ILLINOIS JOURNAL OF MATHEMATICS
Volume 40, Number 3, Fall 1996

DAY POINTS FOR QUOTIENTS OF THE FOURIER
ALGEBRA A(G), EXTREME NONERGODICITY OF THEIR
DUALS AND EXTREME NON ARENS REGULARITY

EDMOND E. GRANIRER
To the Memory of Mahlon M. Day

Introduction

Let J be a closed ideal of the Fourier algebra A = A(G) of the metrisable locally
compact group G, with identiy e, and F = Z(J) C G its zero set. G need not be
abelian, yet the results that follow are new even if G = R or T (the real line or the
torus). Let PM(G) = A(G)*.

Calla € F aMahlonM. Day pointof J and let D; (J) be the set of all such, if there is
asequence u, € ANC.(G) suchthat (i) 1 = u,(a) = ||u,||, (ii) for any neighborhood
V of a there is some k such that FNsuppu, C FNV ifn > k and (iii) {,} is a Sidon
sequence in A/J, i.e. there is some d > O such that || > ctju;llayy > d Y] loj| for
all complex o; and n > 1.

The usefulness of this concept comes from our Theorem 4. It implies that if
D1(J) # @ then P = (A/J)* is extremely nonergodic ateach a € D{(J) and (if G is
separable metric) the Banach algebra A/J is extremely non Arens regular. Namely
P/Wp(a) (hence P/WAPp) has £*° as a quotient and the set of topologically invariant
means on P at a, TIM p(a), contains the big set F , hence card TIMp(a) > 2¢€.

Hence, if we discover points in D;(J), we get big sets TIM p(a). We do that in
Theorems 2 and 3 and then apply the results to arbitrary G in Cor. 6,7. In Ch. Il we
apply the results to abelian G, i.e. to w* closed translation invariant subspaces P of
L®(G) witho(P) = GNP = F,where P = (f; f € P).

A very mild application of this to second countable abelian G and evento G = T
is the following: Let P C £°°(Z) (or L*°(G)) be a w* closed translation invariant
space such thato(P) = G N P = F. If F contains, or is, an ultrathin symmetric set
Fy ([GMc] p. 333) (or the Cantor 1/3 set), then the set of topological invariant means
on P, TIMp(e) [and in fact TIM p(x)], contains the big set F = {¢ € £2°*; 1 =
(p, 1) = |l@ll, ¢ = 0 on ¢} (which contains BN ~ N) [for each x € Fy]. Hence
card TIM p(e) = 2¢ = card P*.

If however F is a perfect Helson (or compact scattered) S subset of T or R and
e € F thencard TIMp(e) = 1 = card IMp(e).
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This new result for P C £°(Z) with o (P) = F, cannot be obtained by the usual
methods used to prove that if O = £°°(Z) then TIM y(e) is big. Since P is not a
pointwise subalgebra of £*°(Z), finite intersections of translates of sets A C Z which
are building blocks for elements of TIM on £°°(Z) do not play the same role for P as
they play for £>°(Z) (see Paterson [Pa], Ch. 7).

Again, let J C A, Z(J) = F, P = (A/J)* be as above. Let H C G be a
closed nondiscrete metrisable subgroup. We show that (the interior of F N H in H)
inty F C Di(J). Hence F C TIMp(x) and card TIMp(x) > 2¢ if x € inty F (and
this holds even for P C PM,(G) = A,(G)* ala Herz [Hz].

If G =H = F (thus P = PM(G)), x = e and G is separable metric, this is
due to Ching Chou [Ch2] (for beautiful definitive results see Z. Hu [Hu] and also
Lau-Paterson [LP]).

Our results also improve results of Fournier and Cowling in [FC] in showing the
existence and prevalence of convolution operators on L2(G) (L?(G)) with “thin”
support which are far from being ‘ergodic’ at a € D;(J) (a fortiori very far from
being convolution by a bounded measure). They also improve and simplify results
of ours in [Gr5] (see more attributions in [Gr5], p. 53).

We delineate now in more detail the results we obtain in this paper.

Restricting our results to metrisable G, in Section 1 we get:

THEOREM 2. Let J C A(G) be a closed ideal and F = Z(J). Assume that R
or T is a closed subgroup of G and S C R (or T) is an ultrathin symmetric set such
that aSb C F for some a,b € G. ThenaSb C D\(J).

THEOREM 3. Let J be a closed ideal of A = A(G) (orof A = A,(G) @ la
Herz [Hz]) with F = Z(J). Let H C G be a closed nondiscrete subgroup. Then
intagp F C D1 (J) in particular D1(0) = G. (inty, F is the interior of F N Hy in Hp).

In Theorem 2 we improve a result of Y. Meyer [Me] for A(R) and then using
theorems of Herz [Hz] lift the result to A(G).

In Theorem 3, while F is not as thin as in Theorem 2, the result holds for all
A,(G), 1 < p < oo [Hz], where A2(G) = A(G). Methods in abelian harmonic
analysis fail in this case, and a global approach is taken.

If p # 2, A,(G) is very different from A,(G). Sinceif G, G, are compact abelian
and A,(G1)*, A,(G)* are isometric as Banach spaces then G, G, are isomorphic as
topological groups by Benyamini and Lin [BL]. While A;(G)* is isometric to £°(Z)
for all infinite metric compact abelian G.

Let A = A(G) [or Ap(G)]. If & € A* let supp P, be the support of & as
an element of A*, (see sequel and [Hz], p. 120). If P C A* let P, = ncl{® €
P; supp @ is compact} (where ncl is norm closure). If a € G let Ep(a) = ncl{® €
P; a ¢ supp ®}; Wp(a) = C(A8,) + Ep(a), where (Ad;, v) = v(a) if v € A. Let
oP) ={x € G; Aé, € P}. LetTIMp(a) = {y € P*; 1 = (Y, A8) = ¥l ¥ =
Oon Ep(a)}; WAPp = PNWAP where ® € A*isin WAPiff (u- ®;u € A, |ul| < 1}
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is relatively weakly compact in A*, where (u - @, v) = (P, uv) foru,v € A. We
prove in Section 2

THEOREM 4. Let G be arbitrary, J a closed ideal of A = A(G), or A,(G).
Let Q C A* be a norm closed A module such that P, C Q C P = (A/J)* and
Di(J) #9.

Then Q/ WQ(x) (a fortiori Q/ WAPQ and Q/M(F)) has £*° as a quotient and
TIMQ(x) contains F , (i.e., Q is ENE) for each x € Dy(J).

Consequently A/J is ENAR if G is second countable nondiscrete.

Here M(F) = ncl{Au; u € M(F)} where (A, v) = f vdu forv € A. The
Banach algebra A/J is Arens regular if P = WAPp. A/J is extremely non Arens
regular (ENAR) if P/WAPp is “‘as big as P” namely if it contains a subspace which
has P as a quotient. We abbreviate the conclusion of Theorem 4 about Q writing that
Q is extremely nonergodic (ENE) at each x € D;(J).

