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HANKEL OPERATORS ON COMPLEX ELLIPSOIDS

E SYMESAK

1. Introduction

For (bk) in 2 2((), the Hankel matrix H (hk,l) is the infinite matrix of
which k, entry is b,+l which may be seen as an operator on 2. As it is well known
[21], such an operator can be realized as an operator on HZ(D) where D is the unit
disc of C" HZ(D) identifies with 2 if (b) 6 2 is identified with - b,z. So, let
b(z)

_
b,z. Given f in HZ(D), the Hankel operator h is defined by

hf S(bf), (1.1)

where S is the Szeg6 projection. Since the family (z) is an orthonormal basis of
HZ(D), the matrix H and the operator h (see [28]) satisfy

fT dz(h(zk)/zl) l b(z)’k+l bk+l hk,l.
Z

Hankel operators have been studied by many authors. They showed how the
properties of the operator or its matrix depend on the symbol b. In 1957, Z. Nehari
19] showed that h is bounded if and only if b belongs to BM0 and, in 1958, P.
Hartman 11 proved that h is a compact operator if and only if b belongs to VMO.
In 1979, V. V. Peller [20] proved that h is of the Schatten class ,Sp, < p < +cx if

and only if b is in the Besov space Bpp’ 1/P(D). An independent proof was given in
1980 by R. Coifman and R. Rochberg [5] for p and R. Rochberg extended it for
p > [22]. We follow their method.

Let n >_ 2 and let p Pk,2 , be a sequence of positive real numbers. For
b in the weighted space e2(Cn, (p)), the generalized Hankel matrix H (hk,t),
(k, l) ((kl kn), (11 l)), is the matrix with entries

h, b+ p+l.

Let pk pk,,2 , 1. We denote by pn the polydisc in C and by 0P its

" is an orthonornal family of HZ(pn). Letboundary. The family e(z) z ""Zn
b(z) Y’, be,(z). The function b is in the Hardy space HZ(P) and, again, we can
define the Hankel operator h on HZ(Pn) by the relation (1.1). Then we have

f b(f)e(f)-Yl(()dfl...dfn bk+l,(h(e,)/et)- 2yr-----;
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where OP {z, Izl Iz2[ IZnl 1}. The projection S is the Szeg6
projection from L2(O pn) onto H2(pn). In this case, the results are partial for Hankel
operators; see for instance M. Cotlar and C. Sadosky [8] and T. Nakazi [17]. The
difficulty of the problem is that such operators are related to products of Hilbert
transforms. Our aim, here, is to consider a family of weight for which the symbol b
associated with (bk) belongs to the Hardy space of a complex ellipsoid. As ellipsoids
are convex and pseudoconvex domains of finite type in Cn, one may hope that the
characterization for D extends in this case. More precisely, let rn (m mn) be
an n-tuple of integers, and let

zr’F((k + 1)/m)... 1-’((kn + 1)/mn)
ml ...mnP((k + 1)/m +... + (kn + 1)/mn)

First, assume rn (1 1). We consider the Hankel operator h defined on
H2(B), where B is the unit ball of Cn. The family ek(z) is an orthogonal basis
of H2(B) and Ilell e Yl’nkl!’"kn! Given (b) in the weighted spaceH2(Bn) (kl+’"+kn+n-1)!

e2(Cn, (p)), the function b(z) , bek(z) is in H2(Bn) and we define the Hankel
operator by the relation (1.1). In this case, (h(e)/et) bk+l llek+tl12/42(Bn and the
results on the disc have been extended by R. Coifman, R. Rochberg and G. Weiss [6],
M. Feldman and R. Rochberg [9] and G. Zhang [29]. For the strictly pseudoconvex
domains in C and finite type domains in C2, E Beatrous and S-Y. Li proved that a
Hankel operator H defined on Bergman space is bounded if and only b is in BMO
and compact if and only if b is in VMO [3]. They give a sufficient condition on b so
that H belongs to the Schatten class Sp [4]. For domains such that the Bergman kernel
is non vanishing, they proved that this condition is also necessary. A characterization
of Hankel operators on peudoconvex domains of finite type in C2 was given by S.
Krantz, S-Y. Li and R. Rochberg [13] and [14].

