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COANALYTIC FAMILIES OF NORMS
ON A SEPARABLE BANACH SPACE

BENOIT BOSSARD

Introduction

We define a standard Borel structure on the set of all equivalent norms of a separable
Banach space through the Effros-Borel structure on the closed subsets of this space.
In this frame, R. Kaufman has shown, using tools from harmonic analysis, that the
set of rotund norms on ¢y(N) is a coanalytic non-Borel set ([K1]). Here, we show
by straight geometric methods that an analytic set which contains the norms which
are uniformly rotund in every direction (URED) on an infinite-dimensional Banach
space Y with a basis contains a norm which is not rotund, and as a corollary we obtain
that the set of URED norms is coanalytic non-Borel. It follows that if Y is an infinite
dimensional separable Banach space, then the set of rotund norms is coanalytic non-
Borel. Thus we obtain that the set of the Gateaux-differentiable norms on a reflexive
separable infinite-dimensional Banach space is coanalytic non-Borel.

In the first section, we define a norm ||-|| on co(N) which is uniformly rotund
in every direction but one. In the second section, following similar lines as in the
construction of the James tree space ([J], or see [LS]), toevery tree 6 on N, we associate
a Banach space E(6), isomorphic to co(N) and such that every branch supports a copy
of a segment in the unit sphere of (co(N), ||-|I). If 8 is well founded, the norm of E ()
is shown to be URED, and if not, it is not rotund. In the third section, we deduce our
main results.

We refer to [K2] and [D-G-S] for related results.

The author would like to thank G. Godefroy for his help in preparing this article.

Notation. Let X be a Banach space. We will denote by By the closed unit
ball of X. If A C X, then conv(A) denotes its convex hull, spg(A) the Q-vector
space spanned by A, sp(A) the vector space spanned by A, conv(A) and 5p(A) their
closures. We will denote by A” and A<® the set of all sequences and the set of all
finite sequences in A. By “norm” on X, we always mean equivalent norm. We refer
to [K-L] for the definitions of trees, height. We denote by N the set {0, 1,2, ...} and
by N* the set N \ {0}. The tree w=<® of finite sequences in N will be denoted 7. The
set of trees on N, that is, the set of subtrees of T, is denoted 7. A branch of a tree
6 means o € w® such that s € 6 if s < 0. The set of well founded trees is denoted
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WE. An interval [s,t]in T, withs € T and ¢ € T, is the set of the sequences w in T
with s < w < ¢t. We define a total order on T as follows: for s € T, of length |s|, let
)" (s) be the sum of its elements. Then

s < s'if |s| + Z(s) < |s'| + Z(s’) orif |s| + Z(s) =|s'| + Z(s'),

and if s is strictly less than s’ in the lexicographical order.

This order determines a strictly increasing bijection s > § from T onto N. The
inverse image of n € N is denoted s, . We shall use this order for indexing bases.

We use the notation | (resp. i, A}) for analytic (resp. coanalytic, Borel) set.
A T1! which is not A! will be true I} (see [K-L] for instance).

We recall that a norm ||-|| on a Banach space X is uniformly rotund in the direction
z € X \ {0} if one of these two equivalent properties is true (see [D-G-Z], II, 6.1 and
6.2):

(i) If (xx)nen and (yn)nen are two sequences in X, such that lim ||x, + y.| = 2,
and for any n € N, ||x,|| = lly»ll = 1 and x,, — y, € sp(2), then lim ||x, — y,|| = 0.

(i1) If (xn)nen and (yn)nen are two sequences in X, and (A,),en @ sequence in R
such that (x,),en is bounded,

K2 [1xal1? + 2 [l yn 2= 11 + yal?) =0,
and forany n € N, x, — y, = A,2, thenlim A, = 0.
If the norm is uniformly rotund in every direction z € X \ {0}, the norm is said to

be uniformly rotund in every direction (URED).
Of course, if a norm is URED, it is rotund.

1. Construction and properties of a norm on cy(N)

We denote by E the Banach space c((N) equipped with the equivalent rotund norm

1 2
I @ienl = sup )] + (Z Exa)z) :

ieN
We denote by (¢;);en the normalized basis of E obtained from the canonical basis of

co(N). This basis is 1-unconditional.
In this basis a vector x is written x = ), ey X (i)e;. We define the set

Et={x € E;VieN,x(i) > 0}.