Assume, for simplicity, in Corollaries 6 and 7 that G is metrisable.

COROLLARY 6. Let A = A(G)and J C A, P = (A/))",P. C Q C P,
o (P) = F be as in Theorem 4. Assume that R (or T) is a closed subgroup of G, and
S C R (or T) an ultrathin symmetric set (see Section 1) such that aSb C F, for some
a,begG.

Then Q is ENE at each x € aSb. Thus A/J is ENAR if G is second countable
nondiscrete.

The reader should note that even the fact that @ # Wo(x) is a nontrivial result. If
G =T and F C T is ultrathin symmetric, it has been proved by Woodward [Wo1]
that P # Wp(x) for some x € F. Corollary 6 implies that P/ Wp(x) has even the
big nonseparable space £ as a quotient for each x € F. Corollary 6 also improves
Theorem 12 in [Gr5].

COROLLARY 7. Let A= A(G)or Ap,(G),1 < p <oocand]J C A,P=(A/J)*,
P. C Q C P,o(P) = F be as in Theorem 4. Assume that H C G is a closed
nondiscrete subgroup, a, b € G and int,g, F # 0.

Then Q is ENE at each x € int,gp F. Thus A/J is ENAR if G is second countable
nondiscrete.

Corollary 7 improves a particular case of Theorem 6 in [Gr5] with a simpler proof.
It (and Corollary 6) show the prevalence of convolution operators ® € P on L?(G)
(on L%(G)) which are nonergodic at certain x € o (P), i.e. such that ® ¢ Wp(x) (
a fortiori & ¢ M(F)). (See [GrS], p. 53.) Parts of Corollaries 6 and 7 have been
improved to nonmetrisable G, H, F in [Gr6].

In Section 3 we apply the above machinery to locally compact abelian (Ica) groups
G. Let F: LI(G) —» A(G) [fs:AM (G) — B(G)] denote Fourier [Stiltjes] trans-
form. Thus 7*: PM(G) — L*°(G) is an isometry and w*—w* homemorphism.
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If fe L°°(G) letZ(f)=GnNnuw cllm{fy, y € G}, where f,(x) = f(yx), G
is the dual of G and lin, wcl denote linear span, w* closure, respectively.
LetP C L°°(G) be a norm closed M(G) module thus M(G) % P C P. Thisis the
case iff P = F*~! P is a B(G) module, i.e., B(G) - P C P where (u - ®, v) = (P, uv)
for u € B(G) v € A(G). Then define

Dp(a) = ncllin{® — (x)g-1 - ®; x € G, @ € P}; Vp(a) = C(As,) + Dp(a).
Dp(a) = ncllin{f —a(x) f;; x € G, f € P}; Vp(a) = Ca + Dp(a)

Ep(a)

ncllin{f —(@h)x f; 0 <h e L'(G), [hdx =1, f € P}; Wp(a)
= Ca+ Ep(a).

The next paragraph shows the relevance and need of the above definitions. It should
be reread before going through Section 3.

The space Ep(a) is of interest in commutative harmonic analysis smce Ep(a) =
ncl{f € P; a & X(f)} whenever P C L°°(G) is a norm closed M (G) submodule
(Lemma 8'), and hence the reason for this definition. In this case F*Ep(a) = Ep(a)
and F*Wp(a) = Wp(a), F*Dp(a) = Dp(a) and F*Vp(a) = Vp(a) (Lemma 8). It
so happens then that Dp(a) C Ep(a), Vp(a) C Wp(a) with equality lf PcUC (G)
(UC from uniformly continuous) (see Prop.9), a fortiori ifo (P) = GN P is compact
where P = {f f € P} Ifaeo(P)let

TIMp(a) IMp(@)] = {y € P*; 1 =(¥,a) = ¥, ¥ =0o0n Ep(a) [on Dp(a)]}

(thus TIM p(a) C I Mp(a)) respectively. If a = e, these become the set of honest to
goodness topologically invariant [invariant] means on P. Also TIMp(a) = IMp(a)
if P C UC(G) (by Prop. 9).

In the next two corollaries let P [Q] be a w* [norm] closed M (G) submodule
of L°°(G)* such that UCp C Q C P, where UCp = UC(G) N P. Thus P =
(LY(G)/J)* for a unique closed ideal J C L!(G), with 6(P) = GNP = {x €
G; (FHx)=0if f e J}.

Q is called ENE at x if Q/ Wy (x) has £* as a quotient and TIM ¢ (x) contains F .

COROLLARY 10. Let G be a metrisable l.c.a. group UCp C Q C P C L®G)
and o (P) = F. Assume that R or T is a closed subgroup of G, S C R (or T) an
ultrathin symmetric set such that aS C F for somea € G.

Then Q (hence P and UCp) are ENE at each x € aS.

COROLLARY 11. Let G, P, Q, F be as in Corollary 10. Assume that H is a
nondiscrete closed subgroup and a € G be such that int,y F # (.
Then Q (hence P and UCp) are ENE at each x € int,g F.
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If B(G F) = FsM(F) then ncl B(G F) C WAPy C Vp(x) C Wy(x) for
all x € F._ A consequence of Corollary 10 [or 11] is that Q/V(x), Q/WAP,,
Q/ncl B(G F) have £* as a quotient and I M (x) D TIM ¢(x) both contain F for
all x € aSh [x € int, H,, F]respectively. Furthermore, if G is second countable, then
the Banach algebra L! (G) /J is ENAR.

1. It has been proved by J. P. Kahane that there exist continuous [smooth] curves
F CR*[FCRn >3] whigp are Helson sets (see [Mc], [Mu] or [Ka 1,2,3]).
Thus if P = w*cllin F C L®(G) where F C G = R" [R?], then P = Wp(x) =
Vp(x) = B(G, F) for all x € F. Our Corollary 10 implies that for any line L in R?
[R"], L N F cannot contain an ultrathin symmetric set.

2. Assume that G is l.c.a. metrisable, K = I1{°K, C G where K, are finite
nontrivial abelian groups. Asume that int,x, F # @. Then Q is ENE at each x €
int,gxp F by Corollary 11.

Additional definitions and notations

Let A (or dx) be a fixed left Haar measure and L?(G), 1 < p < oo, the usual
complex valued function spaces (see [HR]). Let C(G), [UC(G)], WAP(G), Co(G),
C.(G) denote the bounded [uniformly] continuous complex functions on G which
are in additon weakly almost periodic, tending to 0 at oo, have compact support,
respectively.

