{b_n} = \lim \|z_n\|_{b_n} = \lim \left\|\frac{y_n + z_n}{2}\right\|_{b_n} = 1.$$

Then we show:

LEMMA 6. The set supp $v = \{t \in \theta; v(t) \neq 0\}$ is finite, and there exists $N \in \mathbb{N}$ such that for $n \geq N$, supp $v \subseteq \{s; s \prec b_n\}$.

Proof. Let $t \in \text{supp } v$. Assume that there exists a subsequence $(b_{n_m})_{m \in \mathbb{N}}$ of $(b_n)_{n \in \mathbb{N}}$ such that $t \notin \{s; s \prec b_{n_m}\}$ for any m. Then,

$$\begin{aligned} |y_{n_m}(t) - z_{n_m}(t)| &= |\lambda_{n_m}v(t)| \ge \varepsilon |v(t)| \\ \left\| \frac{y_{n_m} + z_{n_m}}{2} \right\|_{b_{n_m}}^2 &= \left\| b_{n_m} \left(\frac{y_{n_m} + z_{n_m}}{2} \right) \right\|^2 + \sum_{s \in b_{n_m}^*} \frac{c_{|s|}}{2^{\overline{s}}} \left(\frac{y_{n_m}(s) + z_{n_m}(s)}{2} \right)^2 \\ &\le \frac{1}{2} \left(\left\| b_{n_m}(y_{n_m}) \right\|^2 + \left\| b_{n_m}(z_{n_m}) \right\|^2 \\ &+ \sum_{s \in b_{n_m}^*} \frac{c_{|s|}}{2^{\overline{s}}} \left(y_{n_m}(s)^2 + z_{n_m}(s)^2 \right) \right) \\ &- \frac{c_{|t|}}{2^{\overline{t}}} \left(\frac{y_{n_m}(t) - z_{n_m}(t)}{2} \right)^2 \\ &\le \frac{1}{2} \left(\left\| y_{n_m} \right\|_{b_{n_m}}^2 + \left\| z_{n_m} \right\|_{b_{n_m}}^2 \right) - \frac{c_{|t|}}{2^{\overline{t}}} \left(\varepsilon \frac{v(t)}{2} \right)^2. \end{aligned}$$

Then passing to the limit, we obtain

$$1 \le 1 - \frac{c_{|t|}}{2^{\overline{t}}} \left(\varepsilon \frac{v(t)}{2} \right)^2$$

and this is a contradiction.

Therefore, if $t \in \text{supp } v$, there exists $N(t) \in \mathbb{N}$ such that $t \prec b_n$ for $n \ge N(t)$.

Moreover, if $t' \in \text{supp } v$, and if $n \ge \sup(N(t), N(t'))$, then $t \prec b_n$ and $t' \prec b_n$. As θ is well founded, supp v is finite, and for some $N \in \mathbb{N}$, if $n \ge N$, then supp $v \subseteq \{s; s \prec b_n\}$. \Box

We now come back to the proof of Theorem 4.

Let $\zeta = \sum_{s \in \text{supp } v} v(s)e_{|s|} \in E$. It belongs to E_p for some $p \in \mathbb{N}$, therefore by Lemma 1 (ii), $\zeta \notin sp(u)$. For $n \ge N$, we have, by Lemma 6,

$$b_n(y_n) - b_n(z_n) = \lambda_n \zeta$$

and

$$b_n^*(y_n) = b_n^*(z_n) = b_n^*\left(\frac{y_n + z_n}{2}\right).$$

Using (1), we have

$$\lim [2 \|y_n\|_{b_n}^2 + 2 \|z_n\|_{b_n}^2 - \|y_n + z_n\|_{b_n}^2] = 0,$$

then, with [D-G-Z], II.2.3,

$$\lim [2 |||b_n(y_n)|||^2 + 2 |||b_n(z_n)|||^2 - |||b_n(y_n) + b_n(z_n)|||^2] = 0.$$

Since the norm $||| \cdot |||$ on E is uniformly rotund in the direction ζ (Lemma 3, (iii)), we have

 $\lim \lambda_n = 0$

and this is a contradiction with $\lambda_n > \varepsilon$.