The purpose of this paper is to study the Hankel operators when rn is an n-tuple
different from (1 1). Let (b) in e2((n, Pk) and b(z) , bke(z) in H2(),
where f2 is the ellipsoid related to m. We characterize the symbol b for which h,
defined by (1.1), is bounded, compact or an element of the Schatten von-Neumann
class Sp, < p <

Let rn (ml mn) be an n-tuple. We define

Z Cz: Cn, r(z) [zj < 0
j=l

and 0f2 {z 6 C", r(z)--0}. The complex ellipsoid f2 is a bounded convex,
pseudoconvex domain of finite type in Cn.

Before stating our results, let us recall the definition of Sp. If tO is a compact
operator in a Hilbert space H we can consider (si) the sequence of eigenvalues
of (tO.tO)l/2. The si are called singular values of tO. The operator tO is said to
belong to Sp if and only if (si) is in eP. The space Sp endowed with the norm
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IItll, (Yi=oS)lip is a Banach space when < p < +cxz. The space S, is
called the Trace Class of H and ,5’2 is the Hilbert Schmidt class 0].

Let q > -1 and dVq (-r(z))qdV, where dV is the Lebesgue measure of 92.
We denote by Bq the weighted Bergman projection: it is the orthogonal projection
from L2(dVq) onto the Bergman space A2(dVq) L2(dVq) N (92), where (92)
is the space of holomorphic functions in 92. Let f L2 (dVq),

Bqf(Z) f Bq(z, ()f(()dVq((),

where Bq(Z, )isthe weighted Bergman kernel. Let B0(z, if) B(z, )and B0 B.
Then the following result holds.

THEOREM A. Let < p < +c and 1 such that lp > n. Let b be a
holomorphicfunction and define h by hf S(bf). Then"

(i) Ifb BMO(092) then h is bounded.
(ii) Ifb VMO(Of2) then h is compact.
(iii) If (-r())tVtb LP(92, B(, )dV()) then h Sp.

The condition lp > n comes from the fact that the weight (--r(z)) pl B(z, z) is an
integrable function if and only if lp > n. It follows from the mean-value property
that if Ip > n and 1’ 6 N, (-r())lVlb is in LP(92, B((, )dV()) if and only if
(-r(f))l+l’vl+l’b is in LP(92, B((, ()dV(()) [12].

The conditions are the same as in the case of the ball [9]. To know whether the
conditions are necessary is still open and, probably, difficult. We give some kind of
necessary condition.
We shall use the homogeneity properties of the ellipsoid: Let us define tr as the

measure on 092 such that, for all continuous function f with compact support,

f (zl dV (z) f (otl/m, Zl otl/m,, zn) dr(z)} ot2-I dot, (1.2)

1. j. D’Angelo gave an explicit formula for the Bergman kernelwhere- j= mj

and an asymptotic formula for B(z, z) [1]. The Szeg6 projection with respect to
cr has been studied by A. Bonami and N. Lohou6 [2]. They obtained an explicit
formula for the Szeg6 kernel function and they defined an anisotropic pseudometric
d to characterize its singularities. We use a family of polydiscs to give an equivalent
definition of d. Let N be the holomorphic transverse vector field

z 0 zn
ml OZl mn OZn

Notice that Nz.r on Of and, if Nz T + L, the real field L is tangent to 092.
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We consider the n complex tangent directions

0 Or
Lj

Ozj ozj
Nz’ < j <n.

z-’2-J Lj 0, the family {Lj, j jo} spans the complex tangential spaceSince ’j= mj

in the open set Vjo {" 6 Cn, IZjo > 1/2ff-ff > 0}. Let z in Vo, 6 > 0 and

Q(z, 6) { Cn, Z "--Olg -- E[JjLj, I1 < and Ifljl < rj(z, 6)},
=fijo

where ri(z 6) inf {61/2mj 81/2 }]zj[mj_
The pseudometric d is given as follows.

DEFINITION. Let z and in C Then,

d(z, ’)---inf{6 > 0, " Q(z, 6)}.

Let z on 0S2 and 6 > 0. We denote the anisotropic ball of OS2Q(z, 6) f) Og2 by
B(z, 6). Let f in L)o.(Og2). For z on 0 and 6 > 0, let

m(f,z, 6)

osc(f, z, )

f()da(),
a(B(z, 6)) (z,a)

fB If(if) m(f, Z, 6)1 da(ff).
a(B(z, 6)) (z,a)

A function f in L]o.(Of2) is in the anisotropic space BMO(Of2) if

IlfllBMO sup osc(f, z,
z, 8>0

Let f BMO(O) and 0 < r < 1. Let Mr(f) suposc(f, z, 6) where the
supremum is considered for z on 02 and 0 < 6 < r. The function f is in VMO(Of2)
if limr-,0 Mr f O.