If pe N, let E, = sp{e;; i < p}, and ,, the natural projection on E,.
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We shall define two vectors x;, x, € ET, and show the existence of a countable
family F = {f,; n € N*} in E*, which separates two vectors of E as soon as their
difference is not in sp(x, — x;), and such that, for any f € F, f(x;) = f(x2) =
L Ifll <1,and f(e;) > 0if i € N. Then we shall define on E an equivalent norm
which is uniformly rotund in every direction except in the direction x, — x;.

We start with a few lemmas.

Let xo € E* be such that (x9(i))ien € £1(N), x0(0) > 1, hence ||xo]| > 1, and
Yo = ||x I € E*. Let go € E* be such that ||goll = go()o) = 1, and fp = ||x0|| — £0.

LemMA 1. () Ifi € N, fy(e;) > 0.

(ii) There exists u € E such that x; = xo — u and xo = xo + u are in E*, and
such that for p € N, u & E,, and if x is in the segment [x1, X2, thenx € E*, x(0) =
x0(0) > 1, fo(x) = 1 and (x(i))ien € £1(N).

Proof. (i) Leti € N, and assume go(e;) < 0. Since yp € E™,

8o(Yo — yo(i)e:) = go(yo) = 1,

then
lyo — yo(e:ll > 1.

Since (e;);en is 1-unconditional, we have equalﬁ;/, and

8o(Yo — yo(i)e:) = go(yo) = 1;
thus

1 .
8o 5[(yo = yo(ei) + yl ) =

Hence

1
5[(yo = yo(i)e:) + yol

which is a contradiction, because the norm ||-| is rotund. Thus go(e;) > 0, and

1
folei) = ——go(ei) > 0.
llxoll
(ii) Let #(0) = 0, and for j € N*,
uj—-1 = 77 ||f i ————inf(xo(2j — 1), x0(2)), 1) fo(e2;)
u2j) = ————inf(xo(2j — 1), x0(2j), 1) fo(ezj-1).

2 Ilf I
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Since

. 1
;Mz)l < ;ij (I folezj—0)| + | fole2)1)

2

< _— =2,
- J
jeN*2

we have (u(i))ien € £1(N), and ), . u(i)e; = u defines a vector of E.

Since xo € E*, and fy(e;) > O for all i, we have u(i) # 0 for all i > 0, and
u ¢ E, for all p. It is easily seen that fo(u) = 0.

Let x; = xo — u, and x, = xo + u. Then

fo(xo) = fo(x1) = folx2) =1,
and x; € E*,x, € E*. Indeed,
x1(0) = x2(0) = x0(0) > 0,

and for j > 0,

. 1 , Jolezj)
2j—1 —x0(2j —
u(2j = DI < Z5x0(2 19) ol

<x(2j = 1),

. 1 .\ Jolez2j-1)
u2i)| < =x0(2j)———
L=
then |u(i)| < xo(i) foralli > 0, and x; € E*,x, € ET. Since (u(i))ien and
(x0(0))ien are in £;(N), (x1(i))ien and (x2(i));en are in £1(N) as well. Thus all our
conditions are satisfied for x € [x;, x;]. O

< x0(2)),

We denote by S the segment [x1, x2]in E, and A = conv[ BgU{xm, (x1), £, (x2);
p € N}]. Then we have S C A, and the Minkowski functional j4 of A is clearly an
equivalent norm on E.

LEMMA 2. There exists a countable family F = { f,; n € N*} in E* such that

(1) Ify,z € E are suchthat 7z —y & sp(u), then for some f € F, f(y) # f(2).
(ii) Forany f € F,ifx € S,thef(x) = 1,andifx € A\S,then—1 < f(x) < 1.
Thus ja(x) =1ifx € S.
(iii) Forany f € F, f(e;) > Qforalli > 0.

Let G be the family {g € E*; g(x1) = g(x2) = 1, |lgll < 1, g(e;) > O for all
i >0}
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We first show

FACT. Ify,z € E are such that z — y & sp(u), then for some g € G we have
8(y) # g(2).