Consequently, the norm of $E(\theta)$ is URED, and this concludes the proof of Theorem 4. \Box

3. Main results

In this section, we define a standard Borel structure on the set of all equivalent norms on a Banach space Y, and by Theorem 4 we show the announced results when Y is an infinite dimensional Banach space with a basis.

Let Y be a separable Banach space. The set of the equivalent norms on Y and the set $\mathcal{N}(Y)$ of the symmetric closed bounded convex sets with nonempty interior in Y are in one to one correspondance through the map which associates a norm with its unit ball. We shall identify a norm with its unit ball.

We equip the set $\mathcal{F}(Y)$ of the closed subsets of Y with the Effros-Borel structure (see [C]) about which we recall some facts.

The Effros Borel structure on the set of closed subsets of a Polish space P is a Borel structure defined from the Borel structure induced by the Hausdorff topology on the set of closed subsets of a compactification of P. The Effros Borel structure is standard, that is to say this Borel structure is generated by a Polish topology on $\mathcal{F}(P)$. If $(V_n)_{n \in \mathbb{N}}$ is a countable base for the topology of P, the family $\{\{F \in \mathcal{F}(P); F \cap V_n \neq \emptyset\}; n \in \mathbb{N}\}$ generates the Effros Borel structure on $\mathcal{F}(P)$. This Borel structure is therefore independent of the compactification of P.

Then we have:

PROPOSITION 7. The subset $\mathcal{N}(Y)$ is a Borel subset of $\mathcal{F}(Y)$.

By this proposition, $\mathcal{N}(Y)$ is a standard Borel space, and there exists a Polish topology on $\mathcal{N}(Y)$ which generates the Borel structure induced by the Effros Borel structure.

This proposition is shown by classical techniques (see Annex 1).

If the dimension of Y is finite, we have

$$\{F \in \mathcal{N}(Y); F \text{ rotund }\} = \{F \in \mathcal{N}(Y); F \text{ URED}\}$$
$$= \{F \in \mathcal{N}(Y); F \text{ uniformly convex }\}$$

and this set is easily seen to be Δ_1^1 .

The main result, obtained by the completness method (see [K-L, p. 110]) is:

THEOREM 8. Let Y be an infinite dimensional Banach space with a basis, and $\mathcal{A} \subseteq \mathcal{N}(Y)$ a Σ_1^1 set of norms on Y, including all the URED norms. Then \mathcal{A} contains a norm which is not rotund.

COROLLARY 9. Let Y be an infinite dimensional Banach space with a basis. The set of rotund norms on Y, and the set of URED norms are true Π_1^1 .

The result for the rotund norms will be extended to any infinite dimensional separable Banach space.

Let Y be an infinite dimensional Banach space with a basis. We shall assume, without loss of generality, that Y is equipped with a monotone normalized basis $y = (y_i)_{i \in \mathbb{N}}$.

To any $\theta \in \mathcal{T}$, we are going to associate $F_{\theta} \in \mathcal{N}(Y)$, so that if $\theta \in WF$, then F_{θ} is URED, and if $\theta \notin WF$, then F_{θ} is not rotund.

For $j \in \mathbb{N}$, we denote by S_j the set $\{s; s \leq \underline{s}_j\}$.

Let $\theta \in \mathcal{T}$ be an infinite tree on \mathbb{N} . The total order on θ induced by the total order on T defines a strictly increasing bijection from \mathbb{N} onto θ . We denote by \underline{s}_{θ_i} the image of i by this bijection, and by \overline{s}^{θ} the inverse image of $s \in \theta$. For $j \in \mathbb{N}$, S_j^{θ} is $S_j \cap \theta$, and for $x \in E$, $S_j^{\theta}(x)$ is the vector in Y given by

$$S_j^{\theta}(x) = \sum_{s \in S_j^{\theta}} x(|s|) y_{\overline{s}^{\theta}}.$$

Then we define two sets in $\mathcal{N}(Y)$

$$C_{\theta} = \overline{\text{conv}}(B_Y \cup \{\pm S_j^{\theta}(x_1), \pm S_j^{\theta}(x_2); j \in \mathbb{N}\})$$

$$F_{\theta} = \left\{ z \in Y; \frac{1}{2} j_{C_{\theta}}(z)^2 + \frac{1}{2} \left\| \sum_{i} z(i) \chi_{\underline{s}_{\theta_i}} \right\|_T^2 \le 1 \right\}$$

where if $z \in Y$, $z = \sum_{i} z(i) y_i$.