The proof of (i) is classical. The Szeg6 projection is a singular integral operator
with respect to the pseudometric d [26]. We can consider Cb the commutator associ-
ated to b. Let f in L2(Of2), Cbf S(bf) bSf. Since CbSf hf we only have
to study the commutator. The proof of S. Janson 15] extends to this context to show
that Cb is bounded.

Part (ii) of the theorem follows from the first one by routine arguments. We
approximate h by finite rank operators. Choose b in BMO(OV2). Let 6 > 0. We
consider ha(z) re(b, z, 6). By part (i) of the theorem,
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We need to prove that Cb is compact only when b is continuous. By the theorem
of Stone-Weierstrass,. b is uniformly approximated by polynomials Pn. For each
Pn, Cp,, is a finite rank operator and therefore Cp, is compact. We take the limit
in the sense of operators to conclude that Cb is compact. It remains to show that
lima,0 lib ba IIto0 0. In the case of the ball, R. Coifman, R. Rochberg and
G. Weiss [6] proved that there exists C > 0 such that

osc(b ba, r, z) <_ C (Ms(b) + Mc(b))

The result is still valid in the case of complex ellipsoids. By definition of VMO (0if2),
lima_,0 Ma (b) 0. [21

Let us prove (iii). If (ei) and (j) are two orthonormal basis, a compact operator
tO in a Hilbert space H has the Schmidt decomposition

tO tO(’’) Z i(./ei) fi,
i=0

where / is the inner product in H. If (R) is given by (1.3), then )V Si. The
family (e) is an orthogonal family in H2 (S2) but the relation (1.3) with (e) does not
allow us to prove that (si) is in P. We begin to give a generalization of the Schmidt
decomposition" we prove that a compact operator to defined as in (1.3) where ei and
f/are only nearly weakly orthonormal (Definition 3.1) and
satisfies Y-i s/p < C -.i ’" Then we prove that a Hankel operator is a finite sum of
operators of type (1.3). This sum follows from the theorem of atomic decomposition
ofBergman spaces [5], [27]. Let < p < +oo. There exists a sequence Kj(z)inAp

such that F in Ap may be written as F(z) Zj i,j Kj(Z) and IlFlla (Yi I)vilP) 1/p"
The functions Ki (Z) are built with the weighted Bergman Kernel ,Bq (z, wi). We use
the relation between the Szeg6 and the Bergman kernel given in the next part to obtain
the nearly weakly orthonormal sequences.

2. The Szegii kernel

The aim of this section is to give the fundamental properties of the Szeg6 kernel
for the measure or. We give pointwise estimates for Nz S(z, ), k 6 N. When n 2
such estimates follow from 8]. When is an ellipsoid ofC, n > 3, we use a direct
method.

-2 (Z)-k((); henceRecall that S(z, () Y-. [lekllL2(0)ek
ml...m F((kl + 1)/ml +... + (kn -4- 1)/mn)zk_(k (2.4)S(Z, () 7r 1-’((kl -+- 1)/mli: -(n linik

where zk-k (Zl(l--)’... (Z,n)"- [2]. Let z in g2 \ {(0 0)}. There exists (z’, ,k)
,kl/m"Z’n). We define the projection on 0f2on 0fa x IR_ such that z ()vl/m’z
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by zr(z) z’ and ,k(z) . In a neighborhood of 0, )(z) -r(z) 6(z)
dist (z, 0f2). Let z in .2, " on 0 and D(z, ) 6(z) + d(rr(z), ). We shall rely on
the following proposition:

PROPOSITION 2.1. Let k 1%I. There exists C(k) > 0 such that

C(k)
(2.5)INzS(z, ()l <

D(z, ()kcr(B(zr(z), D(z, )))"

Proof. Such a proposition may be deduced from the result of [2] or from the
more general results of J. Mac-Neal for decoupled domains 16]. Let us remark that
the derivatives of S and Bq are linked by the following relations"

LEMMA 2.2. Let z in f2 and in f2. Then"

