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DEFORMATION CLASSES OF GRADED MODULES
AND MAXIMAL BETTI NUMBERS

KEITH PARDUE

1. Introduction

In this paper, I determine the deformation classes of finitely generated graded
modules over a polynomial ring S k[Xl Xn], where k is an infinite field.
Theorem 34 states that each deformation class is the set of modules with a given
Hilbert function. Furthermore, I show in Theorem 31 that among all quotient modules
with a fixed Hilbert function of a given finitely generated graded free module F, the
quotient by the lexicographic submodule has the largest graded Betti numbers.

The deformation classes of subschemes of projective space were determined by
Hartshorne in his thesis [Ha]. He proved that the Hilbert scheme, Hilbp(z (]n-1), is
linearly connected. That is, any two subschemes of pn-1 may be deformed to one
another if and only if they have the same Hilbert polynomial; if they do, then the
deformation may be realized as a sequence of deformations, each defined over A1.
(All deformations in this paper are defined over A1.) Hartshorne’s technique was
to construct a deformation from Ov (9/Zv, the structure sheaf of a subscheme
V pn- with Hilbert polynomial p(z), to 0/,.7, where J is the sheafification of
a "Borel-fixed" ideal. Then, he constructed special families called "fans" which give
a sequence of deformations between any two such 0/,.7 with Hilbert polynomial
p(z).

Reeves, in her thesis [Re 1,2], refined Hartshorne’s techniques in characteristic zero
and showed that ifd is the degree of p(z), then there is a sequence ofno more than d+2
deformations defined over A taking O/Zv to 0/, where/2 is the sheafification
of the unique "lexicographic ideal" L such that S/L has Hilbert polynomial p(z),
and has no submodule of finite length. This is the essential point in her theorem on
the radius of the Hilbert scheme.

The main technique in this paper is a refinement of the technique that Reeves used
in her thesis. Indeed, the operation that I call in this paper is the essential operation
in her argument. On the way to proving the two main theorems of this paper, I
will show that Reeves’ bound of d + 2 holds in positive characteristic, and also for
deformations of quotient sheaves of a sum of line bundles ’ )i= O,(-di). In
particular, the quot scheme Quotpz) (,f) is linearly connected for such an ’.

Lexicographic submodules of a free module F play a central role in this paper,
and I will now describe them. Let S k[xl Xn] where k is a field and let F be a
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graded free S-module of rank r. Fix a basis e er of F where each ei has degree
di and dl < < dr.

Definitions 1. A monomial of F is an element xuei where xu x’ .xnU" is a
monomial of S. The lexicographic order on monomials of S is the order in which
xu > x if #s > Vs and #i 1)i for every < s. The lexicographic order on
monomials of F is the order in which xZei > xvej if < j, or j and xu > x. A
monomial subspace of Fd, the vector space of homogeneous elements of F of degree
d, is a subspace spanned by a set of monomials. The lexicographic subspace of Fd
of dimension e is the monomial subspace spanned by the first e monomials of F in
lexicographic order. A submodule L of F is a lexicographic submodule if it is graded
and L is a lexicographic subspace of F for every d.

Note that in the definition of lexicographic order, I do not compare the degrees of
monomials as one would with degree-lexicographic order.

PROPOSITION 2 (Macaulay [Ma], Hulett [Hu 1,3]). Let N be a graded submodule
of F. Then there is a lexicographic submodule L of F such that dim Lt dim Nd
for every d.

Macaulay proved Proposition 2 in the case that F S so that L is a lexicographic
ideal. Hulett proved the theorem in the form stated above.

Macaulay also proved that among all homogeneous ideals with the same Hilbert
function, that is with the same dimension in every degree, the lexicographic ideal has
the largest number of minimal generators of each degree. It is not difficult to compute
the minimal generators for the lexicographic ideal for a given Hilbert function, so
it is easy to bound the number of generators that an ideal requires in each degree if
we know its Hilbert function. Bigatti and Hulett proved a remarkable generalization
of this theorem when k has characteristic zero. If M is a finitely generated graded
S-module with minimal graded free resolution

0-- F, -+ --- Fo-+ M -+’0,

then iij (M) is the number of degree j minimal generators of Fi. These numbers
are the graded Betti numbers of M. They are well defined; in fact ij(M)
dim Tor/S(M, S/m)j where m (x xn). See [EvGr].

THEOREM 3 (Bigatti [Bi], Hulett [Hul-3]). If k has characteristic zero, N is a

graded submodule of F and L is the lexicographic submodule of F such that FIN
and F/L have the same Hilbert function, then Iij(F/N) < ij(F/L) for every
and j.

Bigatti and Hulett independently proved this theorem for F S and Hulett later
proved this theorem in the form above. The theorem is a generalization ofMacaulay’s
because the number of minimal generators of N of degree j is lj(F/N).
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The free resolution of S/L was explicitly described by Eliahou and Kervaire
[E1Ke] and, since F/L is a direct sum of cyclic modules (S/L(i))ei where L(i) is
a lexicographic ideal, their description easily extends to a description of the free
resolution of F/L. Using their result it is easy to write a combinatorial formula for
iij (F/L) in terms of the generators of L. So we have sharp bounds for the graded
Betti numbers of a module in terms of its Hilbert function and the degrees of its
generators, and these bounds are not very difficult to compute.

But it is essential to Hulett’s and Bigatti’s arguments that the characteristic of k is
zero. In this paper I give a new argument which works if k is any field, even a finite
field. I also prove the analogous statement for regular local rings in Corollary 33.

am grateful to E. G. Evans, A. Galligo, H. Hulett and A. Reeves for helpful con-
versations related to the contents of this paper. I am especially grateful to D. Eisenbud,
who was my thesis advisor during much of the work leading to this paper.

I dedicate this paper to William Pardue on the occasion of his sixtieth birthday.

2. Notation

use the following notations and conventions in this paper. Except where otherwise
specified, k is an infinite field. The characteristic of k is p, which may be zero.
S k[xl xn] and m (Xl xn) is the graded maximal ideal of S. F is a
free graded S-module with a fixed basis el er such that ei is homogeneous of
degree di and d < <_ dr. All S-modules are graded and finitely generated; if M
is an S-module then Md is the vector space of homogeneous elements of M of degree
d. Any reference to a submodule of F applies to ideals as well, since F may be S.

Define the codimension codim N of a proper submodule N of F to be the height
of the annihilator of FIN. In particular, the codimension of an ideal is its height.
Define the codimension of F to be n. If I is an ideal, then Z(1) is the zero locus of I
in -1. The codimension of 0 in -1 is n. With these conventions, the codimension
of Z(I) in ]lz is equal to the codimension of I, even if I S.

