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GEOMETRIC EMBEDDINGS OF OPERATOR SPACES

HORACIO PORTA AND LAZARO RECHT

1. Basic facts

We denote typically by A a C*-algebra with 1 and by G the Banach Lie group
of invertible elements of 4. Sometimes we assume that A is represented faithfully
in a Hilbert space X and this representation may change when needed. The general
reference for this sort of thing is [15].

Throughout we use reductive homogeneous space of operators (or simply reductive
space) for the following type of data: a C*-algebra A4 is given and the group G or a
convenient Lie subgroup of G acts on a C*°-Banach manifold M in such a way that
the isotropy groups of points in M are provided with stable infinitesimal supplements
(the “horizontal spaces” of the reductive space) in the sense that the adjoint action of
the isotropy groups leave these supplements stable (see [8] for the finite dimensional
analogue and [9] for the case considered here). The horizontal spaces provide the
canonical connection of the reductive space. Numerous examples of reductive spaces
are described in [1], [2], [4], [12].

Given reductive spaces M, M’ with groups G, G', a morphism from M to M’ is
a smooth map V: M — M’ together with a Lie group homomorphism ¢: G — G’
with the equivariance W (Lge) = Ly )W (¢) (we denote by L both actions) and also
with the infinitesimal condition that the tangent map of Y preserves the horizontal
spaces. The groups G and G’ operate on the space Hom(M, M’) of morhpisms from
M to M’ by

U, = LV, ¥, =Ad ¥, forg € G/,
U= WL, "=y Ad,, forh € G.

It is clear that these left actions commute and that (W) = (W"), = W,y ), (¥)" =
(V’h)g = Wey)-

Denote by Q C A the set of reflections in A4, i.e., the invertible elements ¢ of A that
satisfy ¢ = ™!, This space is studied in detail in [4]. Itis a reductive space with group
G acting by inner automorphism Aze = geg~!. The selfadjoint elements of Q form
a smooth submanifold P and the polar decomposition induces a fibration Q — P.
More explicitly, if ¢ = up with u > 0 and p unitary then automatically p is in P and
n(e) = p. The fibers Q, = w~!(p) are characterized by Q, = {¢ € Q; ep > 0} (for
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details see [4], Sections 3 and 4). These fibers are also reductive spaces with group
the unitary group U,, of the bilinear form B,(x, y) = (px,y) (x,y € K) induced
by p (acting by inner automorphism also). In fact the isotropy of this action is also
known (see [4], 5.1) and we can get each fiber faithfully by acting on p with positive
elements of U, only. In other words, u — upu~! is a diffeomorphism from the
space of positive elements of U, onto the fiber Q, (“positive” means positive for
the ordinary involution of .A). Of course the definition of U, does not depend on the
representation of A since it can be described alternatively as U, = {h € G; u* = u™!}
where x — x* is the involution x* = px*p. Recall that the Finsler metric for Q, is
defined for X € T(Q,): by | X|le = lu~2Xu!/?|.
Concerning the geometry of G the following remarks may be useful (see [2] for

details). The G-invariant connection of G* has covariant derivative

DY _d¥ 1. . . i

o =2y Y Y+YyTy)
where Y (¢) is a tangent field along the curve y(¢) in G*. The corresponding expo-
nential has the formula

Xa 'x

Ly,—1 1 -
exp, X = e2”? qge??

for X € T(G"),.

The space G* carries also the G-invariant Finsler metric || X||, = |[a‘%Xa‘% If
where || || is the original norm of A (the inclusion Gt C A permits to identify the
tangent spaces T (G1), with the real space of self adjoint elements X of .A).

2. Embeddings of reflections into positive operators
Fix a selfadjoint reflection p. Define ® and ¢ by
Q, 2, 6+, d(e) = ep,
U, 56 e@=g=@H"
The best way to think about & is that for ¢ = up we set ®(¢) = . Then:

THEOREM 2.1.  The pair (P, ¢) is an isometric morphism of reductive homoge-
neous spaces of operators.