(i) NzS(z, ) 7B(z, ) S(z, ).
(Nzq(Z, () d- ( d- + q)nq(z, ()).(ii) gq+ (z, ( - k,, is an orthogonal basis of A2(dV),Proofof the lemma. Since ek (z) z Zn

the Bergman kernel satisfies

n(z, () allekl1-2L2dV)ek (Z)-d( ).
k

We use the definition of cr to compute Ilek -2
L2(dV)

[[ell2z(dV) fo 1(1[ 2k’ [(n[ 2k" dV(()

2 11112

ki/ml +’." kn/mn + t IlekllLz(O2)

7/"n I-’((kl -- 1)/ml).-. I"((kn .qt_ 1)/mn)
ml...mn 1-’((kl + 1)/ml +... + (kn + 1)/mn + 1)

The relation Nzz-( (kl/ml +... + kn/mn)Zk-( and the fact that 1-’(z + 1)
zl-" (z) give (i).

The second relation follows from similar arguments.

The following remark is an immediate consequence of the lemma.

REMARK 2.3. There exist real numbers a0, al aq+l such that

q+l q+l

nq(Z, llo) Z okNzS(zw) --:aNS(z, w).
k---0 k=0
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3. Schatten class

The Schmidt decomposition is not available to obtain the singular values Si in this
particular case. We recall the following characterization which does not require the
spectral theory"

S inf {119 IIc<H rank(E) < i}. (3.6)

We use (3.6) to prove that h is in the Schatten class. We follow the method developed
by R. Rochberg and S. Semmes [23] [24] Let (R)(3.) Zi=0 ,,i(./ei)fi where (ei)
and (fi) are two nearly weakly orthogonal (N.W.O.) families (Definition 3.1) and ()i)
is in P. We use geometrical arguments to prove that (R)() is in Sp, <_ p < +o.

Let us define a Whitney covering of f2 by polydiscs Q(w, r/6(w)), 0 < r/ < 1.
Let wi be the center of the polydisc and let Qi Q(wi, rl6(wi)). We fix C0 >
0 such that Q(wi, rl(wi)/Co) fq Q(wi,, rlS(wi,)/Co) 0 if =f- i’. Let Qi
Q(wi, l]((ll)i)/Co), Qi Q(wi, Col](ll)i)) and Bi :rr(Qi).

DEFINITION 3.1. Thefamily (ei) in L2(O) is a N.W.O. family ifand only if

(i) there exists C > 0 independent of such that IleillL2<0a) < C and
(ii) the maximal operator T* defined on L2(0f2) by

T*f (z) sup
zEBi cr(Bi) 1/2 f()ei() da()

is bounded in L2 (0 ,2).

Let (i) be in P, < p < +o, and let (ei) and (f/) be two N.W.O. families. We
follow the method of [24] to prove that (R)(,k) is in Sp. We approximate (R)()) by the
finite rank operators (R)k(’-) k-1j=0 )i(’/ei)fi. We define the sequence (M())i) by

M())i Z I.lcr(B), (3.7)
cr(Bi)

where Ti {g" 6 f2, zr(() 6 Bi and r(toi) < r(() < 0} is the tent over the ball Bi.
We use (3.6) and the following propositions to estimate the singular values of (R) (,.)
[9], [24]. We follow the method given for n. We have to do it carefully to control
the constants.

PROPOSITION3.2. Let (ei) and () be two N.W.O. families and let (R)

J-i )i(’/ei)fi. There exists C > 0 such that, for k E 1 and f, g L2(0f2),

I(((R)- (R)k)f/g)l < CllfllL2(o>llgllL(oM()),

where M())* is the nonincreasing rearrangement of M()).
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Proof Let (i) a bounded sequence. We consider the discret measure

A()) I.ilft(Bi)w,,

where 6w, is the Dirac measure at wi. Let IlA(-)llcar the Carleson norm of the
measure A(,k). Then IIA(,k)llfar sup/IM00il. Let (vi) be a bounded sequence
and let v(z) Zi 13i@i(z), where qgi(z) is a continuous function such that I0(z)l _<
and

@i(Z) ifz 6 Q(ll)i, ](lloi)/Cg),

i (z) 0 if z Qi.

Then

ift(Bi)l)i I)()dA(ff) S CIIA())llCarlL i)* (z) aft (z),
if2

where v*(z) supzeB Ivi[ [25].
I(f/e,)l I(g/f,)l gives(B,)I/2 (B,) I/2

Let f and g in L2(Of2). The choice 1)

I(( (R)k)f/g)l < CllA(Xk)llCarl fa T*f(z)T*g(z)dft(z)

<_ CIIAO)llCarlllfll2(aa)llgll2oa),

where (,k/) is the sequence deduced from (i) and defined by )/ 0for 0 k-
and )/ i for > k. We suppose that M(,k) is a nonincreasing sequence. It

remains to prove that there exists C > 0 such that, for 0 < < k 1,

M()k)i < CM(,k).

