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ON COMPLEX INTERPOLATION OF
COMPACT OPERATORS

MICHAEL CWIKEL, NATAN KRUGLJAK 2 AND MIECZYSLAW MASTYLO

This paper is concerned with various aspects of the following question:

QUESTION 1. Given Banach couples A (A0, A1) and B (B0, BI) and
a bounded linear operator T: A --+ B such that T: Ao --+ Bo is compact, is
T: [Ao, A1]o -+ [Bo, B]o compactfor O (0, 1)?

Question was first considered by Calder6n thirty years ago in the course of his
development of the complex interpolation method [Ca]. He was able to answer it
in the affirmative under suitable additional hypotheses on the couple B. (See [Ca],
Sections 9.6 and 10.4.)

Since then, Question has been answered affirmatively in quite a number of other
special cases. For example, see [CwK], [CKS], [M] and [P]. The analogous question
for the real interpolation method has also been answered ([Cw2], p. 334; cf. also
[CKS], p. 286). However Question is still open in general.
We shall show here that the solution of Question is equivalent to the solution

of any of a number of its special cases, where T has a simple form, or where the
spaces Aj and Bj have additional properties, or they are certain special sequence
spaces. In this last case we also show that it suffices to establish an apparently rather
weaker condition than the compactness of T: [A0, A ]0 [B0, B]o. This last result
leads us to a connection between Question and some natural questions from a more
recently developed generalization of interpolation theory, where couples of Banach
spaces are replaced by families of infinitely many spaces.
We refer to the above-mentioned papers [Ca], [CKS], [Cw2], [CwK], [M] and [P]

for further background and for definitions of the relevant notions from interpolation
theory which we shall use here.

1. Reduction to the case of an inclusion operator

Let X0 be the subspace of B0 consisting of all those elements of the form x Ta
where a 6 A0 with norm Ilxllx0 inf{llalla0: x Ta}. The boundedness of
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T: Ao --+ B1 ensures that X0 is a Banach space, and the compactness of the same
operator implies that the inclusion map J" X0 -- Bo is compact. Now consider J as
a map from the couple X (X0, B1) into the couple B (Bo, B1). If we can show
that J: [Xo, B1]o [Bo, B1]o is compact, then it will follow that T: [Ao, A]o --+
[Bo, B1 ]0 is compact, since T: A -- B is the composition of the operators S: A -- Xand J: X -- B where S is defined by Sa Ta for all a 6 A0 + A1 and thus defines
a bounded operator from [Ao, A1]o into [Xo, B1]o. In other words we have shown:

PROPOSITION 1. In order to answer Question 1 in general, it suffices to resolve
the special case where the couple A (A0, A1) is such that A B1 and Ao is
contained in Bo and the operator T is simply the inclusion map, (which ofcourse is
assumed to be compactfrom Ao to Bo).

Remark. In fact it would suffice to answer Question in the context of Proposi-
tion while further specializing to the case where B is the special couple F defined
in [Cw2] or in Section 3 below, or the special couple G also defined in Section 3.

2. Reduction to the case of reflexive spaces

This is a strengthening of Proposition 1.

PROPOSITION 2. SupposewecanprovethatforeveryBanachcoupleY (Yo, Y)
ofreflexive Banach spaces and every reflexive Banach space Xo which is compactly
embedded in Yo, we always have [Xo, Y1]o compactly embedded in [Yo, Y1]o. Then
this answers Question 1.

Proof Let B (Bo, B) be an arbitrary Banach couple and let Ao be compactly
embedded in Bo. Then, by Proposition of [Bz], p. 32, we deduce that (A0, Bo),p
is reflexive for each ot in (0,1) and each p in (1, o). Let us choose Xo and Yo to be
the reflexive spaces Xo (Ao, Bo)1/3,2 and Yo (A0, Bo)2/3,2. Then the inclusions