Proof. To see that ® preserves connections recall [4], [2] that the transport forms
of 0, and G* are given respectively by

1 1
K2(X) = _ESX’ KS(Y) = —-Ea_lY

Then the preservation of the forms is a direct computation. The remainder of the
proof is straightforward. O
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This theorem gives a perfect model of the space of reflections inside the space of
positive operators. The existence of such embeddings has interesting consequences.

THEOREM 2.2. The norm of Jacobi fields along geodesics in Q, is a convex
function of the parameter.

THEOREM 2.3. If y(t) and 5(t) are geodesics in Q, then t — dist(y (t), 6(¢)) is
a convex function of t € R, where dist denotes the geodesic distance in Q.

For the proofs apply Theorem 1 and Theorem 2 in [14]. When spelled out these
results translate into rather complicated operator inequalities which will be studied
in a forthcoming paper. Similarly, using [14] again, one can obtain various convexity
results for Q,, e.g., that geodesic balls are convex sets.

Our next goal is to study all embeddings of Q, into G related to the canonical
embeddings exhibited above. Denote by 2 (®) C Hom(Q,, G*) the orbit of (P, ¢)
by the action of G. From (®,)F = @4 it follows that Q(P) decomposes as a
disjoint union of U,-orbits. Consequently £2(®) mod U, corresponds to the homo-
geneous space G/U,. This homogeneous space has a natural representation as the
G-orbit of p in the space G* of invertible selfadjoint elements of .A, which will be
used as the moduli space for the set of orbits. In fact setting x (®g, ¢pg) = Lo we
obtain a map from (&) into the proposed moduli space whose fibers are the U,
orbits contained in 2 (P). We collect these results in the following theorem:

THEOREM 2.4. For (W, ¥) € Q(®) define x (¥, ¥) = L,-1(Ad, (¥ (0))) where
a > 0 is defined by a* = W(p). Then x is an analytic map from Q(®) onto
G}, = {Lgp; g € G} and the fibers of x are the U,-orbits contained in Q ().

Proof. First we verify that x as defined in the statement of the Theorem has
the value Lyp for ¥ = ®,. In fact, a> = W(p) = P,(p) = (g7 1)*®(p)g™! =
(g~"*g~! by definition of ®. Then

Lot Ad, ¥ (p) = atag(p™")*¢"'a™a
= d’gpg™ = (g7)'pg™! = Lep,

as claimed. Next, x (¥, ) = x (¥, ¥') for ¥ = ®,, ¥' = &, means that L,p =
Lyp. Then a routine calculation shows that (g~!h)* = (g~'h)~! and we are done.
O

We close this section with a decomposition theorem of G* in terms of images of
some of the embeddings ®,.

THEOREM 2.5. The space G decomposes as the disjoint union of images of a
family of ®,’s. More precisely, let B be the commutant of p in A and denote by B+
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the space of positive invertible elements of B. Then the map
B*x 0, —> G*,  E(b,e) = ®y(e) = Lyd(e)

is a diffeomorphism onto G*.

Proof. The map ®: Q, — G™ has image the set of exponentials of symmetric
elements which anticommute with p. Then the map & corresponds to (b, ¢) = Lyc
where ¢ stands for such an exponential and the theorem follows from Theorem 2
in[3]. O

3. Embedding of positive operators into reflections

Let A be the algebra of 2 x 2 matrices with entries in .A. We can make A into
a C*-algebra by representing A faithfully in a Hilbert space K and then making the
matrices act on K & K. This representation of .A will be used occasionally for other
purposes, so we assume it has been chosen once and for all. In this section we denote
by G and G the groups of invertible elements and by G* and G the spaces of positive
invertible elements of .4 and A. Both G and G are Lie groups and their Lie algebras
are A and A, respectively.