We estimate M()k)i with terms M0)t M(,k)t, > k. Consider the order relation
on Ai,k {Wl, Wl Ti and > k} given by

wt -< wt, iff wt 7), and r(wt,) < r(wt).

Let wt denote the maximal elements for this relation. There exist such maximal
elements as there is at most a finite number of w, for which wt -< wt,. Moreover, any
w in Ai,k is contained in some 7),, with wt, maximal. The sequence (wt) satisfies the
following technical lemma:
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LEMMA 3.3. Let 0 < < k- 1. Then:

(i) Bi C Ul Bt.
(ii) n: (a(wt, rl3(wt)/C))r (Q(wt,, o3(Wl,)/C)) 0 ifl =/: l’.

Proofofthe lemma. Let Z - Bi. Then, for e > 0 small enough, z 7r(Qp) Q

B(z, e), with Wp close to the boundary. Then Wp belongs to some T/, with wt which
is maximal and so 7r(wp) belongs to I,.J BI. As e is arbitrarily small, z is in its closure.
Let z satisfy

d(z, y((Wl) < 1"]3(1131)/C

d(z, Tg(Wl,)) < O3(Wl,)/C3o
Assume 3(Wl’) 3(Wl). Since d is a Co pseudometric, d(Tr(Wl,)), Yt’(Wl)) <

rl3(Wl)/Co. Thus wt, belongs to/) and hence wt, is not a maximal point.

The sequence (wt) may be infinite but it is an immediate consequence ofLemma 3.3
that tr (Bi) /C < ,l cr (BI) < Ccr (Bi). Then

M())M(Xk)i < Z (Bl)M()k)l < Z cr(Bl) <_ CM()Ok. I-1
cr(Bi) cr(Bi)

It remains to use the folowing proposition to prove that (R)(Z) defined as in (1.3)
with ei and fi N.W.O. is in Sp"

PROPOSITION 3.4. M is bounded in P, < p < +cx.

Proofofthe proposition. For p > 1, we use the Schur lemma with the sequence
(or) (cr(Bi)) [30]. First, let us remark that, for p > 1,

M(o.p) (
o.(ni) - (Ok) I+p < (Oi)p kO’(ok) I+p.

wkeTi w, eE

Since there exists a finite number of points wk such that r(wk) < -1/2, we denote
by k’ the index such that, for k > k’,-1/2 < r(w) < 0. Let/ > k’. We denote by
j0 the index such that wi Vjo. For w in

cr(B(zr(w), 3))’ 3 H rj(w, 3)2 v/Vol(Q(w, 3)) H rj(w, 3).
j=l j=l

J#Jo J#Jo

We obtain

Vol(Ok))M(crP)i < C(Bi)P - Vol(Qi)
tOk E Ti j=! Tj(Wi’ 3(Wi))

J#Jo
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Since wk is in T/, 6(wk) < 6(wi) and rj(w,, 6) 75j(wi, 6), 6 > 0. Then

I+p

M(TP)i <- C’(Bi)P Z Vol(Qi)

The polydiscs Q, are almost disjoint and Vol(Qi) Vol(T/), thus M(crP)i < C/.
Let p and p’ such that 1/p + 1/p’ 1,

M(rP)i 5 Ccr(Bi) p,

M(rP’)i <_ Cr(Bi)p’.

The Schur lemma implies that M is bounded in P, < p < +o.
Assume p 1. Let us remark that

where A, {wt, w, 6 T }. We have only to show that there exists C > 0 such that

cr(Bk) Z 7(Bl)
< C. (3.8)

wtA,

We consider A’, the partition of A given as follows:

DEFINITION 3.5. Let w in f2. Then:

(i) A {wt 6 A,, Qt f’l Qt, - 131.
s+l(ii) A, {w 6 a, \ Ui=la, such that Qi c’l Qk, 7 Ofor some wi a}.

The estimation (3.8) follows from the following technical lemma.

Lemma 3.6. There exist N N(S2) N and R R(f2, 7) > such that:

(i) There are at most N points ll) in A.
(ii) Let wt in A, and s > 2. Then 6(wt) > RS6(wk).