If f € C(G)letsupp f = cl{x € G; f(x) # 0} where cl denotes closure. If
F C G isclosed then M (F) are the complex bounded regular Borel measures on F
with variation norm, thus M (F) = Cy(F)*. All convolution formulas are as in [HR].

If f is a function on G, x,y € G then fV(x) = f(x71), fi(») = f(xy). A
neighborhood (nbhd) of x is any open set U C G containing x.

If F, H C G then inty F is the interior of F N H in H. Thus x € inty F iff for
some nbhd V (inG)of x,x e VNH C FNH.Denote F~ H ={x € F; x € H}.

Let A(G) denote the Fourier algebra of G, as in [Ey]. A,(G), 1 < p < o0, are
the regular tauberian Banach algebras on G defined in [Hz]; thus A;(G) = A(G).

Let A(G)* = PM(G), the dual of A(G) (denoted VN (G) in [Ey] or CV,(G) in
[Gr5)). If G is abelian then A(G) = FL! (G)

If J C A(G) = Aisaclosedideal let Z(J) = {x € G; v(x) = 0ifv € J}.
Equip the quotient algebra A/J with the norm ||v||a/y = inf {|lv —ull; u € J}. If
FcGletlp={ve A; v=0on F}.

If G is a locally compact abelian group then the linear space P C L°°(G) isa
M(G) [L! (G)] module iff M(G) *PCP [LI(G) * P C P].

Examples of norm closed M (G) modules are any w*(B) [norm] closed translation
invariant subspace (or L' (G) submodule) of L°°(G) (C(G)) [UC(G)] respectively
(see [Co], p. 221).

If X is a Banach space (always over C the complex numbers) X* denotes its dual.
IfY C X letncl Y [lin Y] denote the norm closure [linear span] of Y in X.
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The Banach spaces c9 C ¢ C £* over the complex field are as in [LT]. Let
cg={pet®™;9g=00ncCt®land F ={peccy; 1=(p,1) =|ol}. Fis
a w* compact perfect convex set such that card F = card £>* = 2€ where c is the
cardinality of the reals. X ~ Y denotes isomorphism of Banach spaces [LT].

The Banach algebra (A, || ||4) is called (in this paper) a regular Banach algebra
on (the locally compact space) X if, with the notation in [HR], (39.1), (39.11), A is
a regular Banach algebra in Cy(X) where X is the structure space of A.

If in addition A N C.(X) is norm dense in (A, || ||4) then A is called a regular
tauberian Banach algebra on X (which coincides with [Hz], p. 100).

For example if J is any closed ideal of A(G) (or A,(G)) and F = Z(J) then J
[A(G)/IF]isaregular [regular tauberian] Banach algebraon G ~ F [F] respectively
([HR], (39.15), [Hz], p. 101).

Let (to the end of this section) A be a regular Banach algebra on X and ¢ € A*.
Define, supp ¢ C X by: x € supp ¢ iff for any nbhd U of x there is some f € A
such that supp f C U and (¢, f) # 0. supp ¢ is a (possibly void) closed set such
that supp (f - ¢) C supp f Nsupp ¢ if f € A, ¢ € A* where (f - ¢, 8) = (¢, f8)
for g € A, as is easily shown.

Let P C A* be a closed subspace. Let o(P) = {x € X; A6, € Pand P, =
ncl {® € P; supp & is compact}. If a € X let Ep(a) = ncl {® € P,a ¢ supp ®};
Wp(a) = C(A8,) + Ep(a); TIp(a) = (¢ € A*; ¢ = 0on Ep(a)}; TIMp(a) =
{¢ € TIp(a); 1 = (Y, A8) = ||Yll}if a € o (P).

Let J C A be a closed ideal with F = Z(J) (J = {0} may occur). In memory
of M. M. Day, see [Da], define the set D;(J) C F as in the introduction, with A(G)
replaced by A. Define D,(J) C F (b from “bounded”) in the same way as D1(J)
except that (i) is replaced by (i)Y 1 = u,(a) < sup [lu,|la < oo.

Clearly D;(J) C Dp(J) and if I C J are closed ideals in A with F = Z(I) =
Z(J) then D{(J) C Di(I) and Dy(J) C Dp(I) (since {|ulla;r = lullass).

® € A*isin WAP(A*) iff {u - ®; u € A, ||u]| < 1} is arelatively weakly compact
subset of A*. A is Arens regular iff A* = WAP(A*). A is ENAR iff A*/WAP(A*)
contains a closed subspace which has A* as a quotient. Note that if A is separable
and {x,} is dense in the unit ball of A, then¢: A* — £* given by (t®)(n) = (P, x,)
is an isometry, thus A* C £°. Hence if A*/WAP(A*) has £*° as a quotient then A
is ENAR (since if g: A*/WAP(A*) — £> is onto then X = ¢~!(A*) has A* as a
quotient).

1. When D;(J) is nonempty

DEFINITION. The set E C R is called symmetric (see [Me] or [GMc]) if there
aret, > Osuchthatt, > Y o t; foralln, and E = {3} °¢&;t;; & =0or 1}. If in
addition Y 7°(ti41/ t;)? < oo then E is called ultrathin symmetric.

In the next two lemmas, for closed F C R, let A(F) = A(R)/Ir. The following
is due to Y. Meyer ([Me], p. 246).
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LEMMA. Let E C R be ultrathin symmetric. Let f, € A(E) be such that
| filagy = 1 for k > 1 and || fellacky = O for each compact K C E withO ¢ K.
Then { fi} contains a subsequence which is Sidon in A(E).

We improve this as follows:

LEMMA 1. Let E = {3 &it;; & =0, 1} C R be ultrathin symmetric and a €
E. Let uy € A(R) be suchthat 1 = uy(a) < |luxllaey < B < oo and ||ukllacxy = 0
for all compact K C E with a ¢ K. Then {u,} contains a subsequence which is
Sidon in A(E).

Remark. This lemma also holds for sets E for which —F = {—x;x € E}is
ultrathin symmetric.

Proof. (i) Leta =s = Z;” t;. Thens — E = E and if u'(x) = u(s — x) for
u € A(R) and x € R then #” = u and ||u'|| = |lull, where |lu|| denotes ||u||acr)-
Alsou € Igiffu’ € Ig. Let K C E be compact and K’ = s — K. Then |lullax) =
inf{|lu+vll; v € Ix} = inf{||u'+V'||; v € Ix} = inf{||u'+v|); v € Ix} = W] akrs
since v'(x) = v(s —x) =0forx € K'iff v(y) =0fory e s—K' =K. In
particular ||u|| gy = |4’ ax) since E' = E. If K C E is compact and 0 ¢ K then
lupllacy = lukllay — Osince s € K' = s — K. If v = (lugllaz)) ™ up, then,
since B~! < (Jlugllacgy)™! < 1, vy has a subsequence which is Sidon in A(E) by
Y. Meyer s lemma, hence so does {u;}. This proves the case a = s.