The Hilbert function of a module M is the function from Z to I defined by
ht(d) dim Md. For sufficiently large d, hM(d) agrees with a polynomial p4(d),
which is the Hilbert polynomial of M. If N is a submodule of F, then the largest
submodule P of F containing N such that F/N and F/P have the same Hilbert
polynomial is the saturation of N, which is

N:F m--{f E F" rn’f
___
N for some s > 0}.

The Hilbert polynomial of F/N has degree equal to n codim(N), where we
take the polynomial 0 to have degree -1.
A monomial submodule of F is a submodule generated by monomials. Ifrn x ei

is a monomial of F and x" is a monomial of S, then the notation x" Im means that x"
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divides x In this case, I write m for x’’
77ei The notation xfllm means that xflm

and x+1 /I’m. The lexicographic order on monomials of S and F is defined above. If

f 6 F is the sum of otxei, with ot 6 k*, and a k-linear combination of monomials
which come later than xlZei in lexicographic order, then otxtSei is called the initial
term of f and is denoted by in(f). The initial term of 0 is 0. If N is a submodule of
F, then the submodule of initial terms of N is the submodule of F generated by the
initial terms of elements of N; it is denoted by in(N). If V is a subspace of Fd, then
define the subspace of initial terms of V to be the subspace of Fd consisting of initial
terms of elements of V; it is denoted by in(V). It is not hard to see that V and in(V)
have the same dimension. Also, in(Nd) in(N)d, so N and in(N) have the same
Hilbert function. The generic submodule of initial terms of N is in(y(N)) where
y 6 GL (n) > GL (F) is a generic element as in Proposition 4 below; this submodule
of F is denoted by Gin(N). For more information on the theory of submodules of
initial terms, see Chapter 15 of [Ei]; the treatment there is for ideals, but is easily
extended to the case of submodules of free modules.

Starting in Section 6, I will often be working with submodules of F of the form
l(1)el . l(r)er where the last several I(i) are 0. The notation I)e @. l(q)eq
will be used for such a submodule where l(q) 0 and l(i) 0 for > q.

3. Borel-fixed submodules

In this section I summarize the characteristic free theory of Borel-fixed submod-
ules. The characteristic zero theory of Borel-fixed ideals is essential to the proofs
of Reeves’ Theorem on the radius of the Hilbert scheme, and to Theorem 3 above;
it has also had wider applications to algebraic geometry, commutative algebra, and
combinatorics. See, for example, [Co], [Go] and [Kal,2]. Because of the lack of a
theory in positive characteristic, nearly all of these applications have been restricted
to characteristic zero.

Proposition 4 below shows that Borel-fixed submodules arise naturally as in(N)
where N is a submodule of F in "generic coordinates." N is in generic coordinates
after we make a general change ofvariables in S and a general change ofhomogeneous
basis for F. More explicitly, the group GL (n) ofn n invertible matrices with entries
in k is also the group of graded k-algebra automorphisms of S; if y (aij) GL(n)
then ,(xj) Zi aijxi. This automorphism induces a natural compatible action
on F by ’(Y fiei) ’(fi)ei. Let GL(F) be the group of graded S-module
automorphisms of F. Then G GL(n) > GL(F) acts on F through graded k-vector
space automorphisms; this action takes submodules to submodules. Let B be the
subgroup of G consisting of all automorphisms taking ei to an S-linear combination
of e ei and xi to a k-linear combination of x xi. B is a Borel group of
G and is naturally realized as upper triangular matrices. Let U be the unipotent
subgroup of B.
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PROPOSITION 4. Let N be a submodule of F and let G, B and U be as above.
Then there is a Zariski-open set c_ G such that

(1) for all V1, ?’2 E , in(?’l (N)) in(?’2(N)),
(2) for all ?" , in(?’(N)) is a B-fixed submodule of F and
(3) u 0.

Proof See Example 1.7 and Proposition VII. of [Pa], or modify the proofs of
Theorems 15.18 and 15.20 in [Ei] which are for the case F S. [2]

A form of Proposition 4 was first proved by Galligo for the action of GL(n) on
C{xl xn}. Parts (1) and (2) of Proposition 4 were first proved by Bayer and
Stillman in the case F S. Now I will summarize the basic properties of Borel-fixed
submodules of F. Proofs of Propositions 6 and 8-10 may be found in Chapter II of
[Pa] or in Section 15.9.3 of [Ei], where the case of Borel-fixed ideals is studied.

Definition 5. If p is a prime number, k -’i ki pi and Zi .i pi where
0 < ki, i < P 1, then say that k <p if ki < .i for every i. The number p will
always be the characteristic of k. If p 0, then <0 is the usual order on the natural
numbers.

PROPOSITION 6. A submodule N c_ F isfixed by the action ofB on F ifand only

(1) N l(1)el @ @ I(r)er is a monomial submodule and
Xi(2) for every monomial rn N, if xf llm and < j then ()km N for every

k <p . and
(3) maj-di lj) c_ li) for every < j.

Bayer proved Proposition 6 in the case of F S and p 0 [Ba].

Definition 7. A submodule N

___
F is a Borel-fixed submodule if N is fixed by B.

A submodule N c_ F is a standard Borel-fixed submodule if N satisfies conditions
(1) and (3) of Proposition 6 and furthermore for every monomial mei N, if xj Im
then X’mei N for every < j.

xi

A standard Borel-fixed submodule is Borel-fixed. If the characteristic of k is zero,
then every Borel-fixed submodule is standard. A Borel-fixed submodule which is
not standard is called nonstandard. If p > 0 then an example of a nonstandard
Borel-fixed ideal is (xf, x). In most places in the literature, the definition of a
"standard Borel-fixed" ideal is used as a definition for a "Borel-fixed" ideal. This
creates difficulties if we work in positive characteristic since then there are many
ideals fixed by the action of the Borel group which do not fit this definition.
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PROPOSITION 8. If N is a Borel-fixed submodule then the codimension of N is
equal to the codimension of Ir) where Ir) is as in Proposition 6. If lr) 5 0 and k is
the highest index such that lr) has a generator oftheform x, then the codimension

of lr) is k. If lr) 0 then the codimension of lr) is O.

PROPOSITION 9. lfN is a Borel-fixed submodule, then N:F rrtn N:F (Xn)x.
So, if N is generated by {x ei then N’F rrt is generated by ._--_-ei }.