Proof. If z — y & ker fy, since fy € G, we can take g = fj.

Assume v = z — y € ker fy. We look for & € E* such that h(xg) = 1, h(u) =
0,h(v) # 0, and h(e;) > 0if i € N. The three vectors xg, # and v are linearly
independent, because u, v € ker fy, v & sp(u), and xo ¢ ker fo. Then there exists
i1, iz, i3 € N such that

xo(i1)  xo(i2) xo(i3)
u@) wu@) u(s)
v(ip) v()  v(z)

#0.

The system
3

> x0(ij)g =0

j=1

~,

-
> ulipng =0
?l

D g =1

j=1

~,

has a unique solution (&, 2, §3). Let a # 0 be such that fy(e;) — a§; > 0 for
je{1,2,3}.

We define h € E* as follows:

For j € {1,2,3}, h(ey) = folei) — at;.

Ifi & {iy, iz, i3}, h(e)) = fole).
Thus h(e;) > 0ifi € N. It is easily seen that:

h(xo) — fo(xo) = 0; thus h(xp) = 1.
h(u) — fo(u) = 0; thus h(u) = 0.
h() = fo(v) = —a; thus A(v) # 0

If B €[0,1), let gg = Bfo+ (1 — f)h. If f — 1, then gg — fo, and |gs| —
l foll < 1. Thus for some By € [0, 1), || gs, || < 1, and g = gg, clearly satisﬁ$s the
required conditions. [

We now come back to the proof of Lemma 2.

The set G is w*-separable. Let F = {f,;n € N*} be a w*-dense sequence in
G. If y and z are two vectors of E such that z — y & sp(u), from the fact, the set
{g € G;g(z — y) # 0} is w*-open, non empty, and thus (i) is satisfied, and (iii)
follows from F C G.
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It remains to show (ii). Let f € F. As f(x1) = f(x) = 1, if x € S, then
f(x)=1.Forj=1,2,wehave x; € E*,and fori € N, f(e;) > 0. Therefore, for
p € N, we have

0= f(mp(x)) < flx) =1

and,as | f]l < 1,ifx € A,then -1 < f(x) < 1.

Now let x € A be such that f(x) = 1. We are going to show that, for any ¢ > 0,
there exists z € S such that ||x — z|| < &. Since S is closed, that will show that x € S,
and (ii) holds.

Let & > 0. There exists N € N such that, if p > N, then |x; — 7, (x))| < § for
je{l,2}.

Let &1 be such that e; < 1 — || f|] and

0 <e <inf{x;())f(e);i <N, je{l,2}}
If p € Nis such that f(m,(x;)) > 1 — ¢ for j € {1,2}, then p > N, and
lx; = G| < 5.
The set
{x1, 2} U{mp(x;); p €N, j € {1,2}}
is compact; consequently so is the set
M, = {x1, 2} U{m,(x;); p e N, j € {1, 2}, f(mp(x;)) > 1 — &1}

We let

M, =BgU{my(xj);j €{L,2}, peN, f(mp(x))) <1 —e1}

U{—mp(x;); j € {1,2}, p e N}.
We have

A = Conv(conv(M,,) U conv(M, ),
and, as conv(M,,) is compact,
A = conv(conv(M,,) U W(Mél)).
Asep < 1—| fl,if y € Tonv(My, ), then f(y) < 1— ¢ becauseitis trueif y € M; ,

andif y e conv(M,,), 1 —e; < f(y) < 1.
Since f(x) = 1, this implies x € conv(M,,). Pick

Y=Y iy, (x1) + Birtp, (x2) € conv(M,,)
i=1
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suchthat ||y — x|| < §,with,forl <i <m,a; >0, 8; > 0, m,,(x1) € M, m,,(x2) €
M,,,and ;. (e; + ;) = 1. Then

= (iai) X + (iﬂ,) Xy €S,
i=1 i=1

and

Il =zl < llx = yll + | D leCer — 7, (1) + Bi(x2 = 7p, (x2)]

i=1

=

+Y @ +p)s=e
i=1

N ™

and (ii) is proved. O

We define the norm ||-|| on E by
Bl = 2 /a2 + 3 e e
=3Ja ~ on+l n
neN*

Then we have:

LEMMA 3. (i) The norm ||-|| and the canonical norm of co(N) are equivalent.
(ii) For p e Nand x € S, x|l = 1 and ||mps1 ) || > ||, ) |-
(iii) The norm ||-|| is uniformly rotund in every direction except in the direction of
1
u=5(xz3 —x1).

