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COANALYTIC FAMILIES OF NORMS
ON A SEPARABLE BANACH SPACE

BENO$T BOSSARD

Introduction

We define a standard Borel structure on the set ofall equivalent norms ofa separable
Banach space through the Effros-Borel structure on the closed subsets of this space.
In this frame, R. Kaufman has shown, using tools from harmonic analysis, that the
set of rotund norms on c0(N) is a coanalytic non-Borel set ([K1]). Here, we show
by straight geometric methods that an analytic set which contains the norms which
are uniformly rotund in every direction (URED) on an infinite-dimensional Banach
space Y with a basis contains a norm which is not rotund, and as a corollary we obtain
that the set of URED norms is coanalytic non-Borel. It follows that if Y is an infinite
dimensional separable Banach space, then the set of rotund norms is coanalytic non-
Borel. Thus we obtain that the set of the Gateaux-differentiable norms on a reflexive
separable infinite-dimensional Banach space is coanalytic non-Borel.

In the first section, we define a norm Ill’Ill on c0(N) which is uniformly rotund
in every direction but one. In the second section, following similar lines as in the
construction ofthe James tree space ([J], or see [LS]), to every tree 0 on N, we associate
a Banach space E (0), isomorphic to c0(N) and such that every branch supports a copy
of a segment in the unit sphere of (c0(N), II1" III). If 0 is well founded, the norm of E(O)
is shown to be URED, and if not, it is not rotund. In the third section, we deduce our
main results.
We refer to [K2] and [D-G-S] for related results.
The author would like to thank G. Godefroy for his help in preparing this article.

Notation. Let X be a Banach space. We will denote by Bx the closed unit
ball of X. If A c_ X, then conv(A) denotes its convex hull, spQ(A) the Q-vector
space spanned by A, sp(A) the vector space spanned by A, c-’0"fiV(A) and Tfi(A) their
closures. We will denote by A and A<o the set of all sequences and the set of all
finite sequences in A. By "norm" on X, we always mean equivalent norm. We refer
to [K-L] for the definitions of trees, height. We denote by N the set {0, 1, 2 and
by 1* the set 11 \ {0}. The tree 09

<‘0 of finite sequences in N will be denoted T. The
set of trees on 1, that is, the set of subtrees of T, is denoted T. A branch of a tree
0 means tr 6 a such that s 6 0 if s -< or. The set of well founded trees is denoted
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WE An interval [s, t] in T, with s T and T, is the set of the sequences to in T
with s -< to -< t. We define a total order on T as follows: for s T, of length Is I, let
(s) be the sum of its elements. Then

s < s’ if Isl + (s) < Is’l + Z(s’)or if Isl + ’(s)= Is’l + Z(s’),
and if s is strictly less than s’ in the lexicographical order.

This order determines a strictly increasing bijection s - from T onto 51. The
inverse image of n N is denoted S_n. We shall use this order for indexing bases.
We use the notation E (resp. I-I I, A I) for analytic (resp. coanalytic, Borel) set.

A H which is not A will be true H (see [K-L] for instance).
We recall that a norm II. on a Banach space X is uniformly rotund in the direction

z X \ {0} if one of these two equivalent properties is true (see [D-G-Z], II, 6.1 and
6.2):

(i) If (xn)nN and (y,)nr are two sequences in X, such that lim IIx / y 2,
and for any n 5t, Ilxn IlYn and Xn Yn - sp(z), then lim Ilxn Yn 0.

(ii) If (x)r and (Yn)nN are two sequences in X, and (.)r a sequence in
such that (Xn)eN is bounded,

lim(2 llxn 2 -+- 2 IlYn I1-- Ilxn -t- Yn z) 0,

and for any n 6 N, Xn Yn nz, then limn 0.
If the norm is uniformly rotund in every direction z 6 X \ {0}, the norm is said to

be uniformly rotund in every direction (URED).
Of course, if a norm is URED, it is rotund.