Theorem 8 follows from our next lemma.

LEMMA 10. (i) The map $\varphi = \mathcal{T} \to \mathcal{N}(Y)$ defined by $\varphi(\theta) = F_{\theta}$ is Δ_1^1 . (ii) If $\theta \in WF$, F_{θ} is URED.

If $\theta \notin WF$, F_{θ} is not rotund.

Assume that this lemma is true, and let $\mathcal{A} \subseteq \mathcal{N}(Y)$ be a Σ_1^1 set containing the URED norms. Then $\varphi^{-1}(\mathcal{A})$ is Σ_1^1 by (i), and contains WF by (ii). As WF is not Σ_1^1 (see [K-L]), there exists $\theta \notin WF$ such that F_{θ} , which is not rotund by (ii), is in \mathcal{A} , and Theorem 8 follows. \Box

Proof of Corollary 9. First, $\{F \in \mathcal{N}(Y); F \text{ rotund}\}\$ and $\{F \in \mathcal{N}(Y); F \text{ URED}\}\$ are not Σ_1^1 by Theorem 8. By classical methods, one shows that they are Π_1^1 (see Annex 2). \Box

Proof of Lemma 10 (i). First we have the following result.

Fact 11. If
$$z = \sum_i z(i)y_i \in sp_{\mathbf{Q}}(y)$$
, the map $\psi^z = \mathcal{T} \to \mathbb{R}$ defined by

$$\psi^{z}(\theta) = \frac{1}{2}j_{C_{\theta}}(z)^{2} + \frac{1}{2}\left\|\sum_{i} z(i)\chi_{\underline{s}_{\theta_{i}}}\right\|_{T}^{2}$$

is Δ_1^1 .

We check this fact in Appendix 3.

Let \mathcal{O} be open in Y. If $\theta \in \mathcal{T}$, as $\overset{\circ}{F}_{\theta}$ is not empty, we have $F_{\theta} \cap \mathcal{O} \neq \emptyset$ if and only if there exists $z \in sp_{\mathbf{Q}}(y)$ such that $z \in F_{\theta} \cap \mathcal{O}$. Thus

$$\{\theta \in \mathcal{T}; F_{\theta} \cap \mathcal{O} \neq \emptyset\} = \bigcup_{z \in sp_{\mathbf{O}}(y) \cap \mathcal{O}} \{\theta; \psi^{z}(\theta) \leq 1\}.$$

By Fact 11, this set is Δ_1^1 , and (i) follows. \Box

Proof of Lemma 10 (ii). Let $\theta \in WF$, $(z_n)_{n \in \mathbb{N}} \subseteq Y$, $(z'_n)_{n \in \mathbb{N}} \subseteq Y$, $(\lambda_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$, and $\zeta \in Y \setminus \{0\}$ such that $(z_n)_{n \in \mathbb{N}}$ is bounded, $z'_n - z_n = \lambda_n \zeta$ for any $n \in \mathbb{N}$, and

$$\lim \left(2j_{F_{\theta}}(z_n)^2 + 2j_{F_{\theta}}(z'_n)^2 - j_{F_{\theta}}(z_n + z'_{n^2})^2 \right) = 0.$$

Since for $z \in Y$,

$$j_{F_{\theta}}(z)^{2} = \frac{1}{2} j_{C_{\theta}}(z)^{2} + \frac{1}{2} \left\| \sum_{i} z(i) \chi_{\underline{s}_{\theta_{i}}} \right\|_{T}^{2},$$

by [D-G-Z], Fact II 2.3(ii), we have

$$\lim\left(2\left\|\sum_{i}z_{n}(i)\chi_{\underline{s}_{\theta_{i}}}\right\|_{T}^{2}+2\left\|\sum_{i}z_{n}'(i)\chi_{\underline{s}_{\theta_{i}}}\right\|_{T}^{2}-\left\|\sum_{i}(z_{n}(i)+z_{n}'(i))\chi_{\underline{s}_{\theta_{i}}}\right\|_{T}^{2}\right)=0$$

and since the norm of $E(\theta)$ is URED, we conclude that

$$\lim \lambda_n = 0.$$

Thus F_{θ} is URED.

