CONFORMAL MOTION OF CONTACT MANIFOLDS WITH CHARACTERISTIC VECTOR FIELD IN THE k-NULLITY DISTRIBUTION

RAMESH SHARMA AND DAVID E. BLAIR

Dedicated to the memory of Professor Kentaro Yano

1. Introduction

It is known (see for example, [17]) that if an m-dimensional Riemannian manifold admits a maximal, i.e., an (m+1)(m+2)/2-parameter group of conformal motions, then it is conformally flat. It is also known [9] that a conformally flat Sasakian (normal contact metric) manifold is of constant curvature 1. This shows that the existence of maximal conformal group places a severe restriction on the Sasakian manifold. Thus one is led to examine the effect of the existence of a single 1-parameter group of conformal motions on a Sasakian manifold. All the transformations considered in this paper are infinitesimal. Okumura [10] proved that a non-isometric conformal motion of a Sasakian manifold M of dimension 2n + 1 (n > 1) is special concircular and hence if, in addition, M is complete and connected then it is isometric to a unit sphere. The proof is based on Obata's theorem [8]: "Let M be a complete connected Riemannian manifold of dimension m > 1. In order for M to admit a non-trivial solution ρ of the system of partial differential equations $\nabla \nabla \rho = -c^2 \rho g$ (c = a constant > 0), it is necessary and sufficient that M be isometric to a unit sphere of radius 1/c." The purpose of this paper is (i) to extend Okumura's result to dimension 3 and (ii) to study conformal motion of the more general class of contact metric manifolds (M, η, ξ, ϕ, g) satisfying the condition that the characteristic vector field ξ belongs to the k-nullity distribution N(k): $p \to N_p(k) = \{Z \text{ in } T_pM : R(X,Y)Z = X\}$ k(g(Y, Z)X - g(X, Z)Y) for any X, Y in T_pM and a real number k} (see Tanno [15]). For k = 1, M is Sasakian. For k = 0, M is flat in dimension 3 and in dimension 2n+1>3, it is locally the Riemannian product $E^{n+1}\times S^n(4)$ (see Blair [3]). We say that a vector field v on M is an infinitesimal contact transformation [12] if $\mathfrak{L}_v \eta = f \eta$ for some function f where £ denotes the Lie-derivative operator. We also say that a vector field v on M is an automorphism of the contact metric structure if v leaves all the structure tensors η, ξ, ϕ, g invariant (see [13]).

Received May 5, 1995

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C25; Secondary 53C15. Research of R. Sharma supported in part by a University of New Haven Faculty Fellowship.

THEOREM 1. Let v be a non-isometric conformal motion on a Sasakian 3-manifold M.

- (A) If the scalar curvature of M is constant, then M is of constant curvature 1 and v is special concircular.
- (B) If v is an infinitesimal contact transformation, then v is special concircular.

Hence in either case, if in addition, M is complete and connected, then it is isometric to a unit sphere.

In view of Watanabe's result [16] that a Sasakian 3-manifold is locally ϕ -symmetric if and only if its scalar curvature is constant and Theorem 1 we obtain the following corollary.

COROLLARY. Among all complete and simply connected ϕ -symmetric Sasakian 3-manifolds only the unit 3-sphere admits a non-isometric conformal motion.

Remark. For a Sasakian 3-manifold we know that the scalar curvature R = 4 + 2H, where H is the ϕ -sectional curvature (i.e., the sectional curvature of plane section orthogonal to ξ). So in Theorem 1 (part (A)) we could equivalently assume H constant instead of R constant.

THEOREM 2. Let M^{2n+1} be a contact metric manifold with ξ in N(k) and v a conformal motion on M^{2n+1} . For n>1, M is either Sasakian or v is Killing. In the second case v is an automorphism of the contact metric structure except when k=0. Further for k=0, a Killing vector field orthogonal to ξ cannot be an infinitesimal automorphism of the associated contact metric structure. For n=1, M is either flat or Sasakian or v is an automorphism of the contact metric structure.

Remark. Theorem 2 shows that the existence of a non-isometric conformal motion on contact metric manifolds M with ξ in N(k) singles out those with k = 1, i.e., Sasakian manifolds.

COROLLARY. Let M be a contact metric manifold of dimension ≥ 5 with ξ in N(k), $k \neq 0$. If M admits a vector field leaving the Riemann curvature tensor of type (1,3) invariant then v is an automorphism of the contact metric structure.

2. Preliminaries

A differentiable (2n+1)-dimensional manifold M is called a contact manifold if it carries a global 1-form η such that $\eta \wedge (d\eta)^n \neq 0$ everywhere on M. It is well known that given η there exists a unique vector field ξ (called the characteristic vector field)

such that $(d\eta)(\xi, X) = 0$ and $\eta(\xi) = 1$. Polarizing $d\eta$ on the contact subbundle $\eta = 0$, one obtains a Riemannian metric g and a (1, 1)-tensor field ϕ such that

(2.1)
$$(d\eta)(X,Y) = g(\phi X,Y), \eta(X) = g(X,\xi) \text{ and } \phi^2 = -I + \eta \otimes \xi.$$

g is called an associated metric of η and (ϕ, η, ξ, g) a contact metric structure (see [2] as a general reference). Following [3] we denote the tensor $(1/2)\pounds_{\xi}\phi$ by h. h is self-adjoint and satisfies

(2.2)
$$h\xi = 0$$
, $\text{Tr} h = 0$, $\text{Tr}(h\phi) = 0$, $h\phi = -\phi h$.