Proof. (i) Clear.
(ii) Let x € S. By Lemma 2 (ii), we have ||x|| = 1. Let p e N. As § € E*, and
fa(e;) > 0forn € N*and i € N, we have

fn(ﬂp+l(x)) > fn(np(x))s

and, as (¢;);eN is ||-||-monotone, by the definition of A,

Ja(@py1(x)) = ja(mwp(x)).
And thus

[ tCo] el EACOL

(iii) Let £ ¢ sp(u) be a vector of E, ny € Nbe such that f, (&) # 0, (Am)menbe a
sequence inR, (Y )men and (Zm)men be two sequences in E such thatlim |y, + zall =



COANALYTIC SETS OF NORMS 169

2,and, forany m € N, [lymll = lzmll = 1 and y,, — 2w = An&. By Lemma 2 (ii), we
have

A

1 1
Uym + 2l < 5 GaOm) + ja@m)® + D 5g falom) + fuem))®

neN*

1
Jam)* + jaGzm)* — E(jA(ym) — ja(zm))?

1
+ D St 2 Om)? 2 a ) = faOom — zm)”]

neN*

1
< 4- ‘ZTO_"_—I'[fno(Ym - Zm)]2

2

A"n
4 - W(fno(é'))z;

thus lim A,, = 0 and we have (iii). 0O

2. Construction of the family {E(#); 0 € T}

In this section, to any # € 7, we associate a Banach space E(6), isomorphic to
co(N), and which has a URED norm if 6 is well founded, and a non-rotund norm
otherwise. The construction is inspired by the construction of the James tree space
(3] or see [L-S)]).

On the space coo(T') of the finitely supported functions from T = w=“ to R, we
define the norm ||-||; by

llyll3 = sup (

where we take the supremum on the branches b of T', where b* is the complement in
T of {s; s < b} and where, for any n € N*, ¢, is in(0, 1], and satisfies

Z y(s)ey

s<b

2
+> %y(ﬂz)

seb*

0 < ¢y < (supx(m))~2inf (7, GO — w1 I .
x€S xes

According to Lemma 3 (ii), and since S is compact, such c,s exist. The space E(T)
is the closure of cgo(T) in this norm.
If y € E(T), and if b is a branch of T, we let

b(y) = ZY(S)em €E,

s<b
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1/2

Xy — sl ()2

b*(y) = (Zb 2;y(s))

Iyll, = (IO +b*(3)?)'"2.

Then
llyllz = sup{llyll, ; b branch of T'}.

Ifs € T, xs € coo(T) is the characteristic function of {s}. If V C T, we denote by
E (V) the closure of the set {x,; s € V} in the norm ||-{|7.
Then we have:

THEOREM 4. Let 0 € T be an infinite tree on N. ThenE (0) is isomorphic to
co(N), and:

If 0 is well founded, the norm of E(6) is URED.

If 6 is not well founded, the norm of E(0) is not rotund.

First, we show some properties of E(9).

LEMMA 5. (i) The sequence ( Xs;3 i € N) is equivalent to the canonical basis of
C()(N).

(ii) Let B be a branch of T, and for any i € N, let B; € w=<® such that |B;| = i and
Bi < B.Ifx €8S, then

> x(UsDxs

s<B

> x@)xg

ieN

= |lxll = 1.
T

T

In other words, S provides us with a segment on the unit sphere of E({s; s < B}).