Xn

PROPOSITION 10. If N is a nonzero Borel-fixed submodule and k is the highest
index such that xk divides some generator ofN, then a maximal regular sequence on

FIN is xk+ xn. In particular, the depth of FIN is n k.

4. Fans

Definitions 11. Let P k[zijk] where < < n, < k < r and < j < J
where J is sufficiently large. Let re" P S be the map given by 7r(zij) xi.

where deg deg e di LetLet F’ be a free P-module with basis e e e
7r" F’ F be the map rc’(y fiel) -i rc(fi)ei. If I c_ S is a monomial ideal,
then define I (pk), the k-polarization of I, to be the monomial ideal in P generated by

//4

{zPk(/z) HH Zijk: Xlx is a minimal generator of I}.
i=1 j=l

If N I)e @ 3 I(r)er is a monomial submodule of F, then the polarization of
N is

l(Pr)N(P) I)’)e’l @ (r) er"

Note that 7r(l Cpk)) I and 7r’(NCp)) N. If N

___
M are both monomial submod-

ules of F, then N(p) M(p). Also, I (pk) is a radical monomial ideal. Geometrically,
the map P/I(p) S/I gives a representation of the scheme Proj S/I as a special
plane section ofProj P/I CPt), which is a union ofreduced coordinate planes in a large
projective space.

PROPOSITION 12. The kernel of Tr" P -- S is generated by {Zijk Zilk}. If N
is a monomial submodule of F, then these generators form a regular sequence on
F’/N(p).

Proof.
statement,

The first statement is clear from the definition of zr. For the second

F’/N(p) P/I)’)(-dl) )"" P/IrP)r) (-dr).



570 KEITH PARDUE

P/I (ps) for < s < r.So, we need to see that {Zijk Zilk} is a regular sequence on (.)

Since I{’) is generated by monomials in the variables {zi.i,}, we only need to see

that {zi,is Zil.} is a regular sequence on P/I((sP)". This is a theorem of Fr6berg and
Weyman. See [Fr] or Proposition 111.5 of [Pa] for a proof, r--1

Now we will replace the special plane section by a general plane section.

Definitions 13. Let L {’ijk} be a collection of linear forms in S where i, j and
k vary as for the indices ofzijk. Define a" P -- S to be the map given by a(zijk)
eijk. Define a{" F’ F to be the map given by a(Y 3ei) Yi a(3)ei. In
particular if ’ijk Xi, then a Jr and cr Jr’. Let 12 (S1) Jr be the affine space
of all such collections of linear forms.

PROPOSITION 14. If L {’ijk} is a generic collection of linear forms in S1 as

above, and N is a monomial submodule of F, then the kernel ofa is generated by
linearforms in P which are a regular sequence on F’/N(p).

Proof. It is clear that the kernel of a is generated by linear forms. The kernel
of a is generated by linear forms which are a regular sequence on F’/N(p) if and
only if Tor] (P/kera, F’/N(p)) 0 for all > 0. This is an open property on/2.

By Proposition 12 above, {zij zi} has this property. So for generic L, kercr is
generated by a sequence of linear forms regular on F’/N(p) 1-]

COROLLARY 15. If L {ijk} is a generic collection of linear forms in S as
above, and N is a monomial submodule of F, then the graded Betti numbers of
FIN and of F/cr{(N(p)) are the same. Also, the Hilbert functions of FIN and of
F/a(N(p)) are the same.

Proof. By Propositions 12 and 14, the kernels of Jr and of a are generated by
sequences of linear forms which are regular on F’/N(p). These sequences of linear
forms are clearly also regular on P, since the image of P is an integral domain in both
cases. But F/Jr’(N(p)) F’/N(p) @p P/kerjr and F/cr(N(p)) F’/N(p) @p
P/ ker a. Thus, the graded Betti numbers of F/Jr’(N(p)) FIN and ofF/a(N(p))
are the same as those of F’/N(p), and are thus the same as those of each other. The
Hilbert function of a module is the alternating sum of the Hilbert functions in the
terms of a resolution of the module. Since FIN and F/a(N(p)) have the same
graded Betti numbers, the modules in the kth step of the free resolution of each are
isomorphic. Thus, F/N and F/a(N(p)) have the same Hilbert function. V1

5. The operations q and

Definitions 16. Let L be a generic set of linear forms in S as above. Let U (F) be
the subgroup of GL(F) consisting of graded S-linear automorphisms of F sending
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each ei to ei + j<i fijej. Let ?, be a generic element of U(F). If N is a monomial

submodule of F, then define q(N) in(y(cr(N(P))) and define *(N) to be the
saturation of 4(N). Define 4 (N) and ,s (N) to be the s-fold applications of q and
*toN.

We will see in Proposition 18 that 4 does not depend on the particular choice of L
and ?,. So 4 and are well defined.

Definitions 17. A monomial of/e Fa is an element of the form m l/x .../x me
where each m is a monomial of Fa and m > > me in lexicographic order. The
monomials of/e Fa form a basis of/e Fa. The lexicographic order on monomials

of/ F is the order in which m/x... > nl/x.../xne iffor some s we have that

m. > ns in lexicographic order and mi ni for < s. If f 6/e F is not zero, then
define the initial term of f, denoted by in(f), to be the lexicographically greatest
monomial to occur with nonzero coefficient when f is written as a linear combination
of monomials. Note that the monomials of/e Fa are in one to one correspondence
with monomial subspaces of F of dimension e; a monomial subspace V c_ Fd
corresponds to the wedge product of the monomials in its basis. So, we may interpret
the lexicographic order on monomials of/e F as an order on monomial subspaces
of F of dimension e. Extend this order to an order on all monomial subspaces of Fa
by saying that V > W if dim V > dim W.

PROPOSITION 18. Let N be a monomial submodule ofF. Let . be as in Definition
and put the Zariski topology on U F). Then there is a nonempty open set
c_ . U(F) such that if(L, ,) and (L0, ?’0) U(F), thenfor every d,

in(,(o-(NP)))) > in(9/0(o-0(NP)))).

Proof. First, we will see that there is an open set which works for a fixed
degree d. Then we will see that ["] d is open and nonempty.