I. Construction and properties of a norm on co(N)

We denote by E the Banach space co(N) equipped with the equivalent rotund norm

We denote by (ei)ir the normalized basis of E obtained from the canonical basis of
c0(N). This basis is !-unconditional.

In this basis a vector x is written x iN x(i)ei. We define the set

E+={xE;iN,x(i)>O}.

If p N, let Et, sp{ei; < p}, and zrt, the natural projection on E,.
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We shall define two vectors X l, X2 E E+, and show the existence of a countable
family .T" {fn;n N*} in E*, which separates two vectors of E as soon as their
difference is not in sp(x2 X1), and such that, for any f .T’, f (x l) f(x2)
1, f < l, and f(ei) > 0 if N. Then we shall define on E an equivalent norm
which is uniformly rotund in every direction except in the direction x2 Xl.

We start with a few lemmas.
Let xo 6 E+ be such that (Xo(i))iN 1(1),X0(0) > 1, hence Ilxoll > 1, and

yo x__o_llxoll E E+" Let go 6 E* be such that Ilgoll go(Yo) 1, and fo lgo.

LEMMA 1. (i)/fi N, fo(ei) > O.
(ii) There exists u E such that x xo u and x2 xo + u are in E+, and

such thatfor p 1, u q[ Ep, and ifx is in the segment [Xl, x2], then x E/, x(0)
x0(0) > 1, fo(x) and (x(i))iN 1(1).

Proof (i) Let 6 N, and assume go(ei) < O. Since Yo 6 E+,

go(Yo yo(i)ei) > go(Yo) 1,

then

IlYo yo(i)ei >_ 1.

Since (ei)iN is 1-unconditional, we have equall, and

go(Yo yo(i)ei) go(Yo) 1;

thus

Hence

(1 )go [(Yo- yo(i)ei) +yo] 1.

[(Yo yo(i)ei) + Y0]

which is a contradiction, because the norm II,ll is rotund. Thus go(ei) > O, and

fo(ei) ,-7--,, go(ei) > O.

(ii) Let u (0) O, and for j N*,

u(2j- 1)
2J Ilfoll
-1

u(2j)
2 Ilfoll

inf(xo(2j 1), xo(2j), 1)fo(e2j)

inf(xo(2j 1), xo(2j), 1)fo(e2j-1).
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Since

(Ifo(e2-l)l + Ifo(e2)l)2 fojeN*

2
< j,7--2’.

we have (u(i))isN E el (ll), and Zion u(i)ei u defines a vector of E.
Since xo E E+, and fo(ei) > 0 for all i, we have u(i) 7 0 for all > 0, and

u Ep for all p. It is easily seen that fo(u) O.
Let X xo u, and x2 xo + u. Then

fo(Xo) fO(Xl) fo(X2)-- 1,

and X E+, X2 E+. Indeed,

XI(0) X2(0) X0(0) > 0,

and for j > 0,

fo(e2j)
lu(2j- 1)l _< -)-xo(2j- 1,q

Ilfoll
< xo(2j- 1),

fo(e2j-l)
lu(2j)l < Txo(2j) II/ol’--T-- < xo(2j),

then [u(i)[ < xo(i) for all > 0, and Xl E+, X2 E+. Since (u(i))isN and
(xo(i))ier are in el (N), (Xl (i))ieN and (x2(i))ieN are in el (N) as well. Thus all our
conditions are satisfied for x E [x l, x2]. r-1

We denote by S the segment [Xl, X2] in E, and A c-’o"ff[BEl.J{-l-gp(Xl), 4-Tt’p (x2);
p N}]. Then we have S _c A, and the Minkowski functional jA of A is clearly an
equivalent norm on E.

LEMMA 2. There exists a countablefamily {fn; n N*} in E* such that

(i) fly, z E are such that z y sp(u), thenfor some f ’, f(y) 7 f(z).
(ii) Foranyf ’,ifx S, thef(x) 1,andifx A\S, then-1 <_ f(x) < 1.

Thus jA (X) ifx S.
(iii) For any f ’, f(ei) > Ofor all > O.