Ao C Xo C Yo C Bo are all compact embeddings. This follows by interpolation of
compact operators for the real method [Cw2] (but in fact for this case even the classical
lemma ofLions-Peetre [LP] would suffice) and also the reiteration theorem for the real
method. Given any fixed 0 in (0,1) we choose some/3 in (0, 0) and let Y1 [Yo, B1].
It follows from [Ca] sections 12.2 and 32.2 that Y1 is reflexive. Thus by our supposition
above we can deduce that [Xo, Y1] is compactly embedded in [Yo, Y1] for every
y in (0,1). Now we observe, using the reiteration formula for the complex method
in the form presented in [CwK], that [Ao, B1]o [Ao, [Ao, B1]]o/ and this space
is of course continuously embedded in [Xo, [Yo, B]]o/ which in turn is, as we
have just seen, compactly embedded in [Yo, [Yo, B]/]o//. Another application of the
reiteration formula shows that this space is Yo, B1 ]0 which is of course continuously
embedded in [Bo, B]o. All this shows that [Ao, B1]o is compactly embedded in
[Bo, B1 ]0 which by Proposition is all that we need to establish our claim.
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Remarks. (i) The proof of reflexivity of (A0, Bo)a,p in [Bz] only requires the
embedding of A0 in B0 to be weakly compact. Can we use the fact that we have a
stronger condition on the embedding to obtain a stronger and more useful property
for (A0, B0),p? By [CwK], Theorem 9, it would suffice to show that (A0, Bo),p is a
UMD space for some value of c and some value of p to resolve Question 1, but easy
examples where A0 and B0 are weighted e spaces indicate that this is not possible
in general. Thus this indicates that the problem can be attacked on two fronts, on
the one hand to try to replace the UMD condition required in [CwK] by something
weaker, on the other hand, as just suggested, to try to replace the reflexivity property
of (A0, Bo),p by something stronger.

(ii) As a further simplification, we mention that it suffices to deal with the case
of spaces which are separable, (as well as reflexive). We need only show separately
that Tam has a convergent subsequence in [B0, B ]0 for each bounded sequence
{am} in [A0, A1]o. By obvious density considerations it suffices to consider the case
where each element am is in A0 N A1. Now we construct a countable subset A of
A0 A A1 such that for each m and n there exists a function fmn which is a finite sum
of elements of the form p (z)a where a E 4 and p is a scalar valued bounded analytic
function on the unit strip which is continuous on the closed strip, and fmn (0) am
and Ilfmnll:A < Ilalltao,a,o / 1/n (cf. [S] and [Ca]). It suffices to know that the
general result holds when Aj is replaced by the closure of 4 in Aj and Bj by the
closure of T(A) in Bj for j 0, 1.

3. Reduction to the cases of special "Fourier" couples
and point evaluation operators

Let us recall that, as explained in [Cw2, pp. 339-340] (cf. also [CP]), it suffices
to answer Question in the case where A E (e I(FLI), e l(FLl(ev)) and
B F (e(FL), e(FL(eV)).

Let us now refine this a little further, and show that it suffices to consider variants
of the couples E and F which are slightly simpler than those introduced in [Cw2].
Rather than explaining how to modify the reasoning in [Cw2] it seems preferable to
present a new version of the whole argument. This approach will also give additional
insights and enable us to make yet another reduction of the problem.

As in [Ja] and [Cw2], for each ot E and each p 6 1, cx] we let ELp (eav) denote
the space of complex valued sequences {x}e such that {exv} is the sequence of
Fourier coefficients of a function f LP(q). We set II{X}ZIIFL,(e=) IlfllL,.
Analogously we also define the space FC(e) by replacing the Lp space by the
space C C (’I[’) of continuous functions on ql". For any p [1, cx] and any Banach
space B let eP(B) be the space of B valued sequences {bn},r stch that {llbnllB} ep
with the obvious norm. Let E e(FL(e)), F e(FL(eV)) and G
e(FC(e)) and consider the Banach couples E (E0, El), F (F0, F) and
G (Go, G1).
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PROPOSITION 3. In order to answer Question it suffices to resolve it in the
particular case when A E and B is either G or F.

Proof. Let us first use the fact that [FLl(eV), FLl(eatV)]o FLl(e) where
/3 (1 -0)ct0 + 0otl (cf. [Ja, p. 68]). So by [Ca], Section 13.6, p. 125, we have
[E0, EI ]0 Et (and in particular [E0, E1]o Eo). Since for each ot the dual ofE
is F_ (where the bilinear functional for the duality is defined in the obvious way and
is independent of c), it follows by Calder6n’s duality theorem that [F0, F1]0 Fo.