(ii) Assume thata = ZT" to, where {m;} = {n > 1; n ¢ {n;}} is infinite. Consider
the seta + Eo where Eq = {Y_{° &jtm,; &; = 0 or 1}. Then Ej is ultrathin symmetric
anda + Ey C E. Let u/'(x) = u(a + x) if x € R; thus ||| = |ju|l. Clearly, if
D C FthenIr C Ipand |lullary > llullapy. Hence ||ul| a@+Ey) = inf{llu+v]|; v e
Lot} = inf{lle’ + v'll; v € Losgo} = inf{lle’ +v'll; v/ € Iz} = 'l aceo)-

And B > lullae) = luklla@+en = lugllaky) = up(0) = 1.

Ifnow K C Ey is compactthenu € I iffu’(x) = u(x +a) =0forallx € K —a
iff u' € Ix_,. And |lulla@+x) = inf{|lu + v|l; v € Iy} = inf{|lu’ +V'|; v €
Lovk} = inf{llw’ + V'll; V' € Lopg—a) = I llack)-

If K C Epis compact and 0 ¢ K then |lu;llaky = llulla@+x) — O since
a ¢ a+ K. Hence we can apply Meyer’s lemma and get that some subsequence {u,, }
is Sidon in A(Ey). Thus {u,,} is Sidon in A(a + Ey) since ||u||a@+Ey) = 14|l aEo)»
by the above. But B > |lux|lag) = |lukllae+Eq). Hence {u,,} is Sidon in A(E).

(iil) Assume now thata = Y_ t,, where {n; n ¢ {n;}} is finite. Thusa = Z'{ by, +
Y N1t withn; < N fori < k. Define then the sequence {s,} by s; = t,, if i <k
ands; =#; if i > N + 1. Then the set E; = {_{°&;s;; & = 0 or 1} is an ultrathin
symmetric set and a = Zf° si. Also B > |lugllaey = llurllae,y = ur(a) = 1.
And if K C E; is compact and a ¢ K then K C E is compact and a ¢ K. Thus
llukllacxy — O. Hence by case (i) there exists a subsequence {uy,} which is Sidon in
A(E)), afortiori in A(E). O
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Proof of Remark. If u'(x) = u(—x) for all x, then ||u'||ary = |lullar). And
if F = —E then (Ig)’ = Ip, thus |u'||ar) = llulla). Use of Lemma 1 for the
sequence {u,} at —a € F will imply that {u,} has a subsequence which is Sidon in
A(E).

THEOREM 2. Let G be any locally compact group J C A(G) be a closed ideal
and F = Z(J). Assume that R (or T) is a closed subgroup of G and S C R is an
ultrathin symmetric set such that aSb C F for some a,b € G.

If F is first countable at each x € aSb, a fortiori if F is metrisable then aSb C
Dy(J).

Remarks. (i) We show that if F is first countable at x € aSb then x € D(J).
(i) If Lemma 1 holds for A, (R) then this theorem holds for A, (G), since only results
in [Hz] are used.

Proof. Fixs € S andletV, be openin G such thatasb € V,,letcl V,, be compact
and V, N F be a neighborhood base in F at asb € F (F is first countable at asb).
Let v, € A(G) = A be such that v,(asb) = 1 = ||v,| and suppv, C V,. f Visa
nbhd of asb there is some ng such that F Nsuppv, C VN F if n > ny.

Let A’ = A/J where forv € A(G),v = v+ J and ||v || =inf {|lv+ul; u € J}.
We show, using Lemma 1, that there is a subsequence v}, which is Sidon in A’.

Let r: A(G) — A(R) be the restriction map (rv)(x) = v(x)ifx € R. Thenr
is onto and ||r|| < 1 by Herz [Hz], p. 92. Now £,, r, defined by £,u(x) = u(ax),
rpu(x) = u(xb) are isometric isomorphisms on A(G) ([Hz], p. 97) and £,r, = rpl,.

Ifu, = €arpvnthenruy,(s) = vo(asbh) = 1 = |jva|| = |[rlarpvnll = Larpva(s) = 1
hence ru,(s) = 1 = ||ru,||.

Forclosed L ¢ G[L Cc R]letI, = {v € A(G);v =0on L}, [I,f ={u €
A(R);u = Oon L}]. Let A(L) = A(G)/I, AR(L) = A(R)/I} and q: A(R) —
AR(S) be the cannonical map (thus ||g|| < 1.)

Let K C S be compact such that s ¢ K. Then asb € aKb C F. Hence there is
an ng such that for n > ng, V, NaKb = @; thus a~'V,b~' N K = @ (and asb € V,,).
Now supp u, = sup£,rpv, C a~'V,b~!. Hence if n > no, K Nsuppru, C
K Na'V,b~' = @ and ||[ru,llarxy = 0. Hence |[ru,|larx) — O for any compact
K C Ssuchthats ¢ K. We also note that gru, (s) = 1 > ||qru,| > qru,(s); hence
qrun(s) =1 = |lqru,|l. We now apply Lemma 1 and get that there is a subsequence
up; and some ¢ > 0 such that || Zl ojqruy | > ch lj| for all k > 1 and complex
o).

Fixv e A(G) and let u = £,r,v. We claim that |Jvlla;; = llgrullarcs). This will
show that v;, 1s a Sidon sequencein A’ = A/J. One has ||v||4;; = inf{|lv+ w|;w €
J} > mf{lle rb(v+ w)|l; w e J} =inf{|lu + w|; w € £,rpJ} > inf{|ju + w|; w €
Iy} (where H =a~'Fb~1) > 1nf{||ru+rw|| we Iy} > 1nf{||ru+w|| w e IHnR}
(sincerly C IR z) > inf{llru+wl; w € I¥} (since S Ca~'Fb~'NR = HNR) =
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lgrull ax(s). Hence H PN-T, v,
and complex ;. [

k k
> aiqriy,, >c «;|forallk > 1,
oy 2 | Dhesaru |, 2 e X loylforallk =

AR

COROLLARY 2. Theorem 2 holds for any set S C R expressible as a union S =
Ume [(xa+Se) where S, or —S, are ultrathin symmetric, x, € R and I is any index
set. In particular it holds if S is any symmetric set.

Proof. Tomake the additive and multiplicative notation consistent replace x, +Sq
by xS, and —S by S~!. The proof of Theorem 2 works if S or S~ are ultrathin
symmetric by the remark after Lemma 1. Let now § = Uwe 1 XS« C R with S, or
S ! ultrathin symmetric and aSh C F. If s € S then asb € axgSgb C F for some
B. Use of Theorem 2 with S replaced by Sg shows that asb € (axg)Sgh C D1(J).