Let be the family {g E E*; g(xl) g(x2) 1, [[g[[ < 1, g(ei) > 0 for all
i>_0}.
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We first show

FACT. If y, Z E are such that z y sp(u), then for some g we have
g(y) g(z).

Proof. If z y ’ ker fo, since fo , we can take g fo.
Assume v z y ker fo. We look for h E* such that h(xo) 1, h(u)

O, h(v) :/: O, and h(ei) > 0 if N. The three vectors xo, u and v are linearly
independent, because u, v ker fo, v sp(u), and xo ’ ker fo. Then there exists
l, i2, i3 1 such that

x0(il) x0(i2) x0(i3)
U(il) u(i2) u(i3) 0.
V(il) v(i2) v(i3)

The system

XO(ij)j 0

3

u(ij)j -’0
j=l
3

j=l v(ij)i

has a unique solution (1, 2, 3)" Let ot # 0 be such that fo(eij) ct > 0 for
j e {1,2,3}.
We define h E* as follows:
For j 1, 2, 3}, h(eij) fo(eb) aj.
If ’ {il, i2, i3}, h(ei) fo(ei).

Thus h (ei) > 0 if N. It is easily seen that:

h (xo) fo (xo) 0; thus h (xo) 1.

h(u) fo(u) 0; thus h(u) O.

h(v) fo(v) -or; thus h(v) O.

If fl [0, 1), let g, fifo + (1 fl)h. If fl 1, then g, ---> fo, and IIg ll
Ilfoll < 1. Thus for some flo [0, 1), IIg,o < 1, and g g,o clearly satisfies the
required conditions.

We now come back to the proof of Lemma 2.
The set G is w*-separable. Let " {fn; n N*} be a w*-dense sequence in

G. If y and z are two vectors of E such that z y sp(u), from the fact, the set
{g ; g(z y) :/: 0} is w*-open, non empty, and thus (i) is satisfied, and (iii)
follows from .T"

_
G.
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It remains to show (ii). Let f 6 .T’. As f(Xl) f(x2) 1, if x 6 S, then
f(x) 1. For j 1, 2, we have xj E+, and for N, f(ei) > 0. Therefore, for
p 6 N, we have

0 <_ f(zrp(xj)) <_ f(xj)-

and, as Ilfll < 1, if x 6 A, then- _< f(x) _< 1.
Now let x 6 A be such that f(x) 1. We are going to show that, for any e > 0,

there exists z 6 S such that [Ix z _< e. Since S is closed, that will show that x 6 S,
and (ii) holds.

Let e > 0. There exists N N such that, if p > N, then [Ixj 7t’p(Xj)I[ for
j 6 {1, 2}.

Let el be such that el < f and

0 < el < inf{xj(i)f(ei);i < N, j {1,2}}.

If p N is such that f(Trp(Xj)) >_ E1 for j 6 {1, 2}, then p >_ N, and

The set

{Xl, X2} to {Tt’p(Xj); p N, j 6 {1,2}}

is compact; consequently so is the set

Met {Xl, x2} [,.J {Trgp(Xj); p N, j {1, 2}, f(7p(Xj)) >_ el}.

We let

M Be U {TlJp(Xj)" j . {1 2} p N f(Trp(Xj)) < el}

tD{-rrp(Xj); j {1, 2}, p N}.

We have

A c-6nV(c-0-(M,) tO c-6(M’,)),
and, as c-b-fiV(M, is compact,

A conv(c--6nV(M,,) t3 c--6nV(M,)).

MAs el < Ilfll if y 6 conv(,,) then f(y) < el because it is true if y 6 M’
and if y c-b-fiV(M,), el < f(y) < 1.