Also, let

. 1 0 1 0 _
3.1.1) p-—(o 0) p=(0 _1)=2p—1 p=1-p

and

(3.1.0) a=%<li) n:(?é):h—l&:l—a

These are all elements of A. It is easy to see that

(3.1.ii) p, p, ¢ and @ are projections,
(3.1.iv) p and n are reflections,
(3.1.v) pn = —np.

Finally let g — § = (g*)~! = (g~!)* be the contragredient map.

THEOREM 3.2. The map

o1 e+8 g—§)
= ga + ga ~ ~ ~
fe)=ga+g 2(8—8 g+2

is a Lie group embedding of the Lie group G into the Lie group G. The tangent map
fi of f at g = 1 is the Lie algebra homomorphism

ro=(7 7)
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where X = Y + Z is the decomposition of X € A in its symmetric and antisymmetric
partsY = 1(X + X*), Z = (X — X*).

The proof is just a routine verification. It is also easy to verify the following:

(3.2.i) If g = e is a positive element of G and we write g = ¢ with Z = Z*,
then

_ 2z, _ { cosh(Z) sinh(Z)
f@=e _( sinh(Z) cosh(Z) )

(3.2.ii) If g is unitary then
_(8 0

(3.2.iii) f(g*) = f(8)"
(32.iv) f(&)p = pf(8).

These results follow from standard identities including eZ = cosh(Z) + sinh(Z).

The element
(1 0
P=\0 -1

determines the involution in 4 given by x* = px*p and the element x* is the adjoint
of x for the bilinear form B, (£, ¢) = (p&, ¢) defined on the Hilbert space L & K. It
satisfies

B2v) f(g7) = f(&)"

THEOREM 3.3. The image of G under f consists of the elements of I:l,, that
commute with 1.

Proof. 1t is clear from 3.2.v that the image f(G) is contained in U » and that all
f(g) commute with 1. To see the converse, use Theorem 5.1 and remarks after 3.4
in [2] to write an arbitrary w € U, as

_( k b u 0\ _ (au b

Y=\b 1 0 v) "\ bu cv
where k = /1 4+ b*b > 0,1 = 4/1 + bb* > 0, and u and v are unitary in .A. Suppose
that w commutes with 7. Writing down as matrices both terms of wn = nw we get

that ku = v and b*u = bv, and by uniqueness of polar decompositions this implies
k =1l and u = v. It follows that b = b*. Thus w has the form

=(5 1) (6 w)
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with k = +/1 + b2. Calculating we see that f(g) = w forg = %(b ++/1+ b*)u and
the theorem follows. [

Consider the space ~Q of all reflections in .4 and the subspace P of self-adjoint
elements of Q. Let Q, denote the fiber over p of the polar decomposition map

Q LN P. We have:

THEOREM 3.4. Defining F: Gt — Q,, by F(a) = pf(a) the pair (F, f) is an
isometric morphism of reductive spaces.

Proof. For the equivariance just calculate

F(Lga) = pf(gag™") = pf (@ f@) f(g)™"
and

LigF(a) = f(®pf@f(®)".

This means that the equality F(Lga) = Ly F (a) follows from pf (8) = f(g)p, an
easy consequence of formula 3.2.iv above.

Letus prove that the pair (F, f) preserves the connections. Recall that the transport
forms for G+ and G are, respectively, K, (X) = -——a"X and Q.(Y) = ——-8Y The
first formula is proved in 2.3 of [2], and the second one can be obtained from the
corresponding formula for projections (where the right-hand side is [y, y]) given in
[11, [4], or [11] using the change of variable ¢ = 2y — 1. Thus F*Q = f|K or more
specifically (F*Q),(X) = f{(K.(X)) forall X e TG} and any a € G*, where F*
is the pull-back of forms induced by F and f{: A — L is the tangent map of the

homomorphism f: G — U, (here £ C A is the Lie algebra of U, studied in [4],
Section 5).
Now, by definition,