Let S = {3 &i; & = 0, 1} be symmetric where 00 > 1, > Y oo t; > 0 for
aln > 1. Letx = Xt,, and M = {m > I;m & {n;}}. If M = {m;} is infinite
let s; = t,,;. Choose s;, = s1 and if s; was chosen let ji41 > ji be such that
Sjess < (1/2)s;,. then (sj,,,/s3)* < 00 and S, = {Zeysj,, & = 0, 1} is ultrathin
symmetric such that x + S, C S.

If M is finite then x = Z'l‘ tn, +Z‘,’V°+1 te whereny <N. Choosethen N+1 < k; <
ky < ---such that 3=, (t,,, /t;)* < 0o. Let S, = {3_7° &jti,; & = 0, 1}. Then S, is
ultrathin symmetricand x — S, C §S. 0O

THEOREM 3. Let G be a locally compact group, H C G a closed nondiscrete
subgroup. Let J C A = Ap(G) be a closed ideal, F = Z(J) anda,b € G. Let F
be metrisable.

Thenint,y, F C Dy(J). In particular D1(0) = G if G is metrisable, nondiscrete.

Remark. We show that for any closed F, if F is first countable at y € F and
y € intyyp F, then y € Dy (J).

Proof. Let V, be open such that xo € Vo NaHb C F, cl Vy is compact, cl
Va1 C V, forn > 0, and V,, N F is a neighborhood base in F at xo. Letv, € A
be such that v,(x9) = 1 = ||v,|| and suppv, C V, for n > 0 (see [Gr3], p. 379).
We show that v, € A/J has no weak Cauchy sequence in A/J, where for v € A,
welet v = v+ J € A/J with ||V'| = inf{||v + ull; u € J}. It will follow from
H. Rosenthal’s theorem [Ro], p. 808, that v, contains a subsequence v,, such that
{v;,k} is a Sidon sequence in A/J; thus xo € Dy (J).

Assume that u} = v, is a weak Cauchy sequence in A/J and let P = {® € A*;
®=00nJ}=(A/J) . Letr: A,(G) = A,(H) be the onto restriction map; thus
rv(x) =v(x)ifx e H,ve A, |Ir| <1,andrA,(G) = A,(H) (due to Herz [Hz]).

Let® € A,(H)* and w € J. Then

€aryl(arpvo) - r* @], w) = (P, réary(vow)) = (9,0) =0
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since if h € H and £,ry(vow) (h) = vo(ahb)w(ahb) # Othenahb € V,NaHb C F
and then w(ahb) = 0 since F = Z(J). Thus r£,r,(vo,w) = 0 € A,(H). Hence
Lrpl(arpv,) - r*®@] € Pforall ® € A,(H)*.

It follows that (€} r;[(€arpvo) -7* @], uy) = (P, re,ry(vouy)) is a Cauchy sequence
of scalars for all ® € A,(H)*. (Note that (®, u) = (, u') for & € P, u € Ais well
defined.)

Now supp r(£arpvour) C a~'Vob~! N H and the latter set has closure K which
is compact. If follows (from the Hahn Banach theorem) that r£,r, (v,u;) is a weak
Cauchy sequence in A% (H) = {u € A,(H); suppu C K}. Now by a joint result
of Cowling and ours [Gr5], p. 131, A% (H) is weak sequentially complete. Hence
réary(vour) — wpy weakly in Aﬁ, (H) (hence in A,(H)) for some wy € A,(H). (If
p = 2, then A(G) as a predual of a W* algebra is weak sequentially complete, hence
this result in [Gr5] is not needed.) Since A8, € A,(H)*, vo(ahb)uy(ahb) — wo(h),
forallh € H.

If hg = a~'xob~! € a~1Vyb~! N H then vo(ahob)ux(ahob) = 1; thus wo(a='xg
b_l) =1. Ifa‘lxob‘l #h € a_IV()‘bﬁl N H, then xo # ah1b € VoyNaHb C F.

But V,,NF is abase of neighborhoods in F at xy. Thus for some kg, ux(ah1b) = 0if
k > ko. Hence vo(ahb)ur(ahb) =0 = wo(h) ifk > ko. Butxg € VoNaHb C F
and x is not an isolated point of F since H is notdiscrete. It follows that wy € A,(H)
is not a continuous function, a contradiction. O

Remark. We prove in Theorem 2[3] more than stated. Namely we show that
if x € aSb [x € intayp F] and v, € A N Cc(G) is any sequence satisfying (i)
vp(x) = 1 = ||v,||, and (ii) F N supp v, = K, is such that for any nbhd V of x there
is some k such that K; C V if j > k, then v, has a subsequence which is Sidon in
AlJ.

2. Extreme nonergodicity of P = (A/J)* atany a € D,(J)

If J C A(G) (or A,(G)) aclosed ideal with F = Z(J) then A/IF, [J] are regular
Banach algebras on F [G ~ F] respectively, hence so are A,(G), A(G). This is the
reason for stating Theorem 4 in terms of regular Banach algebras.

THEOREM 4. Let A = A(G) be a regular Banach algebra on the locally compact
space G. Let J C A be a closed ideal and Q C A* be a norm closed A module such
thatP. CQ C P = (A/J)*

Ifa € Dy(J) [a € Dy(J)] then Q/ WQ(a) has £*° as a quotient and TIQ(a)
contains ci [and TIMy(a) contains F .

Remarks. Specifically we show that there is an onto operator t: P — £ such
that the into norm (and w*-w*) isomorphism #*: £ — P* satisfies t*c({ C TlIp(a)
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[t*F C TIMp(a)]. Furthermore Q/ WQ(a) alsohas £*° asaquotientandifi:Q — P
is the imbedding then i* restricted to T /p(a) is a norm (and w*- w*) isomorphism
such that i*T Ip(a) = TIQ(a) and i* TIMp(a) C TIMQ(a).

Proof. Let F = Z(J) and v, € A be the required sequence for a € Dy(J)
[a € D;(J)] (see definition). Denote forv € A, v' = v+ J and ||v'|| = |Jv|l4/s. Let
Vo = {x € G; v, (x) # 0},

By possibly taking a subsequence again denoted by v, we can assume that F N
clV,.1 € FNV,, V,NF is anbhd base in F at a, and cl V,, is compact.

IfveAueJ,and®eP,(v+u) ®=v-®, hence (v - P, w) = (P, vw')
if w € A/J is well defined and ||v’ - ®|| < ||v'|| ||®|. Thus P is an A/J module and
P C A~

Define 1: P — £ by (t®)(n) = (P, v,) = (P, v,). Since ||v,|| is bounded,
t(P) C £* and ||t®]| = sup |(P, vy)| < ||P||B, where B = sup ||v,||. [Hence
l£)l < 1ifa € D1(J)]. ButtP = £*°. Since if b = (b,) € £*° with norm ||b|| define
the linear functional Fp on lin {v,;n > 1} C A/J by (Fo, >_jov)) = Y | aib;.
then |(Fo, X} o)) < Y0 lewbil < 161 X} loul < [1B1I(1/d)| X5 v}, where d
is the constant for the Sidon sequence {v;} in A/J. By the Hahn Banach theorem
there is an extension ®g € P = (A/J)* of Fy. Then (t®Po)(n) = (Fy, v},) = by, thus
tdy = b.