Since f(x) 1, this implies x conv(M,). Pick

m

Y Z otiZt’p, (x) + iTt’pi(X2) conv(Me,)
i=1
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suchthat IlY -xll ,with, for < < m, ol >_ 0, fli >_ O, Tt’pi(Xl . Me,,yt’pi(X2 E

Me,. and Yim__l (o/i "+-/i) 1. Then

Z

and

IIx zll IIx yll +
m

Z[O/i (X1 7/’p, (Xl)) "- ii(X2 7pi (X2)]
i=l

m

i=1

and (ii) is proved. []

We define the norm II1" III on E by ,,, )2IIIXlII2= jA (X)2 -I- 2--’ fn(X

Then we have:

LEMMA 3. (i) The norm II1"111 and the canonical norm ofco(N) are equivalent.
(ii) For p N and x S, Illxll] and
(iii) The norm II1"111 is uniformly rotund in every direction except in the direction of

Proof (i) Clear.
(ii) Let x S. By Lemma 2 (ii), we have IIIx III 1. Let p 6 1. As S _c E+, and

fn (ei) > 0 for n N* and E I, we have

f.(rp+(x)) > A(rp(X)),

and, as (ei)ier is II.ll-monotone, by the definition of A,

jA (Trp+l (X)) >__ jA (Trp(X)).

And thus

III <x lll III <x  111.
(iii) Let ’ sp(u) be a vector of E, no 6 N be such that fn0() # 0, (,m)mN be a

sequence in/, (Ym)meN and (Zm)mI be two sequences in E such that lim lily.. / z., III
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2, and, for any rn N, IIlym Ill IllZm III and Ym Zm )m. By Lemma 2 (ii), we
have

III Ym + Zrn III )z n*< "(jA(Ym) at- jA(Zm) 4- 2--"((fn(Ym) -Jr- fn(Zm))2

jA (Ym)2 4- jA (Zm)2 "(jA (Ym) jA (Zm))2

4- nN 2--n- [2fn (Ym)
2 + 2fn(Zm)2 fn(Ym Zm)21

< 4- [fno(Ym Zm)]2
2n0+l

=4-
2no+

(fno (:))2;

thus limm 0 and we have (iii).

2. Construction of the family E(0); 0 7"}

In this section, to any 0 7", we associate a Banach space E(0), isomorphic to
c0(N), and which has a URED norm if 0 is well founded, and a non-rotund norm
otherwise. The construction is inspired by the construction of the James tree space
([J] or see [L-S)]).
On the space coo(T) of the finitely supported functions from T w< to/R, we

define the norm I1" T by

Clsl 2IlYll2r sup y(s)els 4- --y(s)
s-<b

where we take the supremum on the branches b of T, where b* is the complement in
T of {s; s -< b} and where, for any n N*, cn is in(0, 1], and satisfies

0 < c, < (supx(n))-2 inf (lllYrn(x)lll 2 -IIln_(x)lll2).
xS xS

According to Lemma 3 (ii), and since S is compact, such C’nS exist. The space E(T)
is the closure of coo(T) in this norm.

If y 6 E(T), and if b is a branch of T, we let

b(y) _. y(s)els E,.
s-<b
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Clsl y(s)2b* (y) --sEb

IlYllb (lllb(y)lll 2 + b*(y)2)1/2
Then

IlYllr sup{llYllb b branch of T}.

If s T, Xs coo(T) is the characteristic function of {s}. If V c_ T, we denote by
E(V) the closure of the set {Xs; s 6 V} in the norm I1"11.

Then we have:

THEOREM 4. Let 0 T be an infinite tree on N. ThenE(O) is isomorphic to

co(N), and:

If0 is wellfounded, the norm ofE(0) is URED.
If0 is not wellfounded, the norm of E(0) is not rotund.

First, we show some properties of E (0).

LEMMA 5. (i) The sequence (X_,; N) is equivalent to the canonical basis of
co(N).

(ii) Let be a branch ofT, andfor any N, let ii 09
<09 such that I/il and

i . Ifx S, then

In other words, S provides us with a segment on the unit sphere ofE({s; s }).