Proofofthe lemma. Let us prove (i). Since 6(wt) > 6(w,) when //)1 t A,, the
number N is less than the number N’ of domains a(zi, rl6(wk)) such that

Q(zi, rl6(wt)) fq Q(wk, rl6(wk)) 7 0

Q(zi, rl6(tOk)/Co) fq Q(zi,, rl6(Wk)/Co) if 7 i’.

(3.9)

(3.10)

From (3.9) that there exists C1 > 0 such that Q(zi,
and therefore rj(Wk, 6)

_
rj(zi, 6), 6 > 0 [7]. Moreover, from (3.10),

N’6(w)((-Irj(wk’6(wk)))j=l < C ZVol (Q(zi, rl6(wk)/Co))
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< C Vol (Q(w,, Cl O(//3k)))

<_ C(w) r(w,, (w,))
j=l

where C is independent of the Whitney covering.
Let s > 2 and wt in A],+ Let us remark that there exists C2 > such that for w

in Q(z, c6(z)) and c > 0 small enough,

C2
(1 c)3(Z) < 6(w) < C2(1 -+- c)(z). (3.11)

We denote by Wi the point of A, such that Qt f3 Qi O. Since Qt q Qi 0 and
Qt c’l Qi 7 , it follows from the relation (3.11) with c that 6(wt) > R6(wi),

where R c(co+,) > 1. V1
Co-r/

Let wk in f2. It follows from Lemma 3.6 that

Since rj(wk, 6) "gj(ll)i, 6), 6 > 0 there exists n(w,) > 0 such that

Z a(Bk)
< Z (6(Wk))

n(k)

wtEA, o’(Bt) wt_Ak Ik" (1131)
so

<_ 2N + NE R-’ "() <- C,
s=2

where C depends on r/and f2. [21

The following proposition provides the N.W.O. families that we will use to study
the Hankel operators.

PROPOSITION 3.7. Let > 0 and k N. Thefamily (ei defined by

ei(z) o(Bi)l/26(lloi)k+t gkz S(z, wi)

is a N. W. O. family.

Proof. Let B; B(zr(wi), 216(t0i)) and Ct B;+ \ Bt, the corona of 0f2. Then

) o’(Bi)6(wi I112(0 )2k+2ot
dB(7(Wi),(Wi))

INS(, wi)l2 da()

-[- Z (7(Bi)6(YOi)2k+2a /C IN[S(’ wi)12 da().
I>1
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On B1, we use the fact that INffS(, wi)l C(wi))-ko’(B(yr(wi), 2/(toi))) -1. On
Cl, by Proposition 2.1, INS(, wi)l < c(2l((wi))-kcr(Bl) -1. Then

]leill22(0a) _< C(ll)i)2t+2k _(21((wi))-2k VOl(Bl+l) < C.
Vol(Bt)

Let f 6 L2(O) and z on 0. By definition,

r*f (z) < sup6(wi)k+lNiSf(wi)l.
zBi

The function NzSf is holomorphic, so

hence

Ig,sf(wi)[ < INff Sf(C)16(C)+ dW(ff
VoI(Qi)

T*f (z) <_ CM((.)+NkzSf),
where M is the Hardy-Littlewood maximal function with respect to the pseudometric
d, defined by

fQME(z) sup IF(’)ldg().
wea,a>0 Vol(Q(w, 3)) (w,a)

The operator M is bounded in L2(dV). Then

It follows from the mean-value property that II (’)v Sf <_ C Sf II,) [12].
Then

IIT*fll(oa) _< CIIflloa).

It remains to show that a Hankel operator h is a finite sum of operators of type
(R)(.) and hence is in Sp by (3.6). The N.W.O. families and (.) sequences are built
via the atomic decomposition of Bergman spaces Ap [5], [27]. Let/3 (ill fin)
in R and #(.)/3 Hj=I (rj(’, 3(’)))t Let c in R, /3 (/51 /n) in ]l

and dV,() (-r())#()/3dV(). Let < j _< n, since 6(z) 1/2 < /z(’) _<

3(-)l/2mj, we consider the mapping gj definedby gj(x) 2 ifx < 0and gj(x) 2mj
if x > 0. We consider a Whitney covering of f2 by domains of type Q(w, rl6(w))
with r/> 0 small enough. Let wi be the center of such domains and (Ki) the family
of elements of AP(dV,O() defined by

Ki(z) ((wi)t-/Plz(wi)-/P Vol(Qi)l-l/PBt(z, 1/3i),
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where the parameter is strictly greater than to where to 7 + 7 Zj= --gi(-flJ) P
The following theorem is the theorem of atomic decomposition of the weighted
Bergman space Ap (dVo,O()) (see [26] for details).