Proof. Let (u;)i_y € R=“, and iy be such that supy; ., [ui| = |ul, and y =
D ico MiXs,-

The basis (e;)ien of (E, |I-Il) is equivalent to the canonical basis of co(N); it is
unconditional, and there exists k > 0 and k&’ > 0 independent of y such that for all
branches b such that i, < b,

1
il = [Jmiers, ]| < K WO <K 1yl

and for any branch b,

eIl =

Z MUsé€|s|

s=<b

< kl“’iolv
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and
b*(3) < V2.
Therefore
Iyliz = sup{(IbO)II? + b*()*)'/2; b branch of T}
< VR + 2l

and { Xs;3 0 € N} is equivalent to the canonical basis of cy(N).
We show (ii). If b # B is a branch of T, the intersection {s < b} N {s < B} is
{Bo, Bi, ..., Bn} for some n € N, and then

Zom -np([£

ieN
Using the definition of the ¢}s we obtain

Zx(t)x,s, = [ID_x@e:

ieN ieN

+ Z —x(z)z)

i>n

= lIxlI* = 1. O

If y € E(T), wedenote by Y,y y(s;) Xs, its decomposition in the basis (x;,; i € N).

Proof of Theorem 4. Using Lemma 5 (i) and the definition of E(6), we have
E () isomorphic to co(N).

If 6 is not well founded, there exists a branch 8 of 6. Then Lemma 5 (ii) shows
that E(0) is not rotund.

Let now 6 € 7 be a well founded tree. We are going to show that the norm of
E(8) is URED. If not, there exists (A;)neN € R, (¥n)nen and (2,)nen tWo sequences
in E(@), a vector v € E(0) \ {0}, and £ > 0 such that lim |% r = 1, and for any
neN, Ay > & Y0 — 20 = A0, and ||l yullz = lIzallr = 1. Let (bn)nen be a sequence
of branches of T such that lim y”—;“z-"- b, = 1. Since, forn € N,

> ”;LZ” , S %(||ynnbn+nz,,||bn)
Iyally, < llyally =1
Nzally, < lzallr =1,
we have
M tim 3, = im 2, = tim | 22 =1
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Then we show:

LEMMA 6. The set supp v = {t € 0; v(t) # 0} is finite, and there exists N € N
such that forn > N, supp v C {s; 5 < b,}.

Proof. Lett € suppv. Assume that there exists a subsequence (by,,), . Of (bn)nen
such thatt & {s; s < b,,} for any m. Then,

| Y10 @) = 2, )] = [An, ()] = glv(D)]

bn,,, (yn,,, + Zn,,,)

1
£ (om0 + e

Yn, + Zn, 2
2

Il

” +y A (w)

b seb},

nm

IA

seby

_n (ynm<t) —z,.m(t>)2
2 2

1 2 2 cu [ v\
= §(||)’nm b b,,m)‘—z';‘ B
Then passing to the limit, we obtain

2
1<1- Sl (s 2.(2)
2t 2
and this is a contradiction.

Therefore, if ¢ € supp v, there exists N(t) € N such that¢ < b, forn > N(¢).

Moreover, if ' € supp v, and if n > sup(N(¢), N(#')), thent < b, and t' < b,.
As 6 is well founded, supp v is finite, and for some N € N, if n > N, then supp
vCi{s;s<by}. O

+2 2 ynm<s)2+znm(s)2))

e

We now come back to the proof of Theorem 4.
Let & = 3} cqupp v V(5)ejs) € E. It belongs to E, for some p € N, therefore by
Lemma 1 (ii), ¢ & sp(u). Forn > N, we have, by Lemma 6,

bn(yn) - bn(zn) = )\n;

and

* * * +2
b (y) = bl (2,) = b (yT) :
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Using (1), we have

Hmi2 lyall3, + 2 l1zalls = llyn + zall3, 1 =0,

then, with [D-G-Z], 11.2.3,

(2 5, ) I? + 2 16n Za) I = WBn (V) + baza)IIP] = O.

Since the norm ||-|| on E is uniformly rotund in the direction ¢ (Lemma 3, (iii)), we
have

limlA, =0

and this is a contradiction with A, > ¢.
Consequently, the norm of E (@) is URED, and this concludes the proof of Theo-
rem4. O

3. Main results

In this section, we define a standard Borel structure on the set of all equivalent
norms on a Banach space Y, and by Theorem 4 we show the announced results when
Y is an infinite dimensional Banach space with a basis.

Let Y be a separable Banach space. The set of the equivalent norms on Y and the
set N'(Y) of the symmetric closed bounded convex sets with nonempty interior in ¥
are in one to one correspondance through the map which associates a norm with its
unit ball. We shall identify a norm with its unit ball.