Let $\theta \notin WF$, b a branch of θ , and $x \in S = [x_1, x_2]$. Since $(x(i))_{i \in \mathbb{N}}$ is in $\ell_1(\mathbb{N})$ (Lemma 1 (ii)), we can define

$$x_b = \sum_{s \prec b} x(|s|) y_{\overline{s}^{\theta}}.$$

Then

$$j_{F_{\theta}}(x_{b})^{2} = \frac{1}{2}j_{C_{\theta}}(x_{b})^{2} + \frac{1}{2}\left\|\sum_{s \prec b} x(|s|)\chi_{s}\right\|_{T}^{2}$$

Using Lemma 5 (ii), we have

$$\left\|\sum_{s \prec b} x(|s|) \chi_s\right\|_T = 1.$$

Moreover, $j_{C_{\theta}}(x_b) = 1$. Indeed, clearly $x_b \in C_{\theta}$, and it suffices to show that $x_b \notin C_{\theta}$. Assume $x_b \in C_{\theta}$. Then

$$x_b \in \operatorname{conv}(B_Y \cup \{\pm S_j^{\theta}(x_1), \pm S_j^{\theta}(x_2); j \in \mathbb{N}\})$$

As y is monotone, and x(0) > 1,

$$x_b \in \operatorname{conv}(\{S_j^{\theta}(x_1), S_j^{\theta}(x_2); j \in \mathbb{N}\})$$

and this is a contradiction, because for any $i \in \mathbb{N}$, $x(i) \neq 0$. Thus $x_b \notin C_{\theta}$, and $j_{C_{\theta}}(x_b) = 1$. Therefore if $x \in S$, then $j_{F_{\theta}}(x_b) = 1$, and F_{θ} is not rotund. \Box

We now extend the result on rotund norms to any separable Banach space.

THEOREM 12. Let Y be an infinite dimensional separable Banach space, and $\mathcal{A} \subseteq \mathcal{N}(Y)$ be a Σ_1^1 set of norms on Y including all the rotund norms. Then \mathcal{A} contains a norm which is not rotund.

Moreover, the set of rotund norms on Y is a true Π_1^1 set.

Proof. There exists $y = (y_i)_{i \in \mathbb{N}}$ a basic sequence in Y ([L-T], 1.a. 5). Let $Y' = \overline{sp}(y)$, and for $F \in \overline{\mathcal{N}}(Y)$, let $r(F) = F \cap Y' \in \mathcal{N}(Y')$.

Fact 13. The map $r: \mathcal{N}(Y) \to \mathcal{N}(Y')$ is Δ_1^1 .

Indeed, let \mathcal{O} be an open set of Y. Then

$$\{F \in \mathcal{N}(Y); r(F) \cap \mathcal{O} \neq \emptyset\} = \{F; \exists z \in sp_{\mathbf{Q}}(\underline{y}) \cap \mathcal{O}, z \in F\}.$$

Since this set is Δ_1^1 , the fact follows.

Every rotund norm on a closed subspace of Y can be extended to an equivalent rotund norm on Y ([J-Z], see [D-G-Z], II.8.2). Therefore if $\mathcal{A} \subseteq \mathcal{N}(Y)$ is Σ_1^1 and contains the rotund norms, then $r(\mathcal{A})$ is Σ_1^1 , and contains the rotund norms on Y', and by Theorem 8 contains a norm which is not rotund; thus \mathcal{A} contains a non-rotund norm. The end of the proof is the same as that of Corollary 9. \Box

COROLLARY 14. Let Y be an infinite dimensional separable reflexive Banach space. The set of the Gateaux-differentiable norms on Y is true Π_1^1 .