THEOREM 3.8. Let < p < +o, ot in and/3 (1 in) in ]n such that
+ ot + -j=ln gJfiJ)J > 0. Let F AP(dV,(()). There exists (’i) in P such that

(i) F(z) Zi i’i Ki (z),

(ii) IlFll,/3,p (i IZlIP) l/p

In the theorem, the family (Ki) is not a basis of AP(dV,(()) because the decom-
position is not unique.

Let s > -1 and D (1 + s)-l((Nz + (1 + s + )I). The field D. is trans-
verse and D,B,(z, ) Bs+l(Z, ). Suppose that Vlb AP(3(z)pIB(z, z)dV(z)),
the function Dt-l+l"" Dt-lb also belongs to AP(((z)pIB(z, z)dV(z)). Recall that
B(z, z) (z)-1 (l-[j=l’ rj(z, (z))) -2. It follows from the theorem of atomic decom-
position with c -1 + Ip and t -2 (-2 -2) that there exists (.i) in gP

such that

Dt-l+l Dt-lb(z) Z ’I(wi)t-I+I/Plz(Wi)2/P Vl(Qi)l-l/PBt(wi’ z),

(tx(wi)--2)-l/P(vol(Qi)) l-lIp
Let s t- and u

a(Bi) *(wi)a(Bi)
1. Let u Ui,i. The

sequence (vi) is in gP and

b(z)

_
ui(wi)l+’a(Bi)B,(wi, z).

According to Remark 2.3,

s+l

b(z)--vi(toi)l+sa(ni)ZakgkzS(z, toi).
k=0

Choose F in H2(S2). Then

ZhE(z) S(z, )b(g)F() d(g)

s+l-aZ vi6(wi)l+stT(Bi} fo NS((, wi)b(()S(z, ()(()da(()
k=0 f2

--k
Since NS(g, wi) NmS(g, wi) and the function ( -+ S(z, g)F(g) is antiholomor-
phic,

fo NS(, wi)b()S(z, )-ff() da()
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--k (S(z, toi)-ff(toi))Nwi
k

Z CNqz S(z’ toi) fa Nkz-qS(toi’ ()b(()(()dcr(().
q=O f2

We then have

s+l k

hF (z) ZaZ q "(Z)Ckhk,q
k=0 q=0

where hk,qF(z) Zi 1)i((toi)l+scr(Bi)(Nkz-qS(’, toi)/F)Nqz S(z, toi). For0 < k <

s+land0<q <k, let

ei(z) tT(Bi)l/2t(toi)kNqz. S(z, to/),

fi(z) ty(ni)l/2t3(toi)l+s-kNkz-q S(z, toi)

and ’i akCvi. It is immediate that (ei) and (f/) are N.W.O. families and that (,)
is in eP. This completes the proof of theorem. 12]

4. Remarks and problems

The theorem gives a sufficient condition for a Hankel operator h to belong to Sp.
Let < p < +o and suppose that h, a Hankel operator defined as in (1.1), is in Sp.
Then there exists C > 0 such that

[(h(ei)/fi)[ p < CIIhll,, (4.12)

where ei and f/are two N.W.O. families [9], [24]. Let ei(z) o(Bi)l/2S(z, toi) and
fi(z) o(Bi)l/2S(z, tog). Then (4.12) gives

y o Bi p S2 (to/, ()b(() dtr (()
p

Let Tb(w) fort S2(w, ()b(() do(g). Since (Qi) is a Whitney covering we obtain

lTb(w)lP(_r(w))-PB(w, to)l-p dV(w) < +cxz. (4.13)

If g2 is the ball of Cn, there exist real numbers ao, a an-I such that S(w, .)2
n-1,k=oakNS(w, (). Then Tb(w) _,k=oaNwb(w). Moreover B(w, w)
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(//.))--(n+l), SO it follows from the relation 4.13 that (-r(f))nVnb in
LP(, B((, ()dV(()) and hence the sufficient condition is also a necessary con-
dition with n [9]. The characterization of Tb remains an open problem in the
general case.
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