We equip the set F(Y) of the closed subsets of Y with the Effros-Borel structure
(see [C]) about which we recall some facts.

The Effros Borel structure on the set of closed subsets of a Polish space P is a
Borel structure defined from the Borel structure induced by the Hausdorff topology
on the set of closed subsets of a compactification of P. The Effros Borel structure
is standard, that is to say this Borel structure is generated by a Polish topology on
F(P). If (Vy)uen is a countable base for the topology of P, the family {{F €
F(P); FNV, # 0}; n € N} generates the Effros Borel structure on F(P). This
Borel structure is therefore independent of the compactification of P.

Then we have:

PROPOSITION 7.  The subset N'(Y) is a Borel subset of F(Y).

By this proposition, N'(Y) is a standard Borel space, and there exists a Polish
topology on N'(Y) which generates the Borel structure induced by the Effros Borel
structure.

This proposition is shown by classical techniques (see Annex 1).
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If the dimension of Y is finite, we have

{FeNX); Frotund} = {F e N(Y); F URED)
= {F € N(Y); F uniformly convex }

and this set is easily seen to be A{.
The main result, obtained by the completness method (see [K-L, p. 110]) is:

THEOREM 8. Let Y be an infinite dimensional Banach space with a basis, and
ACNX)a 2} set of norms on Y, including all the URED norms. Then A contains
a norm which is not rotund.

COROLLARY 9. Let Y be an infinite dimensional Banach space with a basis. The
set of rotund norms on Y, and the set of URED norms are true T1}.

The result for the rotund norms will be extended to any infinite dimensional sep-
arable Banach space.

Let Y be an infinite dimensional Banach space with a basis. We shall assume,
without loss of generality, that Y is equipped with a monotone normalized basis
Y = (Vi)ieN.

To any 6 € T, we are going to associate Fy € N'(Y), so thatif § € WF, then Fy
is URED, and if 6 ¢ W F, then Fj is not rotund.

For j € N, we denote by S; the set {s; s < 5,}.

Let @ € T be an infinite tree on N. The total order on 6 induced by the total order
on T defines a strictly increasing bijection from N onto 6. We denote by s, the image
of i by this bijection, and by 57 the inverse image of s € 6. For j € N, SJ‘? is§;neo,
and forx € E, Sf (x) is the vector in Y given by

${@) =) x(Ishyz.

seS}’
Then we define two sets in N (Y)

Co = TOMV(By U {£S] (x1), £5] (x2); j € N})

2
<1
T

1, s 1 .
Fo=1z€Y; ch,,(z) +§ ZZ(I)X%‘,

14

whereifz € ¥,z =Y, z(i)yi.
Theorem 8 follows from our next lemma.
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LEMMA 10. (i) The map ¢ = T — N'(Y) defined by ¢(0) = Fp is A}.
(ii) If6 € WF, Fy is URED.

If6 ¢ WF, Fy is not rotund.

Assume that this lemma is true, and let A € A(Y) be a 211 set containing the
URED norms. Then ¢! (A) is X} by (i), and contains WF by (ii). As WF is not |
(see [K-L)), there exists & ¢ W F such that Fy, which is not rotund by (ii), is in .A,
and Theorem 8 follows. [

Proof of Corollary 9. First,{F € N'(Y); F rotund} and {F € N (Y); F URED}
are not Ell by Theorem 8. By classical methods, one shows that they are I'[} (see
Annex 2). 0O

Proof of Lemma 10 (i). First we have the following result.

Fact11. Ifz =3}, z(i)y; € spq(y), the map ¥* = T — R defined by

1 1
¥ O = 5 ic, @+ 3

2
T

> 2xs,

is A].

We check this fact in Appendix 3.

LetObeopeninY. If 6 € T, as ;?9 is not empty, we have Fy N O # @ if and
only if there exists z € spo(y) such that z € Fp N O. Thus

{0 € T; FyNO # B} = Uzespyno{0; ¥*(0) < 1}.

By Fact 11, this setis Al, and (i) follows. O

Proof of Lemma 10 (ii). Let® € WF, (zy)nen S Y, (Z))neN € ¥, (An)nen € R,
and ¢ € Y \ {0} such that (z,).cn is bounded, z, — z, = A,¢{ for any n € N, and

im (2, @n)? + 2jF, 2,)* = jF, 20 + 2,2)*) = 0.