LetA and B be arbitrary Banach couples and let T" A --+ B be as in the statement of
Question 1. Fix 0 6 (0, 1) and let {am}mr be an arbitrary sequence in [A0, A]o with
Ilamll[Ao,A]o _< 1. Our goal will of course be to show that {Tam} has a subsequence
which is Cauchy in [B0, B1]o. In fact it will be convenient, and will not cause any
loss of generality (as already remarked above) if we make the additional assumption
that each am is in A0 N A. It is also very easy to see (cf. e.g. the proof of Theorem 9
in [CwK]) that we may also suppose without loss of generality that the couples A and
B are both regular; i.e., A0 f3 A is dense in A0 and also in A1, and similarly for the
Bj’s.

By Janson’s description of the complex method [Ja], for each integer m there
exists a (possibly infinite) subset Km of N and for each k Km there exist an
element xk FL(ev) and a norm one operator Uk" (FLI(1), FL(eV)) -- A such
that -.rm IlXkllFt(eO) < C and am kKm UkXk for each integer m. Here the
constant C depends only on 0. Clearly we may choose the sets Km to be pairwise
disjoint for different values ofm. Thus the norm one operators Uk and the elements Xk
will be defined for all k 1. (They can be taken to be zero for all k UmN Km.) For
eachz {Zn}nN in E0 + E1 letz ’nr UnZn" Obviously//: E -- A with norm
and clearly Llym am and IlYmllteo,e,o <-- C for each m, where Ym {Ymk}kN is

the element of [E0, El]o defined by Ymk Xk for all k Km and Ymk 0 for all
kKm.

For j 0, we shall let Bj denote the dual space of Bj. For each x B0 B1
and each y in the dual space (B0 f3 B1)’ of B0 fq B1 we denote the value of y at x by
(x, y). Since we are assuming that B is regular, B and B’ can of course be identified
as subspaces of (B0 fq B1)’.

For each element b B0 N B1 we can use the argument of [Cwl], p. 1006 to
obtain a norm one element h .T’(B, B’) such that (b, h(O)) is arbitrarily close to

IlblltBo,B,]o. Clearly we can suppose furthermore that the element h is in the dense
subclass (B6, B’) of f(B6, B’). (Cf. [Ca].)

Let f2 be the annulus {z 6 C: _< Izl _< e}. Via the argument of [Cwl], p. 1008,we
may use h to contruct a continuous function H: f2 -- B6 N B’ which is analytic in the
interior of f2 and satisfies H(e) h(O) and also suPte[0,2zr],j=0,1 IIH(eJ+it)llB <_ Co
for some absolute constant Co depending only on 0.

For each element x 6 B0 B1 we shall introduce a scalar valued function qx,t-/on
f2. We define it by setting qx,/-/(z) (x, H(z)). Clearly 4x,/-/is continuous on f2 and
analytic in its interior. We denote its Laurent series byYqx,/(k)z. Let us now
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define the linear operator V" B0 t’) B1 -- FC(1) + FC(ev) by Vx {qbx,H(k)}kZ.
Then clearly IIVxllFceJv) <_ ColIxlIBj for all x 6 Bo A B1 and so V can be uniquely
extended (since B is regular) to an operator V: Bj - FC(ejv) which is bounded
with norm not exceeding Co for j 0, 1. Furthermore, if (0’ FC(e) - C is the
continuous linear functional ofpoint evaluation at e i.e. (0 ({ot ) Y’otve
then, for the element b above, (o(Vb) is arbitrarily close to IlbllEBo,nll0. (Of course in
general the above series Yzce has to be summed using its (C,1) means.)

Let us construct such an operator V Vn for each element bn in the countable
set/3 of all elements of the form Tam Tam, TLtym TLtym, for all m, m’ II.
Thus we obtain a sequence of operators Vn: B -- (FC(1), FC(eV)) each with norm
bounded by Co such that

(*) Ilbllta0,l0 2sup I(o(Vb)l 2sup IIVnbllFCeOv
nN

for each b /3. For each b B0 + B let Vb {Vnb}nl. Then V: B G with
norm Co. (The term 2 supper I(o(Vb)l in (,) is irrelevant for the proof of the current
proposition, but it will be useful later.)

Let C() denote the space of all continuous functions f: "II" with norm

f c<e supt[0,2zr] f(eit) Ile. The Fourier coefficients

fo
2rr

e_iVf (v) - f(t) dt

ofeach f C() are of course well defined elements of. Let I" denote the space
of valued sequences ?, {?,(v)} {{?’(v)}r} which arise as Fourier
transforms of functions f in C(e), i.e. ?’(v) f(v) with norm lit’lit Ilfllce.
For each real ot let I’, be the space of doubly indexed sequences ?, {?,(v)}ve
{{y(V)}nr}v such that {e,(v)} 1-’, with the obvious norm. The elements f
ofC() can of course also be considered as bounded sequences of scalar continuous
functions and clearly C() is a closed subspace of (C) and of e(L). Then
obviously also 1" is a closed subspace of G and of F.