Proof. As Y is reflexive, a norm $F \in \mathcal{N}(Y)$ is Gateaux-differentiable if and only if the corresponding dual norm is rotund (see [D-G-Z], II.1.6).

Fact 15. Let Y be a separable reflexive Banach space. The map $\mathcal{D}: \mathcal{N}(Y) \to \mathcal{N}(Y^*)$ which, to a norm F on Y, associates its dual norm F^0 , is a bijective borelian map.

Indeed, since Y is reflexive, this map is bijective. Let \mathcal{O} be an open set in Y^* , <u>y</u> be a total sequence in Y, and y^* a total sequence in Y^* . Then

$$\{F \in \mathcal{N}(Y); F^0 \cap \mathcal{O} \neq \emptyset\}$$

= $\{F \in \mathcal{N}(Y); \exists y^* \in sp_Q(\underline{y}^*) \cap \mathcal{O}, \forall y \in sp_Q(\underline{y}), |y^*(y)| \le 1 \text{ or } y \notin F\}$

and this set is Δ_1^1 . Thus the map is Δ_1^1 and the fact follows.

As $\{G \in \mathcal{N}(Y^*); G \text{ rotund}\}\$ is true Π_1^1 and image under \mathcal{D} of $\{F \in \mathcal{N}(Y); F \text{ Gateaux-differentiable}\}\$, this set is true Π_1^1 as well. \Box

Our work leads to the following:

Problem. Let Y be an infinite dimensional separable Banach space ; if a Σ_1^1 set in $\mathcal{N}(Y)$ contains the norms which are at the same time URED and locally uniformly rotund, does it contain a non-rotund norm?

Appendix 1

Proof of Proposition 7. Let $F \in \mathcal{F}(Y)$. We have the equivalence

$$F \in \mathcal{N}(Y) \Leftrightarrow \begin{cases} (i) \quad \exists \ M \in \mathbb{N}, \ F \subseteq M.B_Y \\ (ii) \quad \exists \ m \in \mathbf{Q}^{*+}, \ m.B_Y \subseteq F \\ (iii) \quad \forall \ x, \ y \in F, \ \frac{x+y}{2} \in F \\ (iv) \quad \forall \ x \in F, \ -x \in F \end{cases}$$

As the relation \subseteq is Δ_1^1 in $\mathcal{F}(Y)$, the conditions (i) and (ii) are Δ_1^1 .

Let $(O_m)_{m \in \mathbb{N}}$ be a countable basis of open sets of Y. The closed set F satisfies (iii) if and only if

$$\forall (m,n) \in \mathbb{N}^2, \qquad \begin{array}{c} O_m \cap F \neq \emptyset \\ O_n \cap F \neq \emptyset \end{array} \qquad \Longrightarrow \quad \frac{1}{2} (O_m + O_n) \cap F \neq \emptyset.$$

This is clear since $\{\frac{1}{2}(O_m + O_n); m, n \in \mathbb{N}, x \in O_m, y \in O_n\}$ is a basis of neighbourhoods of $\frac{x+y}{2}$. Therefore, the following set is Δ_1^1 :

 $\{F; F \text{ verifies (iii)}\}$

$$= \cap_{(m,n)\in\mathbb{N}^2} [\{F; \frac{1}{2}(O_m + O_n) \cap F \neq \emptyset\} \cup \{F; O_m \cap F = \emptyset\} \cup \{F; O_n \cap F = \emptyset\}].$$

Similarly, F verifies (iv) if and only if

$$\forall m \in \mathbb{N}, O_m \cap F \neq \emptyset \Rightarrow (-O_m) \cap F \neq \emptyset$$

Then the following set is Δ_1^1 :

$$\{F; F \text{ verifies (iv)}\} = \bigcap_{m \in \mathbb{N}} [\{F; (-O_m) \cap F \neq \emptyset\} \cup \{F; O_m \cap F = \emptyset\}].$$

Consequently, $\mathcal{N}(Y)$ is Δ_1^1 .