We show now that t Ep(a) C cp and tWp(a) C c.

Let & € P be such that a ¢ supp ® and let Uy be a nbhd of a, with cl Uy
compact and such that (®,u) = 0if u € A and suppu C Up. Let v, € A be such
that vy = 1 on Uy and supp v is compact (A is regular). There exists ko such that
VoNF CcUyNF C Uyifn > ky. Now K, = supp(vov, — v,) C V,—1 ~ Uy, since
U, is open.

ButK,NF C (V,o1 ~U)NF =V,_1NF ~UyNF =@ifn > ko+1and K, is
compact, since supp v, is compact. It follows that vov, — vy, is in the smallest closed
ideal Jr whose zero setis F and Jr C J (see [HR], (39.18)). Thus vov, —v, € J and
(P, v,) = (P, vov,) = 0ifn > ko + 1, since supp vov, C Up. Hence (P, v,) — 0.
Now {® € P; a ¢ supp ®} is norm dense in Ep(a) and sup |lv,|| < oo. Thus
(®, v,) — Oforall ® € Ep(a) andtEp(a) C co. But (1A8,)(n) = v,(a) = 1. Thus
tWp(a) C ¢, and Wp(a) C t7'(c).

Hence P/ Wp(a) has P/t™1(c) ~ £>°/c as a quotient.

If € £°° is such that ¢ = 0 on cp C £* then t*¢ = 0 on Ep(a) since
t(Ep(a)) C co. Thus t*cé C TIp(a). [Ifa € Di(J)and ¢ € F, thus 1 =
l¢ll = #(1) and ¢ = O on ¢, then 1 = (#*¢,Ady) < |t*®]| < li¢|l = 1. Since
t*¢ € TIp(a), t*(F) C TIMp(a)]l. Now t:P — £ is open since ¢ is onto,
hence t{® € P; ||®|| < 1} contains a ball Bs of radius § > 0 around 0. Thus
le*@ll = sup {(p, t®); P < 1} > sup {|(#, b); ||bll <8} =4ll¢ll. Thus 8¢l <
llt*@ll < B|¢|| for all ¢ € £°°* and t*: £>* — P* is a w*-w* continuous norm
isomorphism into such that t*(c(J,') C TIp(a) [t*F C TIMp(a)l.
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Consider the Q/ WQ(a) case where P, C Q C P. Let q:£*® — £*/c be the
canonical map. Let u € A N C.(G) be such that u = 1 on some nbhd U of a and
® e P. Letv € A(G)besuchthatsuppv C U. Then (®—u-®,v) = (P, v—vu) =
(?,0) =0; thusa ¢ supp(® —u - ®)and ® — u - & € Ep(a).

Hence t(u - ® — ®) € ¢p and gt (u - ) = qt(P). Butu - ® € P. C Q since
suppu - & C suppu. Thus gt (P.) = qt(Q) = qt(P) = £*°/c.

Letnow r be gt restricted to Q; thus r & = q¢® for ® € Q. Since EQ(a) C Ep(a)
we have rEQ(a) C qtEp(a) = {0}. Now A8, € P. C Q and rAd, = qt(Ad;) =0
since tA8, = 1 € ¢. Thus rWQ(a) = {0} and WQ(a) c r~1(0). ButrQ = qtQ =
£% /c; thus Q/r~1(0) ~ £* /¢ (isomorphism). But £%°/c [hence Q/r~!(0)] contains
an isometric copy Y [Yo] of £° (see [Sa] for £/cq or [Gr2], p. 161 for £/c). And since
£ is injective [LT] there exists a bounded projection Py of Q/ r~1(0) onto Yy. If
P:Q/ WQ(a) — Q/r~1(0) is the canonical quotient map then Py P maps Q/ WQ(a)
onto Yo X £°°.

Let i:Q — P be the inclusion map i® = & for all & € Q; thus qtid = rd
if ® € Q. We claim that i* restricted to T Ip(a) is a w*-w* continuous norm
isomorphism such that i*(TIp(a) = TIg(a) and i*(TIMp(a)) C TIMQ(a). In
fact let uy € A N C.(G) be fixed such that uy9 = 1 on some open Uy with a €
Up and [lupll = d > 0. Let y € TIp(a) and ®¢ € P be such that || Dg] = 1
and (Y, ®g) > ||¥ll —e. Then ug- ®o € P, C Q and |lug - ol < d. Hence
@Y ug - ®o) = (Y,uo - o) = (Y, Po) since up - P9 — ®o € Ep(a). Thus
(@*¥,dug - Do) = d7 (||l — &) and ¥ || > i*¥ || = d7 ||yl if ¥ € TIp(a).

Ifnow ® € Eg(a) C Ep(a) and ¢ € TIp(a) then (i*¢, ®) = (¥, ) = O since
Y =0on Ep(a). Thus i*T Ip(a) C TIQ(a).

But i*TIp(a) = TIQ(a) since if Y € TIQ(a) then Y| € TIp(a) defined by
Wy, ®) = (Y, uo®) for ® in P satisfies i*yr; = . This holds since if ® € Q then
@Y, ©) = (W,ug - ©) = (Y, ®), sinceup- ® — ® € EQ(a). If®ePanda ¢
supp ® thena g suppug - Pandup- P € EQ(a). Thus (Y1, ®) = (Y, ug- ) =0.
Since ¥, € P*, ¥y = 0 on Ep(a), hence ¢, € TIp(a).

If, in addition, ¥ € TIMp(a) then (i*y, A8,) = (Y, A8s) = 1 = ||¥ || = [li*y | =
@*yY, A8) = 1.

But t*:£°* — P* is a w*-w* continuous norm isomorphism into such that
t*(cg) C Tlp(a) [t*F C TIMp(a)]. Thus i*t* restricted to ¢y is a w*-w* con-
tinuous isomorphism into TIQ(a) [such that i*t*(F ) C i* TIMp(a) C TIMQ(a)].

(]

PROPOSITION 5. Let G be a locally compact group and A = A(G) the Fourier
algebraof G or A = A,(G). Let P C A* be a norm closed A module and F = o (P).
Then WAPp C CAd, + Ep(a) = Wp(a) foralla € G.

Proof. 'The proof involves routine arguments such as Prop. 9 and Prop. 4 of [Gr4]
and is left to the reader. O
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In the following, G is an arbitrary locally compact group, J/ C A = A(G) is a
closed ideal with Z(J) = F, and Q is a norm closed A submodule of P M (G) such
that P. CQCP=(A/))".