We present the next part of the proof of Proposition 3 as a separate lemma.

LEMMA 1. For each 0 (0, 1) the spaces [Fo, F1]o, [Go, G]o, [Fo, F1]0 and
all coincide with equivalent norms.

Proofofthe Lemma. Obviously [1"o, 1-’]0 C [Go, G]o C [Fo, F1]o continu-
ously. So we have only to establish the continuous inclusions (i) F0 C [1"0, 1-’1]0 and
(ii) [Fo, F]o C 1-’o. To show (i) letus first suppose that 9/= {,(v)}z is an arbitrary
finitely supported valued sequence. More precisely, for some fixed N we have
,(v) 0 for all v such that Ivl > N (but for each other value of v the elements of the
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sequence ,,, (v) may possibly be non-zero for infinitely many values of n.) It is clear
that such elements , constitute a dense subset of F0. The function g: C I’0 N l-’l
defined by g(z) {e’z-VI’(v)},z is clearly analytic and continuous for all z and
satisfies g(e) ?,. Furthermore Ilg(eJ+it)llr lit’lit0 for j 0, andt 6 [0, 2zr].
Consequently, using the function G(z) eZ2g(eZ) 6 -(I’0, 1-’l) with > 0 arbitrar-
ily small, we have , IF0, 1-’l]0 and IIlltro,r,o <- lit’lit0. By density this extends
to all elements 9/ 6 1-’0 and yields (i).
We now turn our attention to (ii). First, suppose that ?, {?’(v)}vez is in F0 tq Fl

and, for each n, let fn (z) be the scalar valued function whose Laurent expansion is

Y-,sz gn(V)z". Then via Fej6r’s theorem and the maximum modulus principle it is
clear that fn is analytic in the interior of f2 and that If(z)l <_ II?’IIFoF, for almost
all z on the boundaries of f2 and also for all z in its interior. Thus for all z on the
circle Izl e we have Ifn’(Z)l --< CIIr’llFoCF, where the constant C depends only
on 0. Consequently the functions fn are equicontinuous on this circle and the map
p: qI’ -- defined by dp(eit) {fn(eO+it)}nsN is an element of C(e). In other
words we have shown that F0 f) F1 is contained in 1-’0. It is also a dense subset of I’0
since it contains the elements of finite support used in the proof of (i) above.

As observed earlier, [F0, F1] Fo and so by Bergh’s theorem [Bg] it follows
that [F0, F1 ]0 is a closed subspace of Fo. Clearly 1"0 is also a closed subspace of Fo.
Since F0 N F1 is dense in both 1-’0 and [F0, F1 ]0 we deduce that I-’0 [F0, F1 ]0. This
establishes (ii) and completes the proof of Lemma 1.
We can now easily finish off the proof of Proposition 3. Clearly the operator

)2TLt: E G is bounded and, since T: A0 -- B0 is compact, so is "l)Tbl: Eo --->

Go. We are supposing that Question has been resolved in the affirmative for
the case of operators mapping from E to either G or to F. In both of these cases
I;TH: [E0, E1]o F0 must be compact (by Lemma 1) and so some subsequence
{)2Tlgym(j) must be a Cauchy sequence in 1-’0 and thus also in Go. By (.) this implies
that the corresponding sequence {Tam(j)} must be Cauchy in [B0, B1]o. This shows
that T: [Ao, A ]0 -- [B0, B1 ]0 is compact.

Remarks. (i) If we reverse the r61es ofE and B, i.e., take A F and B E, then
Question can be resolved in the affirmative for this case. We can show this by an
argument which uses a result of W. B. Johnson (Theorem 2 of [Jo]) and the classical
Grothendieck theorem.

(ii) It is tantalizing to note that in Theorem 10 of [CwK], Question is answered
in the affirmative for all couples which satisfy the condition that A0 is reflexive, and
also the condition that A0 [X, A1] for some Banach space X. Propositions 2 and
3 show that it would suffice if we could remove either one of these two conditions
from that theorem.