Appendix 2

Let Y be a separable Banach space. The following sets are Π_1^1 :

$$\mathcal{N}_R = \{F \in \mathcal{N}(Y); F \text{ rotund}\}$$

$$\mathcal{N}_{u} = \{F \in \mathcal{N}(Y); F URED\}.$$

Proof. We have the equivalence

$$F \notin \mathcal{N}_R \Leftrightarrow \exists y, z \in Y, j_F(y) = j_F(z) = j_F\left(\frac{y+z}{2}\right) = 1.$$

Fact. The set $\{(F, y) \in \mathcal{N}(Y) \times Y; j_F(y) = 1\}$ is Δ_1^1 .

Indeed, $j_F(y) = 1$ if and only if for any $\lambda \in \mathbf{Q}$ such that $\lambda > 1$, we have $y \in F$ and $\lambda y \notin F$. Since $\{(F, y); y \in F\}$ is Δ_1^1 , the fact follows.

Then the complement of \mathcal{N}_R is Σ_1^1 as projection of

$$\left\{(F, y, z) \in \mathcal{N}(Y) \times Y \times Y; j_F(y) = j_F(z) = j_F\left(\frac{y+z}{2}\right) = 1\right\},\$$

and, this set is Δ_1^1 by the above. Therefore \mathcal{N}_R is Π_1^1 .

We have $F \notin \mathcal{N}_u$ if and only if there exists $\xi \in Y \setminus \{0\}, \varepsilon \in \mathbf{Q}^{*+}$,

$$(\lambda_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\omega}, (y_n)_{n\in\mathbb{N}}\in Y^{\omega}, (z_n)_{n\in\mathbb{N}}\in Y^{\omega}$$

such that $\lim j_F(y_n + z_n) = 2$, $(y_n)_{n \in \mathbb{N}}$ is bounded, and for any $n \in \mathbb{N}$, $\lambda_n > \varepsilon$, and

$$j_F(y_n) = j_F(z_n) = 1, y_n - z_n = \lambda_n \xi.$$

By classic methods, it follows that \mathcal{N}_u is Π_1^1 . \Box

Appendix 3

Proof of Fact 11. Let $(\xi_j)_{j \in \mathbb{N}}$ be an enumeration of $sp_{\mathbb{Q}}(y) \cap B_Y$.

First, if $x \in E$ and $j \in \mathbb{N}$, the map $\mathcal{T} \to Y$: $\theta \mapsto S_j^{\theta}(x)$ is continuous. Indeed, if $(\theta^{\ell})_{\ell \in \mathbb{N}}$ is a sequence of trees in \mathcal{T} which converges towards θ , there exists $L \in \mathbb{N}$ such that if $\ell \ge L$ and $i \le j, \underline{s}_i \in \theta$ if and only if $\underline{s}_i \in \theta^{\ell}$. Then if $\ell \ge L$, we have $S_j^{\theta^{\ell}}(x) = S_j^{\theta}(x)$.

Consequently, the map

$$\psi_1 = \mathcal{T} \to (Y^5)^{\omega}$$

defined by

$$\psi_1(\theta) = (\xi_j, S_j^{\theta}(x_1), S_j^{\theta}(x_2), -S_j^{\theta}(x_1), -S_j^{\theta}(x_2))_{j \in \mathbb{N}}$$

is continuous.

Next, the map

$$Y^{\omega} \to \mathcal{F}(Y): (z_n)_{n \in \mathbb{N}} \mapsto \overline{\operatorname{conv}}(\{z_n; n \in \mathbb{N}\})$$

is Δ_1^1 . Indeed, let \mathcal{O} be an open set of Y. We have

$$\{(z_n)_{n\in\mathbb{N}}\in Y^{\omega}; \overline{\operatorname{conv}}(\{z_n; n\in\mathbb{N}\})\cap\mathcal{O}\neq\emptyset\}$$
$$=\left\{(z_n)_{n\in\mathbb{N}}\in Y^{\omega}; \exists (\lambda_i)_i\in \mathbf{Q}^{<\omega}, \sum_i\lambda_i=1, \lambda_i\geq 0 \text{ for any } i, \text{ and } \sum_i\lambda_iz_i\in\mathcal{O}\right\}$$

and this set is Δ_1^1 . Thus the map $\psi_2 = (Y^5)^{\omega} \to \mathcal{F}(Y)$ defined by

$$\psi_2[((z_j^k)_{k=1}^5)_{j\in\mathbb{N}}] = \overline{\operatorname{conv}}\{z_j^k; 1 \le k \le 5, j \in \mathbb{N}\}$$

is Δ_1^1 .