(F*Q)a(X) = Qpeo)(TF(X)) = —%F(a)TFaoo
= —%p(aa + a_I&)p(Xa + a“lXa‘lo't).
Using ap = pa and a? = a? = p? = 1 we get
(F*Q)a(X) = —%(a_IXa + Xa™'a).
Now differentiating f(a) = ax + & we get f{(Z) = Za — Z*@, and so

f1(K (X)) = fl (—" _IX) = ——;-a'lXa + %Xa_lél
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and we conclude that (F*R2),(X) = f{(K4(X)) as claimed. Concerning the isometry
statement, by homogeneity it suffices to verify itata = 1 € G¥, and there it is clear
by direct calculation. [

COROLLARY 3.5. F can also be defined as F(Lg1) = Lyg)p.

A map ¢: X — Q where Q is the set of all reflections of a C*-algebra produces
by pull-back a “vector bundle-with-connection” from the bundle of fixed subspaces.
More precisely, and assuming that the algebra is represented in a Hilbert space £, let
& — (Q be the bundle of fixed subspaces &, = {¢ = 1} where in general we write
fr=1}={x e K;tx =x}(and {r = —1} = {x € K; tx = —x}). This vector
bundle has the canonical connection Dxx = p(X(x)) where p is the projection on
the fixed space {¢ = 1}, thatis p = (1 +¢&)/2. On £ there is also the canonical metric
defined by the form B, (x, y) = (px, y).

In the case under consideration, we have constructed the map F: G+ — Q 0
and our next goal is to calculate the pull back of & under F (pull-backs of canonical
bundles over reflection spaces are studied in the finite dimensional case in [10] for the
purpose of classifying connections on vector bundles). To describe the answer more
succinctly recall a construction given in [2] (section 3 under the title “The Bundle
E”). Let E = G* x K be the trivial bundle over G* with fiber K and provide it with
the transport connection whose formula is

1
Dxx = X(x) + Ea"lXx.
We can also provide E with the metric ((x, y)), = (ax, y). Then:

THEOREM 3.6. The map x — ((1 + a)x, (1 — a)x) from K into the fixed space
of € = F(a) is an isomorphism of bundles with connection and metric from E onto
F*(&) where isomorphic in the case of the metrics is to be understood as “up to
positive constant” .

Proof. Suppose that x () is a section of E over the curve a(t) € G*. Then

d
p (Z((l +a)x, (1 - a)x)>

_1(1+3@+a") ta-ah ax + (1 +a)x
T2\ j(-a+a™h) —Ya+a™) —ax + (1 —a)x

has the form ((1 + a)y, (1 — a)y) where y = x + %a“dx as a routine calculation
shows. This amounts to: the map x — (1+a)x, (1 —a)x) preserves the connections
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of E and F*(&¢). To see that it is also isometric, calculate

B,(1+a)x,(1—-a)x) = ((1+a)x, A +a)x)—((1—-a)x, (1 —a)x)

= 4{ax,x) =4{x, x),

and so the metrics differ by a factor of 4. O

The next issue we want to take up is the description of the image of the map F.
We present two characterizations, of which the first is rather simple:

3.7. The image of F is the set of elements of 0 o that anti-commute with 1.

A direct application of 3.3. gives 3.7.

The second characterization requires some preliminaries. In particular we need
a description of the elements of 0, similar to the description of the elements of U,
given in the previous section. Suppose that b € A and define 0 < k = (1 + b*b)!/2,
0 <! =(1+bb*'/2 Then

A=A(b)=(lg bl*)

describes the arbitrary positive element in U, » and the representation is unique (see
[4], end of Section 3).~ Notice that A(—b) = A(b)~!. According to 3.3 in [4], an

arbitrary element ¢ € Q, can then be written as ¢ = oA~ = pA2, or
_ 1+2b" —2kb*
- 2bk ~(14+2bb%) )

The reflection ¢ has fixed space the image under A of the fixed space of p (which is
K @ 0), so the fixed subspace of ¢ is

'{8=1}={(IZ; );xelC]

and the reverse space of ¢ is

{8=—1}={(b;yy );yeICl‘

The elements k and [ are invertible and so we can define m = bk~!, n = b*I~!. Then
we can paraphrase the foregoing:
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THEOREM 3.8 ([4]). The fixed and reversed spaces for e = pA(b)~2 are the graphs
in K ® K of the maps
m=b(1+b0)"" K=Kd0>K=00K,

n=m"=b1+bb")"" K=00K>K=K&O0.