COROLLARY 6. Assume that R (or T) is a closed subgroup of G, S C R (or T)
a symmetric set such that aSb C F for some a,b € G and F is metrisable. Then

(*) Q/ WQ(x) (a fortiori Q/WAPQ and Q/M(F)) has £* as a quotient and
TIMQ(x) contains F for all x € aSh.

Consequently A/J is ENAR if G is second countable nondiscrete.

In the next corollary, A = A(G) can be replaced by A,(G). It improves part of
Theorem 6 in [GrS5], with a much simpler proof.

COROLLARY 7. Assumethat H is a closednondiscrete subgroup of G andint g, F
@ for some a, b € G, where F is metrisable.

Then (x) holds true for all x € int,yp F.

Consequently A/J is ENAR if G is second countable nondiscrete.

Proof of Corollaries 6 and7. If x € aSb [x € int,ypF] then x € D;(J) by
Corollary 2’ [Theorem 3]. Hence by Theorem 4, () holds for such x.

But by Prop. 5, WAPQ C WQ (x) holds true. Taking Q = P we get that P/WAPp
has £ as a quotient.

If, in addition, G is second countable then A is norm separable and since P =
(A/D)*, A/J isENAR. 0O

Remark. (i) In Corollary 6 it is enough that the relative topology of F is first
countable at each x € F.

(i) If F C T is any perfect compact Helson set [He] then A(F) = A(T)/Ir =
C(F) is Arens regular as is well known (see more such F in Section 3).

(iii) If P C A* is a w* closed A module and o (P) contains a metrisable compact
perfect set then P, and P have £ as a quotient if G is amenable as discrete, even if
A = A,(G) by our Theorem 2 in [Gr5].

COROLLARY 7'. Let A = Ap(G), J C A a closed ideal such that Dy(J) # @.
Then A/J is ENAR provided G is second countable.

Question. Let J C A(R) be a closed ideal such that D,(J) = @. Is then A/J
Arens regular?
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3. The abelian case

Let Fs: M (a) — B(G) [F: Ll(a) — A(G)] denote Fourier Stiltjies [Fourier]
transform Thus fsu(x) = f x(x)du(x) for x € G, see [Ru] or [HR]. For
peM@G),gelLG), f el (G) let u(E) = w(E™Y, ) = f&x7,
[ fdgr) = [ fgdu, where E C G is a Borel set. PM(G) is a B(G) module by
(u - ®,v) = (P, uv). It is known that

(%) F(Fsp) - @]l = pu” « F*® if u € M(G), ® € PM(G).

To prove (x) note that (h, u x f) = (Y xh, fif f € L‘(G) h e L°°(G)

eEM (G), by Fubini’s theorem (or [Pi], p. 83). Hence (F*[(Fsu) - @1, f) =
(<I> Fux f)) =W *Fo, f).

If P C PM(G) and F*P = P then B(G) - P C P iff M(G) * P C P as readily
follows from (). Thus P is a norm [w*] closed B(G) module iff P is a norm
[w*] closed M (G) module, respectively since F* is an onto isometry and w*-w
homeomorphism.

DEFINITION. Let P C L°°(a) be a norm closed M(a) module, P = F*~1p,
and a € G. We defined the spaces Dp(a), Vp(a), Dp(a) Vp(a) in the introduction.

LetIMp(a) ={¢Y € P*;1 = (¢¥,a) = ||1/IJJ, ¥ =0on Dp(a)}. Notethaty =0
on Dp(a) iff Y (hy) =a(x)y¥(h) forall x e Gandh € P. Leta(P) =G NP.

PROPOSITION 8. Let P C PM(G) be a norm closed B(G) module, a € G and
JF*P = P. Then F*Ep(a) = Ep(a), F*Dp(a) = Dp(a), hence F*Vp(a) = Vp(a)
and F*Wp(a) = Wp(a).

Proof. f®eP,ueM (6), one gets from (x) that
(k) F[(Fsm)g - ) = F[Fs(ap) - ] = (ap)" * F*d = (au") * FO.
Take pu € 8, so that Fsé, =X, and let h = F*®. Then, since 8; = 8,1, we get
FU(Fs8)a - @1 = F[(X)a-1 - P1 = (ady)" xh = (a(x)8,)" % h = a(x)hy.
Hence F*{® — x-1 - ®; ® € P, x € G} = F*{® — (X)o1 - ;@ € P, x € G} =
{h—a(x)hy;he P, x € G} Thus .7-'*Dp(a) Dp(a); hence .P“Vp(a) Vp(a).
Let Fy =neM@Gin=20uG =1}, i=FNL'@G =0<7fc¢
LY(G); [ fdx = 1}. Then F\ = F;. By Prop. 1 of [Gr5],
(k *x %) Ep(a) =ncllin {® — v, - P; P € P,v € Sy(e)}

where S(x) = {u € B(G);1 = u(x) = |u||} and Sa(x) = Sx) N A(G), since
(S4(e))a = Sa(a) (by [Ru], (1.2:4)), or see the following lemma.
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Clearly F*F; = Sa(e) and F*{® — v,-1 - ;P € P, v € Sa(e)} = F{P —
(Fflat - ®;® € P, f € Fi}) = (by ) (h— @fV) xh;h € P, f € Fi} =
{h—(af)*h; f € Fi,h € P}. Hence F*Ep(a) = Ep(a) and F*Wp(a) = Wp(a)
since F* is an isometry of PM(G) onto L*°(G). 0O

We prove (x * x) and more in the next result.

LEMMA 8. Let P C PM(G) be a norm closed B(G) module. Then Ep(a) =
ncl {O—v-®; ® € P,v € S;(a)}fori =1, 2,3 where S1(a) = Sa(a), S2(a) = S(a),
S3(a) = {v € B(G); v(a) = 1}. In addition ncl can be replaced by ncl lin.

Proof. Note that Sj(a) C S2(a) C S3(a). Let & € P witha ¢ supp ®. Let
v € S1(a) be such that supp vN supp ® = @, thus suppv - =¢@. Hencev - & =0
and ® = ® — v - ®, which proves Ep(a) C ncl (& —v - ®; P € P,v € S1(a)}.

Let ® € Pand vyp € AN C.(G) be such that vy = 1 on a nbhd V of a. Then
ag ®—uv-Pand ® —-vy- P € Ep(a) (see Prop. 5). Thus if u € S3(a) then
(®—u-9)—vo(®—u-P) € Ep(a). Butvg-(®—u-®) = (vop—vou)-® € Ep(a). In
fact (vp—uvp)(a) = Oandsince {a} is asynthesis set [Hz] letv, € ANC.(G),n > 1be
such thatv, = Oonanbhd V, ofa and ||v, — (vo—uvy)|| — 0. Butthena ¢ supp v,-®
andv,-® € Ep(a). Thus ||v, - — (vg—uvg) - ®|| — 0, hence (vo—vou)-® € Ep(a)
and ® —u - ® € Ep(a). Hence Ep(a) D ncl {® —v-d; P € P,v € S3(a)}.