Say that the dimension of N is e. Let V be the greatest monomial subspace, in
lexicographic order, of F to occur as in(,(r(NP)))) for any (L, ?’) . U(F)
and choose a (L, q) which gives V in this way. Note that V has dimension . There
aree monomials n, ne Np) such that {, (or{, (ni))} span q (r, (NP))). Let
m me be a monomial basis of V. Let M be the subspace of/e Fa spanned by
the monomial m/ .../ me and let M’ be the complimentary monomial subspace
so that/e F M M’. Consider the composition of algebraic maps

.x U F)-- A Fd-- M

where the first map takes (L, ?,) to ?,(r(nl))/.../ ,(cr(ne)), and the second is

the projection of/e Fe onto its summand M. The image of (L, ?,) is not zero if
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and only if {9/(o-(ni))} are linearly independent and m/x .../x me is a monomial
of 9/(r(nl))/x .../x 9/(r{(ne)). This happens if and only if the set {9/(o’(ni))} is
a basis of 9/(r{(N(P)))d and, since no earlier term can ever occur, the initial term of
9/(o(nl))/x.../x 9/(cr(ne))is m /x.../x me so that V in(9/(r(N(P)))d). So,
the image of (Ll, 9/1) in M is nonzero. Since the map is algebraic, there is an open
set d

_
U(F) such that the image is nonzero for (L, 9/) 6 d.

Let [’-’ld d. We only need to see that is open and nonempty. Let Vd Fd
be the unique monomial subspace arising as in(9/(r(NP)))d) for (L, 9/) 6 d. Let
H

_
F be the submodule generated by all of the Vd. Since F is Noetherian, there is a

number D such that H is generated in degrees d < D. Let
7-/then for every d < D, in(9/(r{(NP)))d) Vd. In particular, for d < D, we have
that SVd- Vd so that Hd Vd. Thus in degrees d < D, H and in(9/(cr(NP))))
agree. Since H has no generators in higher degree, H

_
in(9/(r(NP)))). But, for

d > D, the dimension of Hd is at least the dimension of Vd which, for generic (L, 9/),
is the same as the dimension of in(9/(r{(N(P))))d. Thus Hd Vd and 7-/ is
open and nonempty.

Since (L, 9/) 6 is generic, it follows immediately that 4 is well defined. Thus
is well defined as well. In the next proposition I summarize the main elementary

properties of q and .
PROPOSITION 19. Let N C F be a monomial submodule and let and be as

above. Then:

(1) (N) is a Borel-fixed submodule.
(2) F/q(N) has the same Hilbertfunction as FIN.
(3) q(N)d > Nd for every d.
(4) If L is a lexicographic submodule, then qb(L) L.
(5) IfM is a monomial submodule ofF containing N then qb(N) c_ (M).
(6) (I)(N) is a saturated Borel-fixed submodule.
(7) F/(N) has the same Hilbertpolynomial as FIN.
(8) (pS(N) bS(N):F rrt.
(9) (N) dI)(N:F m).

Proof. (1) If (L, 9/) is generic, then 9/(o’(N(P))) is in generic coordinates. 4)(N)
is the submodule of initial terms of 9/((r{ (N(P))) and is Borel-fixed by Proposition 4.

(2) This follows from Corollary 15.
(3) This follows from Proposition 18.
(4) A lexicographic subspace of Fd is maximal among monomial subspaces of the

same dimension with respect to lexicographic order. So, this statement follows from
(2) and (3).

(5) If N c_ M then N(p) C_ M(P). For generic (L,

qb(N) in(9/ (cr (N(P)))) c_ in(9/ (cr (M(P)))) qb(M).
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(6) The saturation of a Borel-fixed submodule is also Borel-fixed, so this follows
from (1).

(7) This follows from (2).
(8) From (5) we know that s (N)

_
p’ (N). But the quotient modules have the

same Hilbert polynomial and s(N) is saturated. So, the saturation of ps (N) must
be ’ (N).

(9) From (5) we know that 4,(N)

_
P(N:F rn). Since their quotient modules

have the same Hilbert polynomial, they must have the same saturation. [3

6. Moving to L

The main result of this section, Proposition 30, is that for e sufficiently large,
pe (N) is a lexicographic submodule. The main results of this paper, Theorems 31
and 35, will follow easily. Before proving that tp (N) is lexicographic, it is necessary
to prove that e(N) is a saturated lexicographic submodule. My proof of this is based
on Reeves’ argument in [Re ], [Re2].

There are two major differences between my argument and Reeves’. The first is
that there are additional arguments needed to work with submodules of free modules,
rather than with ideals. The second is that Reeves’ argument was restricted to char-
acteristic zero by her reliance on an interesting algorithm which she wrote to find the
components of a fan associated to a standard Borel-fixed ideal. I replace this part
of her argument with a more primitive analysis using Hartshorne’s description of the
minimal primes of the polarization of a monomial ideal, on which her algorithm is
based.

I will start by stating Hartshorne’s criterion, rewritten for monomial submodules
of F.

PROPOSITION 20. lfN ll)el @. . l(r)er is a monomial submodule ofF, then
N(p) has an irredundantprimary decomposition as the intersection ofthe submodules

Pel Pek-i 3 (Zijk Zi,jsl)ek @ Pe+ @ Per F’

where

(1) I) - S,
(2) 0 _< s < n,
(3) il <... < iL,
(4) I) c_ (xiJ xS and

(5) no proper subset of {xiJ xJs generates an ideal containing Ik).

Also, ifN is Borel-fixed, then we always have it t.

Proof N(p) is the intersection of the submodules

Pe Pe_l I)k)
ek Pe+l Per.
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So, we only need to prove the proposition in the case r 1, which is Propositions 4.4
and 4.8 in Hartshorne [Ha]. I--1

We need good descriptions ofthe generators of saturated lexicographic submodules
and of the components of their polarizations. The notation eq was described at the
end of Section 2. From the definition of a lexicographic submodule L, it is easy
to see that if L L(1)el )... ) L(q)eq (so that L(q) k 0), then L(i) has finite
colength for every < q. So, a saturated lexicographic submodule must be of the
form L Sel ) Seq_l L(q)eq, where L(q) is a saturated lexicographic ideal.

PROPOSITION 21. LetL Se@. .Seq_l)L(q)eq beasaturatedlexicographic
submodule of F. Then there are nonnegative integers bl bs, with 0 <_ s < n,

b bk-i bk+lsuch that L is generated by el eq-1 and x xk_ xk eq for < k < s. If
L(q) has codimension c, then bl b._ 0.