One of the pleasant features of working with the space C() (and thus also its
isometric images 1-’) is that the compact subsets of this space have the following
simple "Arzel?a-Ascoli" style characterization:
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LEMMA 2. The set K is relatively compact in C() ifand only if

(i) there exists a compact subset M of such that f(eit) E M for all f K
and [0, 2zr] and also

(ii) limaosup{llf(eit+h)) -f(eit)lle: f K, Ihl < 3} =0.

Proof. This is an easy exercise.

Using Lemma 2 it is not hard to show that if K0 is a relatively compact subset of
F0 and if Ko is defined to be the set of all elements ?, f (0) where f ranges over
all functions in (1-’0, 1"1) such that f(it) Ko and f(1 + it) Br for all real t,
then Ko is a relatively compact subset of 1-’0. In other words the answer to Question

is affirmative in the case where B (F0, I’1) and also, via the reiteration theorem,
in the cases B (1-’0, F1) and B (I’0, G 1). This observation also leads readily to
an alternative proof of Theorem 11 of [CwK] (and so also of Theorem 2.1 of [Cw2],
p. 339).
We can now present our additional reduction of Question 1. It is a strengthening

of Proposition 3. Let us begin with the trivial remark that if K is a compact subset of
C() then it necessarily satisfies the following condition:

(i’) The set {f(1): f E K} is relatively compact in.
This is of course rather weaker than the conditions (i) and (ii) of Lemma 2.
Now suppose that we try to use Proposition 3 to answer Question 1. We consider

an operator T: E G such that T: E0 --+ Go is compact. We have to show that the
set K T(Beo) is relatively compact in 1-’0. So it would seem that we would have
to check the analogues of Conditions (i) and (ii) of Lemma 2. But it turns out to be
sufficient to merely check the analogue of condition (i’).

Let us define an (obviously bounded and linear) "evaluation map" Zo: Go --+ g.
by setting Zo(’) {(o(’n(’))}nN where (0: FC(ev) C is the functional ofpoint
evaluation at e defined above.

PROPOSITION 4. In order to obtain an affirmative answer to Question it suffices
to show thatfor every bounded linear operator T: E --+ G such that T: Eo Go
is compact, the map Zo T: Eo -- is compact.

Remark. In fact, in view of Lemma and the reiteration theorem, it suffices in
Proposition 4 to consider the subclass of operators T which satisfy the additional
condition that T: E --+ F1.

Proof We proceed almost exactly as in the proof ofProposition 3. The only place
where we need to make a small change is in the last paragraph of that proof. Although
now we cannot obtain that );T/g: [E0, E]o I’o is compact, we can suppose that
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Zo{’DTlgYm(j)} is a Cauchy sequence in e. This is still enough to imply, using
the term in (.) which we ignored earlier, that the corresponding sequence Tam(j)}
is Cauchy in [B0, B1]o. As before this implies that T: [A0, All0 --+ [B0, B1]o is
compact.

Some further natural questions. 1. Look for a counterexample. The simplest
case we can think of now where the theorem might conceivably fail is the case where
T is the inclusion/identity operator, and A0 (w), B0 e, and A1 B1 is
a sequence space which is not a lattice with respect to the natural componentwise
ordering. Here w {Wn} has to be a weight sequence which tends to infinity as
n --+ 4-o. to should have arbitrarily large sets on which it assumes constant values,
to prevent the compact embedding from A0 into B0 from being too nice. The first
choice for a "non-lattice" for A1 B1 might seem to be FLp for some p but in
fact in this case the answer to Question 1 will be positive, because the sequence Pn
of multiplication/convolution operators defined by the de la Vall6e Poussin kernels
will be norm bounded on this space and furthermore lim,, lien Tllao-Bo O.
Possible choices for A1 might be the space of Fourier coefficients of functions in a
non-translation invariant function space on [0, 2:r] such as weighted Lp, or a space
defined by some sort of conditions on differences of the elements of the sequence.

2. Formulate a quantitative version of the result for the case of finite dimensional
spaces which is equivalent to the infinite dimensional case.

3. Suppose we know thatthe answerto Question is affirmative when T: A1 --+ B1
is also compact. Is this sufficient to give the answer in general?

4. Some related questions in the theory of interpolation
of infinite families of spaces

Proposition 4 opens up some intriguing new possibilities. It appears that one
can attempt to answer Question 1 via some other questions related to the theory of
interpolation of infinite families of Banach spaces (cf. [CCRSW], [CwJ], [HRW]).