Now {® € P; a ¢gsupp @} (hence Ep(a)) is a linear space, from the definiton of
support. [

PROPOSITION 9. Let P C L°°(5) be a norm closed M (5) module, a € o (P).
Then Dp(a) CEP((I),VP(G) C Wp(a) and TIMp(a) C IMp(a).
IfP C UC(G) then Dp(a) = Ep(a), Vp(a) = Wp(a),and IMp(a) = TIMp(a).

Proof. Ifx € Gthenu — u, is anisometric homomorphism of B(G) onto B(G)
which maps A(G) onto A(G), see [Ru], (1.2.4) and (1.3.3). Also S(x)S4(x) C Sa(x).
IfueS),veSse), beP, then® —u,-1 - =D — (Uv)y-1 - © + vg-1 - (Ug—1 -
®) — (ug-1 - @) € Ep(a) by Lemma 8 and since P is a B(G) module. It follows
that Ep(a) = ncllin {® — v,-1 - @;v € Sale), @ _€ P} = ncllin {® — us-1 -
®;u € S),® € P} D ncllin {® — -1 - P; x € G, P € P} = Dp(a). And by
Proposition 8, Dp(a) C Ep(a). If a € o(P), thusa € P then, TIMp(a) = {Y €
P* 1= (¥,a) = ||¥ll,¥ =00n Ep(a)} C IMp(a) = {¢ € P*;1 = (¥,a) =
I¥ll, ¥ = 0 on Dp(@)}. _ _

Assume in addition that P C UC(G). Clearly P = F*~'P c F*"lUC(G) =
(PM(G)).. Let ® € P. Then ® = vy - P for some vy € A(G), and g € PM(G).
Letug € S4(e). We show that  — (u0)g-1 - @ € Dp(a); hence by (x x x), Ep(a) =
Dp(a). Let u, be anetin Co{x; x € G} C S(e) (where Co denotes convex hull)
such thatu, — uginthe w* topology of B(G) (u is continuous and positive definite).
Then, by a theorem of Leinert and ours [GrL], ||(uy — ug)v|| — O for all v € A(G).
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But ® — x,-1 - ® € Dp(a), hence ® — (uy)s-1 - ® € Dp(a). Thus ||(P —
(Ua)g-t - @) — (P — (Uo)a—1 - P = [[((Ua)a-1 — (0)a-1)voll | Poll — O, since
1((Ua)a-1 — 0)a-1)voll = || (e — u0)(V0)a-1 | = 0. Hence @ — (ug),-1 - ® € Dp(a)
since Dp(a) is norm closed. Thus TIMp(a) = IMp(a)ifa e P. 0O

COROLLARY 10. Let G be a locally compact abelian group, P [Q] a w* [norm]
closed M(G) submodule ofL°°(G) such that UCp (G) CQCPand F =o0(P)=
GNP,acG.

Assume that R (or T) is a closed subgroup of G, S C R (or T) a symetric set such
that aS C F and F be metrisable. R

(i) Then Q/ Wy (x) (a fortiori Q/Vo(x), Q/WAPg and Q/ncl B(G, F)) has £
as a quotient and both TIM ¢ (x) and I M (x) contain_ F .forallx € aS.

(i) If G is second countable nondiscrete then L' (G) /(P)o is ENAR.

Remark. B(G,F) = {Fsp;p € M(F)} and (P)o = {f € LY (G); (g, f) =
0ifg € P}.

COROLLARY 11. Let G, P, Q be as above and assume that H C G is a closed
nondiscrete subgroup such that int,y F # @ and F is metrisable.
Then [(i)] and (ii) of Corollary 10 hold [for each x € int,y F].

Proof of Corollaries 10 and 11. Let Q = F*~'Q. By Proposition 8, Wpx) =
F*IWp(x). Letx € aS [x € int,gzF] respectively. By Corollaries 6 and 7,
Q/ WQ(x) has £*° as a quotient and TIMQ(x) contains JF . Since F*: Q —> Q
is an isometry onto and F*Wg(x) = Wy(x) we get that Q/ Wy (x) (and, since
Vo(x) C Wo(x) by Prop. 9, Q/Vp(x)) has £ as a quotient and TIM o(x) (and,
since IMp(x) D TIMQ(x) by Prop. 9, IMy(x) ) contains F .

If u € M(G), f € L'(G), then (F*Ap, f) = [[ FOOX () dxdu(y) = (Fsu,
f); hence F*Apu = Fsu in L°°(G) Thus F*AM(F) = B(G, F). But by [Gr5],
Prop. 3, M(F) = ncl AM(F) C WQ(x) Thus F*M(F) = ncl B(G F) Cc Wy(x).
Thus @/ncl B(G F) has £ as a quotient. Furthermore by Prop. 5, WAP% C WQ(x)
and since it is known that 7*WAPg = WAP, we get that Q/WAP has £ as a
quotient. This proves (i). Part (ii) is proved as in Corollary 6 or 7. O

DEFINITION. Let G be a separable metric L.c.a. group. The closed F C G is
an ENE set if for each w* [norm] closed M (G) module P [Q] of L°°(G) with
o(P)=GNP=FandUCpC QC P,QisENEateachx € F (ie., Q0/Wg(x)
has £ as a quotient) and TIM o (x) contains F .

Leta = (@1,..., ), B = (B1,...,B,) bein R*. If § = {ta; t € S’} where
S’ C R is ultrathin symmetric then S is called an ultrathin symmetric set in R". Since
R =~ {ta; t € R}, S + B is ENE in R" (Corollary 10). Any closed F which is a
union of translates of sets S, where S, or —S, are ultrathin symmetric in R", is ENE
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(Corollaries 2’ and 10). A fortiori any closed F C R" which is a union of nontrivial
convex subsets of R" is ENE.

And yet any Kahane curve in R” n > 2 is not ENE (at any point on it). If n > 2k
there exists a k dimensional manifold ¥ C R" = G which is a Helson set. Thus if
P =w*cllin F C L®(G) then P = Wp(x) = Vp(x) = B(G, F) forall x € F
(see [Mc], [Mu]).

Problem. Characterize closed ENE subsets of R" (of any l.c.a. group G).

[BL]
[Chl]

[Ch2]
[Co]
[CF]

[Da]
[DU]

[Ey]
[G,Mc]
[GrL]
[Gr1]

[Gr2]

[Gr3]
[Grd]
[Gr5]
[Gr6]
(He]
[Hz]
[HR]
[Hu]
[Kal]

[Ka2]
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