Sinceforz € Y,

. 1, 1
Jjr()? = 59 @)?+ 5

> 2x,

2
9
T
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by [D-G-Z], Fact II 2.3(ii), we have

lim (2 > zlx, PIEAQTS

and since the norm of E(8) is URED, we conclude that

2
+2
T

2
- ”Z(z,,(i) +2,(D)xs,
T i

2
=0
T

limA, =0.

Thus Fy is URED.
Let6 ¢ WF, b abranch of 6, and x € S = [x;, x2]. Since (x(i));en is in £;(N)
(Lemma 1 (ii)), we can define

xp =) x(Ishyp.

s<b

Then

2
T

> x(UsDxs

s=<b

‘ 1 1
Jjr (p)? = e (xp)* + 3

Using Lemma 5 (ii), we have

=1
T

> xUshxs

s<b

Moreover, jc,(xp) = 1. Indeed, clearly x;, € Cy, and it suffices to show that x;, ¢ E‘g.
Assume x, € Cy. Then

x, € conv(By U {£57 (x1), £S7 (x2); j € N}).

As y is monotone, and x(0) > 1,

xp € conv({S;] (x1), S] (x2); j € N})

and this is a contradiction, because for any i € N, x(@) # 0. Thus x, & E’g, and
Jc,(xp) = 1. Therefore if x € S, then jg,(x5) = 1, and Fp is not rotund. [

We now extend the result on rotund norms to any separable Banach space.

THEOREM 12. Let Y be an infinite dimensional separable Banach space, and
A C N(Y) be a T} set of norms on Y including all the rotund norms. Then A
contains a norm which is not rotund.

Moreover, the set of rotund norms on Y is a true T1} set.
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Proof. There exists y = (yi)ien a basic sequence in ¥ ([L-T], l.a. 5). Let
Y' =5p(y),and for F e N(Y),letr(F) = FNY' e N(Y').

Fact13. Themapr: N(Y) - N(Y')is Al.
Indeed, let O be an open set of Y. Then
(FENX);r(F)YNO # 0} ={F;3zespo(y)NO,z € F).

Since this set is Al, the fact follows.

Every rotund norm on a closed subspace of Y can be extended to an equivalent
rotund norm on Y ([J-Z], see [D-G-Z], 11.8.2). Therefore if A C N (Y) is & 1‘ and
contains the rotund norms, then r(A) is El‘, and contains the rotund norms on Y’,
and by Theorem 8 contains a norm which is not rotund; thus .4 contains a non-rotund
norm. The end of the proof is the same as that of Corollary 9. O

COROLLARY 14. Let Y be an infinite dimensional separable reflexive Banach
space. The set of the Gateaux-differentiable norms on Y is true I'[}.

Proof. AsY isreflexive, anorm F € N (Y) is Gateaux-differentiable if and only
if the corresponding dual norm is rotund (see [D-G-Z], I1.1.6).

Fact 15. Let Y be a separable reflexive Banach space. The map D: N (Y) —
N (Y*) which, to a norm F on Y, associates its dual norm F©, is a bijective borelian
map.

Indeed, since Y is reflexive, this map is bijective. Let O be an open set in Y'*, y
be a total sequence in Y, and y* a total sequence in Y*. Then

(FeN¥); F'n0O # 0)
={F e N(Y);3y" € spo(y") N O,V y € spo(y), [y* ()| < lory ¢ F}

and this setis A}. Thus the map is A} and the fact follows.
As {G € N(Y*); G rotund} is true l'[} and image under D of {F € N(Y); F
Gateaux-differentiable}, this set is true [T as well. O

Our work leads to the following:

Problem. Let Y be an infinite dimensional separable Banach space ; if a £ set
in A (Y) contains the norms which are at the same time URED and locally uniformly
rotund, does it contain a non-rotund norm?
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Appendix 1