Proof. In [Ba], Bayer proved for the case in which L is an ideal a stronger
statement, which we will not need, in which the exponents are interpreted in terms
of the decomposition of the Hilbert polynomial as a sum of binomial coefficients.
The first statement, which follows trivially from the case in which q 1, is easily
proved by induction on the number of generators of L(q). That s < n follows from
Proposition 9. The last statement follows from Proposition 8. [5]

COROLLARY 22. IfL is a saturated lexicographic submodule with generators as
above, then LP) is the irredundant intersection ofthe primary submodules

Pel )... Pe_l Oe Pe+l 3... @ Per

where k > q, and

Pel ... Peq_ (Zl(bl+l)q Z(t-1)(bt_+l)q, Ztuq)eq

where

(1) c<t <s,
(2) < u < bt if < s, and
(3) <u<bL+lift=s.

Proof We will use the criterion of Proposition 20. We only need to worry about

the primary decomposition of L(pq) since the rest is trivial(q)

Notethatxi L(q)fori < c. So, ifJ (x’ x/t
_

L(q),thenjl jc-1
1. Also, some power of xc is in J, so > c. If J also satisfies condition (5)
of Proposition 20, then _< s since otherwise x/’ is not required for the inclusion
J L(q). This establishes (1).
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Now we will establish the indices of the zijiq for < < 1. It is clear that
ji < bi + 1, for otherwise J would not contain L(q). If ji < bi -k- then by induction,

(X X/ (Xbl-k-1 bi-I-I-1 ji
xi-1 ,x which contains L(q) by Proposition 21.

Then, since < t, J does not satisfy condition (5) of Proposition 20. So, ji bi +
forl <i <t--1.
Now it’s easy to see that J satisfies the conditions of Proposition 20 if and only if

jt < bt if < s, and js < b + if s.

LEMMA 23. Let Icc_ S be a radical homogeneous ideal, other than 0 or m. If
the degree of the union of the irreducible components of Z(1) of codimension j is
mj, then the lexicographically last minimal generator of the generic ideal of initial
terms, Gin(I), is x’’ Xn_ lmn-I

Proof. If I S, then each mj 0 and Gin(S) S is generated by 1. Now
we will proceed by induction on the dimension of Z(I). We may assume that I is in
generic coordinates so that Gin(l) in(I).

Letd dim Z(I). Let I) be the ideal ofthe union ofthe d dimensional irreducible
components of Z(I), and let I2) be the ideal of the union of the lower dimensional
irreducible components. I I) fq I2) and we have already proved the lemma for
I2) by induction.

I has codimension n d and in(I) is Borel-fixed. So by Proposition 8, the last
minimal generator of in(I) is in the subring S’ k[xn-d- xn]. Also, since we
are using lexicographic order, (in(I)) N S’ in(/N S’). (See [Ei], Proposition 15.4.)
So the last minimal generator of in(l) is also the last minimal generator ofin(l N S’).

Now, since I is in generic coordinates, I f3 S’ is the ideal of the projection of Z(I)
onto a generic plane of dimension d + 1. So, the image of Z(ll)) is a (reducible)
hypersurface of degree m-d-1. Thus I(1) f-) S’ is generated by a homogeneous
polynomial f 6 S’ of degree mn-d-1. Since we are working in generic coordinates,
in(i) mn-a-,

n-d-
claim that I (q S’ f (I(2) A S’). This is certainly true if I(2) S. Otherwise,

since all of the components of Z(I) remain distinct under our projection, f is not in
any associated prime of I(2) O S’ and I S’ fS’ (I(2) (3 S’) f(l(2) f-) S’).

It follows that in(/ S’) -m,_a_
in(I2) (q S’). The last minimal generator ofXn-d-

mn-d mn-Iin(l2) S’) is x_a .xn_ So, the last minimal generator of in(/ S’), and thus
of in(I), is x,-m,__,_a_ "x-m,__ and we are done.

PROPOSITION 24. If N N(1)el N(q)eq F is a saturated monomial
submodule with N(i) Ofor < < q, andfor < j < n N(p) has mj compo-
nents ofcodimension j among those listed in Proposition 20, then x’’ ’’Yen-1 eq is
the lexicographically last minimal generator ofboth c(N) and (N).

Proof Note that none of the N(i) are m since N is saturated Say that N{iP) has
mij components of codimension j. Then m Zi mij. As in Definitions 13, let L
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M(pi)be a generic set of linear forms, let a oL and let a’ o’,. Let Ji) cr ("i))"
Then J(i) is a radical homogeneous ideal, not equal to 0 or m, and Z(Ji)) has mij
irreducible components of codimension j, all of which are linear

First I will show that the lexicographically last minimal generator of b(N) is
ml mn-I

X Xn- eq Note that by definition,

)4(N) in(?’(cr’(NP))) in J(i) fieee
i=1

where fii and je is a generic polynomial of degree di de for < i.
We will compute the initial submodule in two stages, the first only taking into

account the basis elements of F. To this end, if h i=k hiei E F and hk - 0,
then define in’(h) hek. (Also define in’(0) 0). If H is a submodule of F,
then define in’(H) to be the submodule of F generated by all in’(h) where h E H.
Then in’(H) K)el @... @ g(r)er where each K(i) is an ideal in S. Also,
in(H) in(in’(H)) in(K))e @... @ in(K(r))er.

Set in’(’(cr’(NP)))) K)el 3 K(q)eq. We need to see that the lexico-
graphically last minimal generator of in(Kq)) is x,... Xn-1-m,_,. First, I claim that
K(q) J(1) N O J(q). The general element of ?’(cr’(N(P))) is of the form

h Z gi Z fieee gi fie ee
i=1 e=l e=l

where gi J(i). Say that in’(h) 6 K(q)eq. Then in’(h) gqeq and Y=e gi fie 0
for < q. This implies that ge otegq where cte is inductively defined by O/q
and ore --/q=e+ ifie for < e < q 1. So gq Je)" ore. But ore is a
generic polynomial of degree dq de. (In fact, de is the sum of -fqe and other
terms of the same degree, and fqe is generic.) Since m is not an associated prime of
J(e), we have that J{e)" ore J{e). Thus in’(h) gqeq (J(1) O... O J(q))eq and
J{) f-) J(q) K(q).