Proof. Let (lZi)in=o ]1<w, and io be such that suP0_<i_<n [/zi[ [/Zio[, and y

Ei%o .i z _i"
The basis (ei)ir of (E, II1"111) is equivalent to the canonical basis of co(N); it is

unconditional, and there exists k > 0 and k’ > 0 independent of y such that for all
branches b such that Sio b,

l/Ziol < /ioels_,ol _< k’lllb(y)lll < k’ IlYllr

and for any branch b,

IIIb(y)lll- /zzel.l < kl/ziol,
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and

Therefore

IlYllr sup{(lllb(Y)lll2 + b*(y)2)l/2; b branch of T}

< v/k2 +21/ziol

and {X; N} is equivalent to the canonical basis of c0(N).
We show (ii). If b fl is a branch of T, the intersection {s -< b} N {s -< fl} is

{fl0, fll fin for some n N, and then

Zx(i)x’ sup x(i)ei + c---_/x(i)2
iN T nN i=0

Using the definition of the CiS we obtain

x(i)ei IIIxlll= 1.
T iN

If y 6 E(T), we denote by iN Y(s-.i)X its decomposition in the basis (X_,; N).

ProofofTheorem 4. Using Lemma 5 (i) and the definition of E(0), we have
E(0) isomorphic to co (N).

If 0 is not well founded, there exists a branch fl of 0. Then Lemma 5 (ii) shows
that E(0) is not rotund.

Let now 0 6 7" be a well founded tree. We are going to show that the norm of
E(O) is URED. If not, there exists (Zn)nr , (Yn)nr and (Zn)nr two sequences
in E(O), a vector v E(O) \ {0}, and e > 0 such that lim 1, and for any
n N, ,.n > ’, Yn Zn ,nU, and IlY.llr Ilznllr 1. Let (bn)nr be a sequence
of branches of T such that lim y.+z. Since, for n 6 N,2 bn

(llYnllb. + IIz. llb)

Yn lib. IlYn r

IlZn lib. IlZn r 1,

we have

(1) lim Yn b. "-limllznllb,, lim Yn +Zn2.
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Then we show:

LEMMA 6. The set supp v {t 0; v(t) 5 0} is finite, and there exists N 1
such thatfor n >_ N, supp v c_ {s; s -< bn }.

Proof. Lett supp v. Assume that there exists a subsequence (bnm)m,N of(bn)nr
such that ’ {s; s b,, for any m. Then,

lYnm (t) Znm (t)l IZnV(t)l elv(t)l

Ynm+Znm22bnm ( 2 )111 = + (bnm Yn + Znm Clsl Ynm (S) + Znm (S) 2

.b
2

2

+ Clsl (Yn. (S)2 + Zn (S)2))sb

Clt(Yn(t)--Zn(t))2

bnm bnm2
e

Then passing to the limit, we obtain

1 < 1- cl e
2

and this is a contradiction.
Therefore, if 6 supp v, there exists N(t) 6 N such that b. for n N(t).
Moreover, if t’ supp v, and if n sup(N(t), N(t’)), then b. and t’ b..

As 0 is well founded, supp v is finite, and for some N 6 N, if n N, then supp
vg {s;s b.}.

We now come back to the proof of Theorem 4.
Let ( s6supp v o(s)es E. It belongs to Ep for some p 6 N, therefore by

Lemma (ii), ( sp(u). For n N, we have, by Lemma 6,

b.(y.) b.(z.)

and

Yn "k- Zn )b (Yn) b (Zn) b 2
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Using (1), we have

lim[2 Ilyn I1. + 2 Ilzn II, IlYn + Zn
2b.] =0,

then, with [D-G-Z], 11.2.3,

lim[2 IIIbn(Yn)lll 2 + 2 IIIbn(Zn)lll 2 lllbn (yn) + bn(zn)lll 2] O.

Since the norm II1"111 on E is uniformly rotund in the direction ( (Lemma 3, (iii)), we
have

and this is a contradiction with ,kn > e.
Consequently, the norm of E(0) is URED, and this concludes the proof of Theo-

rem4. D

3. Main results

In this section, we define a standard Borel structure on the set of all equivalent
norms on a Banach space Y, and by Theorem 4 we show the announced results when
Y is an infinite dimensional Banach space with a basis.