Proof of Proposition1. Let F € F(Y). We have the equivalence

(i) 3IMeN, FC M.By
() ImeQ**,m.ByCF

(i) Vx,ye F,x;y

ivy VxeF,—x€F

FeNY) &

eF

As the relation C is A} in F(Y), the conditions (i) and (ii) are A}.
Let (On)men be a countable basis of open sets of Y. The closed set F satisfies
(iii) if and only if

OnNF #0

Y(m, n) € N?,
O,NF#0

$(0n+0)NF£0,
This is clear since {%(Om + On);m,n € Nyx € O,y € 0,} is a basis of neigh-
bourhoods of %Z Therefore, the following set is A}:
{F; F verifies (iii)}

= Ngm,men[{F; %(Om +O0)NF #@YU{F; 0,NF=0}U{F; 0,NF =0}].
Similarly, F verifies (iv) if and only if

Vm eN,On NF#0=>(—0,)NF #0
Then the following set is Aj:
{F; F verifies (iv)} = Npen[{F; (—Om) N F # B} U{F; O N F = @}].

Consequently, N'(Y) is Al O

Appendix 2

Let Y be a separable Banach space. The following sets are IT}:

N = {F € N(Y); F rotund}

N, = {F € N(Y); F URED}.

Proof. 'We have the equivalence

FgNg & 3y,z€Y, jr») = jr@ = jr (y;”) =1
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Fact. Theset{(F,y) e N(¥) x Y; jr(y) = 1}is Al
Indeed, jr(y) = 1if and only if for any A € Q such that A > 1, we have y € F

and Ay ¢ F. Since {(F, y); y € F}is Al, the fact follows.
Then the complement of N is £/ as projection of

{(F’va)eN(Y)XYXY,]p(y)=JF(2)=]F(y;—Z)= 1],

and, this set is A} by the above. Therefore N is IT}.
We have F ¢ N, if and only if there exists & € Y \ {0}, ¢ € Q**,

(AndneN € R?, (yn)neN eY®, (Zn)nen € Ye
such that im jr(y, + z,) = 2, (Jn)nen is bounded, and for any n € N, A, > ¢, and
JFOn) = jr(zn) = 1, Y0 — 20 = 4.

By classic methods, it follows that AV, is T1}. O

Appendix 3

Proof of Fact 11.  Let (§;)jen be an enumeration of spq(y) N By.

First,if x € Eand j € N, themap7 — Y: 6 Sf(x) is continuous. Indeed,
if (8%)¢cn is a sequence of trees in 7 which converges towards 8, there exists L € N
such thatif £ > Landi < j,s; € 0 ifandonlyif s; € #¢. Then if £ > L, we have
% (x) = 87 (x).

Consequently, the map

i =T - (¥°)°
defined by
V10) = (&, 57 (x1), 87 (x2), =87 (x1), =87 (2))jen

is continuous.
Next, the map

Y? — F(Y): (zn)nen F> COMV({z4; n € N})
is Al. Indeed, let O be an open set of Y. We have

{(zn)nen € Y?;cONV({245n € N) N O # B}

= {(Zn)neN € Y?; 3 (\) € Q<°, Z)‘,,' =1,A; >0for any i, and ZA,'Z,’ € O]
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and this set is Al. Thus the map ¥, = (¥3)® — F(Y) defined by
Yal((Z))i))jen] = TOMV{Z}; 1 <k <5,/ € N}

is A].
If z € Y, the map ¥§ = N(Y) — R* defined by ¥$(C) = jc(z) is Al. Indeed,
if (a, b) is an interval in R*,

{CeNY); je(z) € (a,b)}={C e N(Y);z¢&a.Candz € b.C}

and this setis A}.

Finally, ifi € N, themap7 — E(T): 6 Xs, is continuous. Indeed, if (6%)sen
converges towards 6, there exists L € N such that if €= L,andif j <5, thens; €6
if and only if s; € 0%. Therefore, if £ > L, then s, ¢ = S and Xs, ¢ = Xs-

Consequently, if z = ), z(i)y; € spo(y), the map ¥ =T >R deﬁned by

Vi) = ”}:zmx&,’,

T

is continuous.
Hence for z € spg(y), we have

2

1 1
VO = 3Ja @+ 3|3 20,

T
1 1
= 5[w50w20¢1(9)12 + 5[%(9)12,

and the map ¥% is A}. ]
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