For the opposite inclusion, let g J{) J(q). For < < q let ti be as in

the last paragraph and let gi Olig. Then gi J(i). Let h Y/q=l gi Yie=l f/eee 6

?’(a’(N{P))). By the choice ofoti, we see that in’(h)= gqeq- geq. So g K(q).
Now Z(J(1) f-) f-) J(q)) .-J/q=l Z(J(i)) and since no component of one Z(J(i))

contains a component of another, Z(J{) ... J(q)) has mj components of codimen-
sion j, all of which are linear. Lemma 23 tells us that the last minimal generator of
in(J(1) f-) J(q)) is x’’ m,,_,

xn-1 So the lexicographically last minimal generator
of tp(N) is x’’ m._,

Xn- eq
Let x"e be a minimal generator of (N). Then by Proposition 9, p(N) has a

u .Ifx m,_minimal generator of the form x x,, es Xn- eq precedes xue, lexicographi-
k which is a contradiction. There must be a minimalcally, then it also precedes x xn es,

generator xZeq of (N) such that xu divides x’ "n-l-m._. If xu properly divides

Xrl mn-I then xlZeq comes after x’ mn-i
Xn-- "n--1 eq lexicographically, contradicting
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what was just proved. Thus x’’ mn-,
.’Xn_ eq is a minimal generator of ,(N) and is

the lexicographically last one. Fq

COROLLARY 25. If N N(l)e @ @ N(q)eq F is a saturated monomial
submodule with N(j) =/= Ofor < j < q, and Np) has mj components ofcodimension
j for < j < n 1, then the following submodules of F’ are among the primary
components of(N)p) described in Proposition 20:

Pe ... Peq_l (Zl(m+l)q Z(t-1)(mt_+l)q, Ztuq)eq

where codim(Nq)) _< < n and < u < mr.

Proof Let (N) I)e @... @ I(q)eq. By the last proposition, the lexico-
graphically last minimal generator of l(q) is x’ mn-I...Xn_ By Proposition 20, we

need to see that J (xn’+ XT_t ’+1, x)
_

I(q) and that for each generator of
J there is some monomial of l(q) which is divisible by that generator and no other.
If J I(q) then let x be a monomial in l(q), but not in J. Then iJi <_ mi for
< and #t < u < mt. So, if x is a minimal generator of I(q) dividing x then

X < XrC Xn--1-mn-, in lexicographic order. This contradicts that x’’ Xn-lmn-’ is the
lexicographically last minimal generator of I(q).
Now I will show that every generator of J is essential, l(q) is Borel-fixed and

ml mn-I n--1x "’’Xn_ E l(q). For every k < let Ek Yi=k mi. Then

xlZ x?l mk-I Ek
Xk_ Xk I(q)

by Proposition 6. The monomial xx is divisible only by the kth generator
of J. [2]

LEMMA 26. If N() G f3 H() and N(2) G fq H(2 are submodules of F, the
Hilbertpolynomials ofF/N() and F/N(2) are the same, the codimension ofG + H(1)
is greater than the codimension of H(), and the codimension ofG + H(2) is greater
than the codimension of H(2), then H() and H(2) have the same codimension and
multiplicity.

Proof We need to see that the Hilbert polynomials of F/H() and F/H(2) have
the same degree and leading coefficient. From the short exact sequence

0 F/Ni) FIG ( F/H(i) F/(G + n(i)) -- 0

we see that PF/H(i(Z) PF/N(i)(Z) -]- pF/(G+H(i))(Z) PF/G(Z). Because of the
hypothesis on codimensions, the highest degree term of PF/Hi)(Z) is the same as that
of PF/Ni)(Z) PF/G(Z), which is the same for and 2.
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PROPOSITION 27. If N C_ F is a saturated monomial submodule, F/N has
Hilbert polynomial p(z) of degree d, and L c_ F is the saturated lexicographic
submodule such that F/L has Hilbert polynomial p(z), then d+ (N) L.

Proof. In this proof, we only consider primary components such as those given
in Proposition 20. Each of these components has multiplicity one. We need to see
that if the primary components of N(p) and L (p) agree in codimensions less than c,
then the primary components of (N)(p) and L(p) agree in codimensions less than
c + 1. Since all of the components of N(p) and L (p) have codimensions between
n d and n 1, the theorem will follow.

If N(p) and L(p) have the same primary components in codimensions less than c,
then set G to be the intersection of these components. Lemma 26 shows that N(p) and
L(P) have the same number of primary components of codimension c. A comparison
of the components of (N)(p) listed in Corollary 25 and the components of L (p)

listed in Corollary 22 shows that the components of LP) of codimension less than or
equal to c are among the components of (N)(p). (Note that bj mj for j < c.) By
applying Lemma 26 inductively on the codimensions of these components, we see
that dP(N) (p) has no more components of codimension less than or equal to c than
the components of L(p), and we are done. I3

need a few more simple facts about standard Borel-fixed submodules of F before
proving the main proposition of this section.

LEMMA 28. IfN is a standard Borel-fixed submodule of F generated in degree
d, then (N:F rn)d N.

Proof. If the generators of N are {x ei then, by Proposition 9, a set of generators
" rn in degree d are of the formfor I" rn is {..-7-_-_ei}. So the monomials of N" F

XlZ el. But these are in N by the standard Borel-fixed property. 13

COROLLARY 29. If N is a standard Borel-fixed submodule of F generated in
degree d and is not lexicographic, then Ne is not lexicographicfor any e > d.

Proof If Ne is lexicographic then SNe is a lexicographic submodule of F and
SNe’F rn, which is equal to N:F rn, is lexicographic as well. Then, byLemma
28, Na is lexicographic and N is lexicographic, which is a contradiction. 13

PROPOSITION 30. IfN is a monomial submodule ofF and L is the lexicographic
submodule with the same Hilbertfunction, thenfor e >> 0, I (N) t.

Proof. By Proposition 27, (I)f (N) is a saturated lexicographic submodule for
large enough f. But since f(N) bf(N):F rrt, qSf(N) is lexicographic in high
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degrees. So we may assume that N is Borel-fixed and lexicographic in high degrees.
If Nd is lexicographic then p(N), Nd. What we must prove is that if N is not
lexicographic then p(N)a > Nd. Then for large enough e, (e (N) is lexicographic in
all degrees.

Say that Nd is not lexicographic and let G SNa. Then, since G
tp(N). Since they have the same dimension in degree d, p(G)e p(N),. So, we
only need to see that tp (G) > Gd.