Let Y be a separable Banach space. The set of the equivalent norms on Y and the
set A/’(Y) of the symmetric closed bounded convex sets with nonempty interior in Y
are in one to one correspondance through the map which associates a norm with its
unit ball. We shall identify a norm with its unit ball.
We equip the set .T(Y) of the closed subsets of Y with the Effros-Borel structure

(see [C]) about which we recall some facts.
The Effros Borel structure on the set of closed subsets of a Polish space P is a

Borel structure defined from the Borel structure induced by the Hausdorff topology
on the set of closed subsets of a compactification of P. The Effros Borel structure
is standard, that is to say this Borel structure is generated by a Polish topology on
’(P). If (V)nr is a countable base for the topology of P, the family {{F
.T(P); F N Vn :/: 0}; n N} generates the Effros Borel structure on ’(P). This
Borel structure is therefore independent of the compactification of P.

Then we have:

PROPOSITION 7. The subset.N’(Y) is a Borel subset ofU(Y).

By this proposition, A/’(Y) is a standard Borel space, and there exists a Polish
topology on A/’(Y) which generates the Borel structure induced by the Effros Borel
structure.

This proposition is shown by classical techniques (see Annex 1).
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If the dimension of Y is finite, we have

{F 6 ./V’(Y); F rotund {F 6 A/’(Y); F URED}

{F 6 A/’(Y); F uniformly convex

and this set is easily seen to be A 1"
The main result, obtained by the completness method (see [K-L, p. 110]) is:

THEOREM 8. Let Y be an infinite dimensional Banach space with a basis, and
,4 A/’(Y) a E set ofnorms on Y, including all the URED norms. Then 4 contains
a norm which is not rotund.

COROLLARY 9. Let Y be an infinite dimensional Banach space with a basis. The
set ofrotund norms on Y, and the set of URED norms are true l’I 1"

The result for the rotund norms will be extended to any infinite dimensional sep-
arable Banach space.

Let Y be an infinite dimensional Banach space with a basis. We shall assume,
without loss of generality, that Y is equipped with a monotone normalized basis

Y (Yi)i
To any 0 7", we are going to associate Fo A/’(Y), so that if 0 WF, then Fo

is URED, and if 0 ’ WF, then Fo is not rotund.
For j N, we denote by Sj the set {s; s -< sj }.
Let 0 7" be an infinite tree on N. The total order on 0 induced by the total order

on T defines a strictly increasing bijection from N onto 0. We denote by Lg the image
of by this bijection, and by s- the inverse image of s 0. For j N, S is Sj f3 0,
and for x E, S (x) is the vector in Y given by

S (x) x(Isl)y,

Then we define two sets in .A/’(Y)

o z ’; - jco z + -where if z Y, z -i z(i)yi.
Theorem 8 follows from our next lemma.
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LEMMA 10. (i) The map o T -- ./V’(Y) defined by o(0) Fo is A
(ii) IfO WF, Fo is URED.

If0 WF, Fo is not rotund.

Assume that this lemma is true, and let .A
_

A/’(Y) be a E set containing the
URED norms. Then tp (4) is E] by (i), and contains WF by (ii). As WF is not E
(see [K-L]), there exists 0 t/WF such that Fo, which is not rotund by (ii), is in 4,
and Theorem 8 follows.

Proofof Corollary 9. First,{F 6 A/’(Y); F rotund} and {F 6 A/’(Y); F URED}
are not E by Theorem 8. By classical methods, one shows that they are H (see
Annex 2). F-!

ProofofLemma 10 (i). First we have the following result.

Fact 11. If z i z(i)yi spQ(y), the map ap 7" ---, defined by

z(o) -Jco(z)2 + - z(i)xoi

We check this fact in Appendix 3.

Let O be open in Y. If 0 6 T, as Fo is not empty, we have Fo (q 0 5 0 if and
only if there exists z spQ(y) such that z Fo N O. Thus

{o 7-; Fon o UzspQ(y)no{O; z(o) < 1}.

By Fact 11, this set is A I, and (i) follows.