Before we explain this in detail let us introduce some further notation. For any
Banach couple X (X0, X let )ca (X) be the space of functions f: 2 -- X0 + X
which are analytic on the interior of and such that f(ej+it) is an Xj -valued and
Xj -continuous function of the real variable for j 0, 1. This space is normed by

f II=(x) sup Ilf(eJ+it)llxj.
tE[0,2:r],j=0,1

Let a(X) be the subspace of 0va(X) consisting of those functions f which have
N

OAkthe form f(o) Yk=-N xk for OA f2, where each xk is in X0 A X1. It is clear
(cf. [Ca]) that a(X) is dense in .T’a(X). As shown in [Cwl], the space IX0, X1]o
coincides with the space of all elements of the form f (e) as f ranges over .T’a(X)
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and the norm Ilxlltxo,x,lo is equivalent to

inf f lib,(x).
x=f(e), f.T’(X)

In the case x X0 N X the preceding infimum is the same when f ranges over
(X). (This is shown by using an obvious variant of an argument in [S].)

It is more convenient at this stage to reformulate Proposition 4 in terms of spaces
of vector valued (analytic) functions instead of vector valued sequences (of Laurent
and/or Fourier coefficients of those same functions). This is essentially a rather trivial
modification, but we shall take a few moments to work through it carefully:

Let A(f2) denote the space of all continuous functions f" f2 -- C which are
analytic on the interior of f2 with norm [Iflla() SUpzn If(z)l. Suppose that

’ {’(v)}vz is in Go q G1. Then Fej6r’s theorem and the maximum modulus
principle show that for each n, the Fej6r means of the Laurent series -vz ’n (v)z
converge uniformly on f2 to a function fn A(f2). Clearly , Go f3 G if and
only if {fn}nr e(A(2)). Furthermore Go G and e(A(2)) are isometrically
isomorhic;. For our purposes it will., be convenient to work with the Banach couple
G (Go, G) defined by taking Gj to be the Cauchy completion of e(A(2)) with
respect to the norm II{fn}v[l supN,0_<t_<z, [fn(eJ+it)l Of course we have

GoCqG e(A(f)), and the map ?, {- ?’n(V)ZV}nr extends to an isometry
of Gj onto Gj for j 0, 1. This means that we can replace the couple G by G in
Propostion 3. We can also do so in Proposition 4rovided we also replace the map
Zo by the map Z"o" e(A(2)) e defined by Zo({fn}r) {fn(e)},,r.

In fact in this modified ProAgoston 4 we also need Zo to have a unique exten-
sion to a continuous map of [Go, G]o into e. This is clearly true (cf. Lemma 1)
since [Go, G]o is the closure of e(A(f)) with respect to the norm II{fn}nllo
SUPnll,0<t<2zr f (eO+it)
Now suppose that we are given a bounded linear operator T" E -- G and a

compact subset K0 C Go such that T(Beo) C Ko. In order to answer Question we
are going to try to show that Zo T: Eo e is compact. Clearly we may suppose
without loss of generality that K0 is absolutely convex and that T

_
_< 1.

NFor each element g(o) k=-U a*gk in the unit ball of(E) consider f(w)
NTg(og) Y,=-lV f*(z) where each f, Ta, e(A(2)). Clearly the

Ne valued function q(z) Y’,=_ f,(z)z is also an element of e(A(2)) and
Z’o(T(g(e)) c(e).

For each r 6 we define the evaluation map A. g(A()) --+ g by
A({f}...) {f(a)}.N. Clearly if Ir] eJ then A extends to a norm one
map of Gj into for j 0, 1. Thus, in particular, if a eit, Mo A(K0) must
be an absolutely convex compact subset of g. Also, for a e l+it, Mc /kc(B,)
must be an absolutely convex subset of Be.
We can now state a new question. In view of the preceding remarks and Proposi-
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tion 4, an affirmative answer to this question would imply an affirmative answer to
Question 1.

Question 2. Suppose that for each point tr of the boundary of the annulus f2
we are given an absolutely convex subset M of the unit ball of e and that M is
relatively compactfor each cr on the unit circle.

Let .AA be the space ofallfunctions cb e(A(2)) such that ck(tr) Mo for each

For 0 < 0 < 1, let Mteo be the subset of consisting ofall elements oftheform
(k(e) where dp A4. Is M[eo] relatively compact in e?