Note that G is a Borel-fixed submodule of F. First, assume that G is not a
standard Borel-fixed submodule. By Proposition 18, we only need to see that there
is some L such that in(o’ (G(P)))d > Gd. Say that the monomial generators of G are

mlek(1) mtek(t) where mlek(1) > > mtek(t). Let s > 2 be the smallest index
such that mlek(1) mse,,) do not generate a standard Borel-fixed submodule.
So, m lek(1) ms-le/(s-1) satisfy the standard Borel-fixed property and there is a
variable Xb dividing m. and a < b such that Xm,e,,) . G. For each u 6 k let

Pu" P -- S and p’," F’ -- F be the homomorphisms sending Zbl,,,) to ux, + Xb and
sending every other Zijk to X and every ei to ei. Since P0 7r has a kernel generated
by a regular sequence on F’/G(p), for generic u the kernel of p, is generated by
a regular sequence on F’/G(p) Then plu(G(P))d is spanned by me,l) mte,t
where mq uXmq -+-mq if Xb]mq and k(q) k(s), and mq mq otherwise. It is

Xb

easy to see that m’le, mte,t are linearly independent and that if u - 0 then

mle,), m,_es_, me, in(pu(GP)))d so that’In(pu’ (GP)))d > Gd.
Xb

Now assume that G is a standard Borel-fixed submodule, but is not lexicographic.
By part (3) of Proposition 19, we only need to see that dpe(G)d A G for some e > 0.
But, for e >> 0, (I)e(G) is lexicographic. So (D (G) is lexicographic in high degrees
By Corollary 29, G is not lexicographic in high degrees. Therefore t (a) G. If
nonetheless dpe(G)d Gd then, since G is generated in degree d, e(G) properly
contains G. But this is impossible because they have the same Hilbert function. So
(pe(G)d Gd. []

7. Betti numbers

In this section I prove that the quotient of F by the lexicographic submodule has
the largest graded Betti numbers of any quotient module of F with a given Hilbert
function. Then, after some definitions and a lemma, I derive the analogous results
for modules over regular local rings.

THEOREM 31. IfN c_ F is a graded submodule ofa gradedfree module over a
polynomial ring over any field, and L c_ F is a lexicographic submodule such that
F/N and F/L have the same Hilbertfunction, then the graded Betti numbers ofF/N
are no greater than those of F/L.

Proof Since extending the ground field is a faithfully flat functor, we may assume
that the field is infinite. Graded Betti numbers are homological invariants and are thus
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upper-semicontinuous in fiat families. In the fiat family taking F/N to F in(N),
every fiber is isomorphic to F!N except for F! in(N). Thus, the graded Betti numbers
of F! in(N) are at least as large as those of FIN and we may assume from the
beginning that N is a monomial submodule. By Proposition 30, we only need to see
that the graded Betti numbers of FIN are no greater than the graded Betti numbers
of F/(N). But 4(N) in(y(r((N(P)))) for generic y and L and so it suffices to
see that the graded Betti numbers of F/N and of F/7(r(N(P))) are the same. But
F/7(cr(N(P))) is isomorphic to F/r(N(p)) which we saw to have the same graded
Betti numbers as F/N in Corollary 15. D

In order to state the analogous theorems for regular local rings, I must first state
the relevant definitions. Let R be a regular local ring with maximal ideal m and
residue field k R/re. Fix a minimal system of generators X xn of m. Let
F be a free R-module with a fixed basis el er. Define monomials of F, the
lexicographic order on these monomials, and monomial submodules of F exactly
as for the polynomial ring case. A lexicographic submodule L of F is a monomial
submodule such that if xtZei E L, x vej > xtZei in lexicographic order and xu and x
have the same degree, then x E L as well. Let fli(F/M) be the ith Betti number of

FM, which is the rank of the ith free module in a minimal free resolution of F/M.
Let S grm R k[2-i- 2-], and F grm F, where is the class of xi

modulo m2, and is a free S-module with basis r, the residue classes of
ei modulo inF. If M F is a monomial submodule generated by {xZei}, then
grm(F/M F/M where M is generated by {2-ui}.

The Hilbert function of a finitely generated R-module is, by definition, the Hilbert
function of its associated graded module. (See, for example, Chapter 5 of [Ei].) From
the last paragraph and Proposition 2, it follows that for any submodule M

_
F, there

is a lexicographic submodule L

___
F such that F/M and F/L have the same Hilbert

function.

LEMMA 32. Let M c__ F be a submodule. Then i(F/M) < i(F/M). IfM is
a monomial submodule, then Ii(F/M) i(F/M).

Proof The first statement is a special case of Corollary 3.2 of [HeRoVa].
Let Q R[yl yn] and F’ F (R)R Q. If M is generated by {xUei }, then let

M’ be the submodule of F’ generated by the monomials {yU (ei @ 1)}. Since M’ is
homogeneous and R is a local ring, the Betti numbers

i(F’/M’) dimR/m ToriQ (F’/M’, Q/m + (yl Yn))

are well defined. Note that Q/(Xl Xn) k[yl y] S while (F’/M’) (R)Q
Q/(Xl Xn) F/M. Furthermore, X xn is a regular sequence on Q and on
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F’/M’. So, i(F’/M’) i(F/M). On the other hand, Yl Xl Yn Xn is also
a regular sequence on Q and on F’/M’, and Q/(Yi Xi) R while (F’/M’) (R) a
Q/(yi xi) ElM. So, fli(F’/M’) fli(F/M). !--]

COROLLARY 33. Let R be a regular local ring and F be afinitely generatedfree
module as above. Let M c_ F be a submodule and let L c_ F be the lexicographic
submodule such that F/M and F/L have the same Hilbertfunction. Then ii (F/M) <

i(F/L) for every i.

Proof By Theorem 31 and Lemma 32 we have

fli(F/M) <_ fli(F/M) <_ fli(F/L) fli(F/L).

8. Deformations

In this section study the deformation classes of quotient modules of a free graded
S-module F and the deformation classes of quotient sheaves of the sheafification of
F, a direct sum of line bundles on I?-1. Theorem 34, which follows easily from
Proposition 30, says that the deformation classes of quotient modules of F are the
sets of quotient modules with a fixed Hilbert function. Theorem 36 says that the
deformation classes of quotient sheaves of a direct sum of line bundles are the sets of
quotient sheaves with a fixed Hilbert polynomial; furthermore, bound the number
of deformations over A required to take one coherent sheaf to another with the same
Hilbert polynomial.
A deformation of quotient modules of F over A is a graded quotient module

/3/ of the S[t]-free module [" F (R)s Sit], where is a new variable of degree
0, such that F/N is flat as a k[t]-module. If c E k, then thefiber over ot of the
deformation is the S-module (P/) (P/) (R)k[t]_ (k[t]/(t or)). For any two
or,/ E k,/// is a deformationfrom (/1) to ([’/N),. Since/// is graded and
flat over kit], in each degree ([’/)d is a free k [t]-module of finite rank. So, any two
fibers of a deformation over A must have the same Hilbert function.