ProofofLemma 10 (ii). Let 0 6 WF, (Zn)nN CC_. Y, (Ztn)nN C y, (n)nN CC_. ]1,
and 6 Y \ {0} such that (Zn)nN is bounded, Z’n z, n( for any n 6 N, and

lim (2jro (Z,)2 + 2jFo (Z’n) z JFo (Zn + Z’n2)2) O.

Since for z 6 Y,

JFo (z)2 - Jco (Z)2 +
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by [D-G-Z], Fact II 2.3(ii), we have

iii Zn(i)xoi
2

Z
2 IIZ 2)lim t\2 r

+ 2 Z’n(i)xi
r

(Zn(i) + Ztn(i))xo
r

0

and since the norm of E(0) is URED, we conclude that

lim ’,n 0.

Thus Fo is URED.
Let0 ’ WF, b a branch of 0, andx S [Xl, x2]. Since (x(i))ir is in e(N)

(Lemma (ii)), we can define

Xb Z x(lsl)y.
s-<b

Then

’11JFo (Xb)2 -Jco (Xb)2 + Z
s-<b

Using Lemma 5 (ii), we have

Moreover, Jco (Xb) 1. Indeed, clearly Xb Co, and it suffices to show that Xb - Co.
Assume Xb Co. Then

Xb conv(Br tO {+/-S (xl), +/-S] (x2); j 6 N}).

As y is monotone, and x (0) > l,

Xb conv(( S] (x 1), S] (x2); j 6 N})

and this is a contradiction, because for anyi N, x(i) O. Thus Xb - Co, and

Jco (Xb) 1. Therefore if x S, then JFo (Xb) 1, and Fo is not rotund.

We now extend the result on rotund norms to any separable Banach space.

THEOREM 12. Let Y be an infinite dimensional separable Banach space, and
4 cc_ Af(Y) be a E set of norms on Y including all the rotund norms. Then
contains a norm which is not rotund.

Moreover, the set ofrotund norms on Y is a true H set.
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Proof. There exists y (Yi)il a basic sequence in Y ([L-T], 1.a. 5). Let
Y’ Tfi(y), and for F 7V’(Y), let r(F) F N Y’ A/’(Y’).

Fact 13. The map r" A/’(Y) -- A/’(Y’) is A

Indeed, let 69 be an open set of Y. Then

{F 6 A/’(Y); r(F) f) 69 5 0} {F; :1 z 6 spQ(y) N 69, z 6 F}.

Since this set is A I, the fact follows.
Every rotund norm on a closed subspace of Y can be extended to an equivalent

rotund norm on Y ([J-Z], see [D-G-Z], I1.8.2). Therefore if .A
_

A/’(Y) is E and
contains the rotund norms, then r(.A) is E, and contains the rotund norms on Y’,
and by Theorem 8 contains a norm which is not rotund; thus .A contains a non-rotund
norm. The end of the proof is the same as that of Corollary 9.

COROLLARY 14. Let Y be an infinite dimensional separable reflexive Banach
space. The set of the Gateaux-differentiable norms on Y is true H 1.

Proof As Y is reflexive, a norm F 6 A/’(Y) is Gateaux-differentiable if and only
if the corresponding dual norm is rotund (see [D-G-Z], II. 1.6).

Fact 15. Let Y be a separable reflexive Banach space. The map 79: A/’(Y) --./V’(Y*) which, to a norm F on Y, associates its dual norm F, is a bijective borelian
map.

Indeed, since Y is reflexive, this map is bijective. Let (.9 be an open set in Y*, y
be a total sequence in Y, and y* a total sequence in Y*. Then

{F .A/’(Y); F (.9 - t3}

{F 6 A/’(Y); 3 y* 6 spQ(y*) fq O, y 6 spQ(y), lY*(Y)] _< or y ’ F}

and this set is A I. Thus the map is A and the fact follows.
As {G A/’(Y*); G rotund} is true H and image under 79 of {F A/’(Y); F

Gateaux-differentiable}, this set is true H as well.