Remark. In fact it would suffice to resolve a special case of Question 2 where the
compactness of the sets M, is "uniform" for all or, Irl 1, in the sense that for each
> 0, there exists an integer N() such that for each or, Irl 1, M, is contained

in the union of N() balls of radius e in e. It would also suffice (via reiteration)
to consider the particular case where the elements of.M have the additional property
that their restrictions to the circle Icrl e are continuous c valued functions on that
circle.

Question 2 implicitly contains the definition of a variant of the interpolation spaces
introduced and studied in a number ofpapers, including [CCRSW], [CwJ] and [HRW]:
For each cr 6 f2 let X be a Banach space which is continuously embedded in o.
(For the particular application which we have in mindX will of course be the Cauchy
completion of the normed space whose unit ball is M.) Let 7-/= 7-/({Xo}0) be
the subspace of all functions in e(A(2)) which satisfy {fn(r)}nN 6 X for each
cr 02 and for which II{fn}llT-t :- sup,0 II{fn(a)}llxo < oo. Then for each z in
the interior of 2 we define the space Xtz to consist of all elements of ec of the form
{fn (z)}neN as {fn ranges over . Xtz is normed by the obvious quotient norm with
respect to

The spaces Xzl have interpolation properties: Here is an obvious special case of
an interpolation theorem which is relevant to our purposes:

PROPOSITION 5. /of U: go _. o is a bounded operator which also mapsX into
go with norm not exceeding 1 for each cr 02, then itfollows that U: X[z] -with norm not exceeding 1.

For our purposes U is of course the identity operator and to answer Question 2
corresponds to obtaining a version of the Lions-Peetre lemma (cf. [LP], [CP], [M]
etc.) in the context of Proposition 5, i.e. if U: X -- oo is compact for each r
on the unit circle, then we must show that U: Xtz] e. is compact. To do this it
may perhaps be more convenient to work with a real method analogue of Xtz which
contains Xtz continously (cf. [CwJ]).

Finally let us give a partial positive result.
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PROPOSITION 6. Question 2 does have a positive answer in the case where each
M is contained in co for each rr E, where E is a subset of the unit circle having
positive arc length measure.

Proof. In this case there exist numbers 0 < w(cr, n) < 1 for each n 6 N and
each cr 6 such that limn-_, w(r, n) 0 for each fixed treE and Ix,,I < w(r, n)
for each x {Xn} in Mo. Note that we do not require the functions w(r, n) to be
measurable functions of r.

Given any sequence {x {{xn }} in Mteo choose functions 4 {4n },,r 6

.M such that 4(e) x. The functions v(n, or) sup 14n(r)l are measurable
functions of r and of course satisfy 0 _< v(n, or) <_ w(cr, n). For each k and n we
have

(**) Ixl=lrbn(e)’<-exp (f0a loglq)n(rr)lPo(rr)drr)
where Po (or) is a strictly positive integrable function which is an appropriate kernel for
2. (To be more explicit about Po (rr) observe that we can, for instance, apply formula
(i) of [Ca], Section 9.4, p. 177 to the function f(z) qb(ez) with B0 B C
(even though f does not vanish at infinity). It follows immediately that we can take
Po(rr)dcr Y-sz #j(O, + 2rrk)dt where cr ej+it, j O, 1, [0, 2zr] and
/xj (0, t) are the Poisson kernels defined in [Ca].

From (**) we deduce that

IXknl Vn := exp (f0a logv(n, rr)Po(cr)dcr) < exp (fElogv(n, rr)Po(rr)drr)
We shall show that lim__, 1)n 0 and this will imply that {Xk} has a conver-
gent subsequence in as required. For each positive integer N, let h(N, n, or)
max{-N, log v(n, or)}. Then -N < h(N, n, rr) < 0 and lim._, h(N, n, rr) -N
for each rr E. Thus,

lim sup vn <
n---o limsupexp(feh(N’n’rr)P(rr)drr)

n---cx)

and, by dominated convergence, this last limit equals exp(-N fe Po(rr)dcr). Since
N is arbitrary and E has positive measure we have completed the proof. E3

Remark. We are grateful to Yuri Brudnyi for the very interesting observation
that via the Banach-Mazur theorem one should be able to extend Proposition 6 to the
case where, for all rr on the unit circle, all the sets Mo are contained in some fixed
separable subset of.
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and e-mail exchanges about this problem over the past few years.
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