In other words, e(x @ y) = x ® y is equivalenttoy =mx and e(x @ y) = —x D y
is equivalent to x = ny or y = m*x. The element m has |m|| < 1 and any map
K — K with norm less than 1 is such an m. The correspondence ¢ — m = m(g) is
analytic from Q,, into the space of linear operators in K.

To prove that all m with ||m|| < 1 are obtained in this way simply define b =
m(1 — m*m)~'/2 and verify the identity. In our situation, we have:

LEMMA 3.9. For a € G™ the element m corresponding to F(a) is the Cayley
transformm = (1 —a)/(1 + a) of a.

Proof. 1t follows from F(a) = pf(a) that =2 = f(a), or A*> = f(a~!). With
the previous notations this reads

1 1
142b*b = E(a +a7h, —2bk = E(a —a™h.

But 1 + 2b*b = 2k? — 1 so the first equation gives k2 = (1 + 1(a +a~!)). Then
from the second equation we get
zla—a™
30+ 3@+a™)
and this simplifies to bk~! = (1 — a)/(1 + a), as claimed. O

—2bk~! =

With this the second characterization of the image of F is immediate:

THEOREM 3.10. The image of F: Gt — Q o consists of the € € Q o Where m(¢)
is self-adjoint.

Together with the embedding of G* into Q o given by (F, f) we can consider the
orbit Q(F, f) C Hom(G™, Qp) of (F, f) under the group f],,. This orbit decom-
poses as a disjoint union of G-orbits of elements of Q(F, f). We show here that
this space of G-orbits can be parametrized by a natural moduli space. The proposed
moduli space is the U,-orbit.

O, ={Amn=hnh~hel,)c 0

where 7 is the reflection defined in 3.1.ii. Define a map Q(F, f) EEIN O, by

x(F', f) = © € Q where the fixed space of 7 is the graph of lim,_.om(F'(a))
and the reverse space of t is the graph of lim,_, ., m(F’(a)). Then we have:
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THEOREM 3.11. The map x is constant on G-orbits in Q(F, f) and defines a
bijection of the space Q(F, f)/G of G-orbits onto O,.

Proof. By homogeneity it suffices to show that x describes  when the morphism
is (F, f). But in this case the formula for m given in 3.9 shows the result and we are
done. 0O

THEOREM 3.12.  The elements t of O, are characterized by v € Qandt' = —1.
Therefore the set O, is a closed analytic submanifold of Q.

Proof. ltisclearthatif r € (5,, then it satisfies the announced properties since 1
does and the elements of U, commute with the involution x — x*.

Now suppose that 7 € Q satisfies 7 = —t. Then by polar decomposition
T = po = u'?o =172 with & > 0 and o unitary. We conclude (see [4]) that 0% = 1
so that o is an orthogonal reflection and uo = ou~!. Next write —1 = pt*p =
po~up = popp or u(—o) = (pup)(pop). Thus u = ppu~'p and —o = pop by
uniqueness or polar decompositions. A direct calculation shows that o has the form

_Ou‘l
7=\u 0

with u € A unitary. Furthermore y is in U, for, u being positive, the condition
w~! = pup is equivalent to u* = p~!. Then according to 3.1 in [4], T can be written
as T = po = u'?ou1/2, But

o= 0 u! = vnv~! where v = u=! 0
“\uwo )7 “\o 1)

Hence T = s(t)ns(z)~! with s(r) = u'/?v which is obviously in U, being the
product of two elements of U,. O
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