If $z \in Y$, the map $\psi_3^z = \mathcal{N}(Y) \to \mathbb{R}^+$ defined by $\psi_3^z(C) = j_C(z)$ is Δ_1^1 . Indeed, if (a, b) is an interval in \mathbb{R}^+ ,

$$\{C \in \mathcal{N}(Y); j_C(z) \in (a, b)\} = \{C \in \mathcal{N}(Y); z \notin a.C \text{ and } z \in b.C\}$$

and this set is Δ_1^1 .

Finally, if $i \in \mathbb{N}$, the map $\mathcal{T} \to E(T)$: $\theta \mapsto \chi_{\underline{s}_{\theta_i}}$ is continuous. Indeed, if $(\theta^{\ell})_{\ell \in \mathbb{N}}$ converges towards θ , there exists $L \in \mathbb{N}$ such that if $\ell \ge L$, and if $j \le \overline{s}_{\theta_i}$, then $\underline{s}_j \in \theta$ if and only if $\underline{s}_j \in \theta^{\ell}$. Therefore, if $\ell \ge L$, then $\underline{s}_{\theta_i^{\ell}} = \underline{s}_{\theta_i}$, and $\chi_{\underline{s}_{\theta_i}} = \chi_{\underline{s}_{\theta_i}}$.

Consequently, if $z = \sum_i z(i) y_i \in sp_Q(y)$, the map $\psi_4^z = \mathcal{T} \to \mathbb{R}$ defined by

$$\psi_4^z(\theta) = \left\|\sum_i z(i)\chi_{\underline{s}_{\theta_i}}\right\|_T$$

is continuous.

Hence for $z \in sp_{\mathbf{Q}}(y)$, we have

$$\begin{split} \psi^{z}(\theta) &= \frac{1}{2} j_{C_{\theta}}(z)^{2} + \frac{1}{2} \left\| \sum_{i} z(i) \chi_{\underline{s}_{\theta_{i}}} \right\|_{T}^{2} \\ &= \frac{1}{2} [\psi_{3}^{z} \cdot \psi_{2} \cdot \psi_{1}(\theta)]^{2} + \frac{1}{2} [\psi_{4}^{z}(\theta)]^{2}, \end{split}$$

and the map ψ^z is Δ_1^1 .

REFERENCES

- [C] J. P. R. Christensen, *Topology and Borel structure*, North-Holland Math. Stud., vol. 10, North-Holland, Amsterdam, 1974.
- [D-G-Z] R. Deville, G. Godefroy, and V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics 64, Longman Scientific & Technical, 1993.
- [D-G-S] G. Debs, G. Godefroy, and J. Saint Raymond, Topological properties of the set of norm-attaining linear functionals, Canadian J. Math. 47 (1995), 318–329.
- [J] R. C. James, A somewhat reflexive Banach space with non separable dual, Bull. Amer. Math. Soc. 80, (1974), 738–743.
- [J-Z] K. John and V. Zizler, On extension of rotund norms, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron-Phys. 24 (1976), 705–707.
- [K1] R. Kaufman, Circulated notes, 1992.
- [K2] R. Kaufman, Topics on analytic sets. Fundamenta Math. 139, (1991), 215–220.

180

- [K-L] A. S. Kechris and A. Louveau, Descriptive set theory and the structure of sets of uniqueness, London Mathematical Society, Lecture Notes series 128, 1987.
- [L-S] J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain l₁ and whose duals are non separable, Studia Math. 54, (1975), 81–105.
- [L-T] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Sequence spaces, Springer-Verlag, New York, 1977.

Université Paris VI Paris