Now, I will show how to construct a sequence of deformations over A between
any two quotient modules of F with the same Hilbert function. It suffices to deform
F/N to F/L, where L is the unique lexicographic submodule of F such that F/N
and F/L have the same Hilbert function.

It is well known that there is a deformation over A taking FIN to F/in(N). That
is, there is a module F (R)s Sit] such that (F (R)s S[t])/l is free over kit], the
fiber over is isomorphic to F/N, and the fiber over 0 is F in(N). See
Theorem 15.7 of [E] for a full description of this deformation in the case F S; the
generalization to an arbitrary free graded S-module is immediate.

So, we may assume that N is a monomial submodule of F. In light of Proposi-
tion 30, it is enough to find a sequence of deformations from F/N to F/(N). We
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may deform F/N to F/dp(N) in two steps. Let/2 be as in Definition 13. Let L 6

be a generic collection of linear forms and let L0 be the collection of linear forms
’ijk Xi. Then from an affine line A, _/2 containing L0 and L, we may construct
a deformation from F/N F/Oo(N(P) to F/r(N(P)). Then, as above, there is

a deformation from F/cr(N(p)) to F/in(ty(N(P))) F/(N). This proves the
following theorem.

THEOREM 34. IfF is afinitely generatedfree S-module, where S is a polynomial
ring over an infinite field k, and F/M and F/N are graded quotient modules of F,
then there is a sequence ofdeformationsfrom F/M to F/N, each ofwhich is defined
over Al, ifand only if F/M and F/N have the same Hilbertfunction.

The construction of the sequence of deformations from F/N to F/qb(N) can be
refined so that only one deformation is needed to get from F/N to F/dp(N). I use
this more efficient deformation in the proof of Theorem 36. The existence of this
deformation follows from a more general construction.

Let A k[yl Ym] be the coordinate ring of A’, and let S’ S (R) A be the
coordinate ring of A" ?-1., S’ is a graded ring in which each xi has degree and
each Yi has degree 0. Let F’ F (R) A, a free S’-module. A monomial of F’ is an
element of the form m (R) a where m is a monomial of F and a 6 A. An element

f 6 F may be uniquely written as Yi mi (R) ai where the mi are distinct monomials.
The initial term of f is the term mi (R) ai for which mi is lexicographically maximal
among those mi such that ai O. If N’

_
F’ is a graded submodule, then let in(N’)

be the submodule of F’ generated by the initial terms of elements of N’. As above,
there is a submodule ’ c_ F’ (R)a A[t] such that (F’ (R)a A[t])/’ is free over kit],
the fiber over is isomorphic to F’/N’, and the fiber over 0 is F’/in(N’).

The computation of initial submodules commutes with tensoring with a residue
field k(p) for most prime ideals p in A. Specifically, say that in(N’) is generated by
the finite set {ml (R) al m. (R) a,,.} and let a be the product of al a.. If we
write M(p) for the image of a submodule M of F’ in F’ (R)a k(l), then whenever
a t p we have that in(N’)(p) in(N’(p)). This monomial submodule of F’ (R)A k(]3)
is generated by the monomials m ms. See Chapter of [Pa] for a more general
discussion of this principle.

Since k is an infinite field, the k-rational points in A" are dense. Let P1 and P2
be two k-rational points of A’ and let P and ]32 be the corresponding maximal ideals
in A. Assume also that a ]32 and that N’(pl) and N’(p2) have the same Hilbert
function. This Hilbert function is shared by N’(O) for a dense set of p, in particular
for those p which do not contain a. Viewing (F’ (R)a A[t])/N’ as a deformation of
quotient modules over Spee A[t] A’ A, the fiber over (P1, 1) is F/N’(pl),
while the fiber over (P2, 0) is F in(N’(p2)). Choose an affine line T in A’ A
containing the points (P, 1) and (P2, 0).
A family of graded modules over an open subset of T is flat if and only if every

fiber has the same Hilbert function. This is the case for an open subset of T containing
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(P, 1) and (P2, 0). But, such a flat family over an open subset of T may always be
completed to a flat family over all of T, with all of the fibers quotients of the original
free module. (See Proposition II-25 of [EiHa], which gives the local construction of
this family in the case F S; the general case is the same.) Thus, there is a flat
family over T whose fibers over k-rational points are quotient modules of F, such
that the fiber over is F/N’(pl), and whose fiber over 0 is F in(N’(p2)).

From this general construction, we get the following proposition.

PROPOSITION 35. Let N be a monomial submodule of F. Then there is a flat
family over T ofquotient modules of F such that thefiber over is F/N and the

fiber over 0 is F/qb(N).

Proof The affine space in the construction above is E U (F) where U (F) is
the unipotent subgroup of GL(F) and/2 is the space of sets of linear forms from
Definition 13. N’ is the submodule of F’ such that if p is the maximal ideal corre-
sponding to the point (L, ,) then N’(p) ’(o’L(N(P))). Let p be the maximal ideal
of the pair {L0, where L0 is the collection of linear forms .ijk Xi and is the
identity element of U(F). Let 2 be the maximal ideal corresponding to a general
pair {L, /}. Then the construction above gives the desired deformation. []

THEOREM 36. If E [i=10?(-di) is a direct sum of line bundles over I?
nk-1, where k is an infinite field, and E/A/" is a quotient sheafofE with Hilbert poly-
nomial p(z) ofdegree d, then there is a sequence ofd + 2 deformations, all defined
over A, taking E/AF to /., where . is a lexicographic subsheafofg. In particular
Quotpz) (E) is linearly connected, and there is a sequence of no more than 2d + 4

deformations over Al taking any coherent sheafover I? with Hilbert polynomial p(z)
to any other.

Proof. E, A/’, and E are the sheafifications of a free S-module F, a submodule
N and a lexicographic submodule L. The first deformation takes F/N to F in(N).
Then, this theorem follows from Propositions 27 and 35 and part (8) of Proposition
19. U]

See [Gr] for the definition and construction of quot schemes. Baptista de Campos
showed in [BdC] that Quotpz) (O) is connected, but not that it is linearly connected.
In a slightly different direction, Sositaisvili showed in [So] that the Hilbert scheme
of a nongraded local artinian ring is linearly connected.

It would be interesting to know if it is possible to construct deformations between
modules over a regular local ring R which have the same Hilbert function. The tech-
niques of this paper may be used to prove that there is a sequence of deformations
between any two finitely generated R-modules with the same Hilbert function so long
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as one can construct deformations from R/I to R/J where J is a monomial ideal.
This is the case if R is a power series ring, or a convergent power series ring. It would
be useful to have such deformations in general.
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