Our work leads to the following:

Problem. Let Y be an infinite dimensional separable Banach space if a E set
in A/’(Y) contains the norms which are at the same time URED and locally uniformly
rotund, does it contain a non-rotund norm?
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Appendix 1

ProofofProposition 7. Let F 6 .T(Y). We have the equivalence

(i)

(ii)
F Af(Y)

(iii)

(iv)

M N,F

_
M.Br

m Q*+, m.Br

_
F

x+y
Yx, yF,

2
YxF,-xeF

As the relation c is/x in .T(Y) the conditions (i) and (ii) are A
Let (Om)mer be a countable basis of open sets of Y. The closed set F satisfies

(iii) if and only if

Omf’)F #}V(m, n) N2,
On F # (Om + On) F # .

is is clear since (O + O.); m, n N, x O, y O. is a basis of neigh-
1.bourhoods of Therefore, the following set is 12

F; F verifies (iii)

Similarly, F verifies (iv) if and only if

Vm e N, Om n F # 0 == (--Om) n F # 0

Then the following set is A"
{F; F verifies (iv)} nmN[{F; (--Om) n F # 13} U {F; Om n F 13}1.

Consequently, N’(Y) is A

Appendix 2

Let Y be a separable Banach space. The following sets are FI "
.A/’R F .N’(Y); F rotund}

A/’u {F N’(Y); F URED).

Proof We have the equivalence

:qy, zY, jF(y) =jF(z) =jF(y+z’=I.
\/2
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Fact. The set {(F, y) 6 N’(Y) x Y; jF(Y) 1} is A 1"

Indeed, jF(Y) if and only if for any ) 6 Q such that ,k > 1, we have y 6 F
and )y ’ F. Since {(F, y); y 6 F} is A I, the fact follows.

Then the complement of A/’R is E as projection of

and, this set is A by the above. Therefore A/’R is I’I 1"
We have F ’ ./V’u if and only if there exists Y \ {0}, e Q*+,

(,,n)nEN o9, (Yn)nEN - yo, (Zn)nN - yo

such that lim jF(Yn + Zn) 2, (Yn)nr is bounded, and for any n N, Zn > e, and

jF (Yn) jF (Zn) 1, Yn Zn

By classic methods, it follows that N’u is H

Appendix 3

ProofofFact 11. Let (j)jsr be an enumeration of spQ(y) f3 Br.
First, if x 6 E and j 6 N, the map 7" Y: 0 - S] (x) is continuous. Indeed,

if (0e)er is a sequence of trees in 7" which converges towards 0, there exists L 6 N
such that if > L and < j, s 6 0 if and only if S_. 0e. Then if e > L, we have

Consequently, the map

defined by

lp ,/" (yS)o

lpl (0) (j, S (Xl), S(x2),-S (Xl), -S (X2))jEN

is continuous.
Next, the map

yo .(y). (z,)ner - conv({zn; n 6 N})

is A Indeed, let (9 be an open set of Y. We have

{(Zn)n6N C:. yo; c-’6-fi({Zn; n N}) f’l 0 13}

"-1 (zn)nNY;=l()i)iQ<w’E)i--l’)i>-OfOranyi’andE’iziO}i
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and this set is A I. Thus the map lp2 (yS),o
_

.T’(Y) defined by

1/r2 k c-g-n-v{z _k < 5, j E[((Zj)k=I)jN < }

is A l"
If z E Y, the map A/’(Y) - + defined by p(C) jc(z) is A I. Indeed,

if (a, b) is an interval in +,

{C .Af(Y); jc(z) (a, b)} {C A/’(Y); z ’ a.C and z b.C}

and this set is A
Finally, if E N, the map T E(T)" 0 - Xoi is continuous. Indeed, if (0e)eer

converges towards 0, there exists L N such that if > L, and if j < g0i, then sj 0
if and only if sj 0e. Therefore, if > L, then Lg, Lg,, and

Consequently, if z i z(i)yi spQ(y), the map OJ 7- N defined by

/(o
T

is continuous.
Hence for z spQ(y), we have

z(o -jco(Z)2 q-
Z Zz(i)xi

E[7o7o7(o)]: + E[(o)]:,

and the map ap is A 1"
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