The contact metric structure is called a K-contact structure if ξ is Killing. A contact metric structure is K-contact if and only if h = 0. For a contact metric manifold

$$(2.3) \nabla_X \xi = \phi X - \phi h X$$

where ∇ is the Riemannian connection of g. The contact structure on M is said to be normal if the almost complex structure on $M \times R$ defined by $J(X, fd/dt) = (\phi X - f\xi, \eta(X)d/dt)$, where f is a real-valued function, is integrable. A normal contact metric manifold is called a Sasakian manifold. Sasakian manifolds are K-contact and 3-dimensional K-contact manifolds are Sasakian. If $R(X,Y)\xi=k(\eta(Y)X-\eta(X)Y)$ for a function k on a contact metric manifold then k is constant (see [11]). This generalizes Schur's theorem on contact Riemannian manifolds. We let (x^a) be a local coordinate system on M. For a contact metric manifold (see Lemma 2.1 in [15]) $\nabla^a \nabla_a \eta^b = R_a{}^b \eta^a - 4n\eta^b$, $R_a{}^b$ denoting the Ricci operator. Since the deRham Laplacian $\Delta_{\mathrm{dR}} = d\delta + \delta d$ (δ denoting codifferential operator) acts on a vector field K as $\Delta_{\mathrm{dR}} X^a = -\nabla^b \nabla_b X^a + R_b{}^a X^b$, we obtain $\Delta_{\mathrm{dR}} \xi = 4n\xi$.

PROPOSITION. The characteristic vector field of a contact metric manifold is an eigenvector of the associated deRham Laplacian with eigenvalue 4n.

Next if ξ lies in the k-nullity distribution N(k) then

(2.4)
$$\eta_d R_{cba}{}^d = k(\eta_c g_{ba} - \eta_b g_{ca}).$$

For such manifolds we know [5] that $k \le 1$, $h^2 = (k-1)\phi^2$ and

(2.5)
$$R_a{}^b \phi_c{}^a - \phi_a{}^b R_c{}^a = 4(n-1)\phi_a{}^b h_c{}^a.$$

Furthermore following [5] and using (2.5) one can show that

(2.6)
$$\phi_{ac}R_b{}^c + (1/2)\phi^{cd}R_{cdab} = (2n - 2 + k)\phi_{ab} + 2(n - 1)\phi_{cb}h_a{}^c.$$

For k = 1, M is Sasakian. For k < 1 (see [5]) we have

(2.7)
$$R_{ab} = 2(n-1)(g_{ab} + h_{ab}) + 2(nk+1-n)\eta_a\eta_b.$$

$$(2.8) R = 2n(2n - 2 + k).$$

In dimension 3 (n = 1) the condition (2.4) is equivalent (see [6]) to

(2.9)
$$R_{ab} = (1/2)\{(R - 2k)g_{ab} + (6k - R)\eta_a\eta_b\}.$$

Moreover contact metric 3-manifold satisfying (2.4) or (2.9) is Sasakian (k = 1), flat (k = 0), or of constant non-zero ξ -sectional curvature k < 1 and constant ϕ -sectional curvature -k (see [6]). (By ξ -sectional curvature we mean sectional curvature of a plane section containing ξ and by ϕ -sectional curvature the sectional curvature of a plane section spanned by a vector X and ϕX where X is orthogonal to ξ). In the last case M is locally isometric to a left-invariant metric on the Lie-group SU(2) for k > 0 and SL(2, R) for k < 0 (see [4]).

A vector field v in an m-dimensional Riemannian manifold (M, g) is called a conformal motion if there is a smooth scalar function ρ such that

$$\pounds_{\nu}g = 2\rho g.$$

A conformal motion defined by (2.10) satisfies (see [17])

$$\pounds_v R_{ab} = -(m-2)\nabla_a \rho_b + (\Delta \rho) g_{ab},$$

$$\pounds_{\nu}R = -2\rho R + 2(m-1)\Delta\rho,$$

where $\rho_a = \nabla_a \rho$, $\Delta \rho = -\nabla_a \rho^a$ and R is the scalar curvature. v is said to be concircular if $\nabla_a \rho_b = \sigma g_{ab}$ and special concircular if $\sigma = c_1 \rho + c_2$ where c's are constants.

3. Auxiliary Results

LEMMA 3.1 (OKUMURA [10]). For a conformal motion v and its associated function ρ on a contact metric manifold, $\eta^a \pounds_v \eta_a = \rho$.

LEMMA 3.2 (TANNO [12]). If a conformal motion v on a contact metric manifold leaves η invariant then v is an infinitesimal automorphism of the contact metric structure.

LEMMA 3.3. If on a contact metric manifold with ξ in N(k), there exist scalar functions ρ , σ and τ satisfying $\nabla_a \rho_b = \sigma g_{ab} + \tau \eta_a \eta_b$, then $\tau = 0$.

Proof. Differentiating the equation in the hypothesis gives

$$\nabla_c \nabla_b \rho_a = (\nabla_c \sigma) g_{ab} + (\nabla_c \tau) \eta_a \eta_b + \tau [(\phi_{cb} - \phi_{db} h_c^d) \eta_a + (\phi_{ca} - \phi_{da} h_c^d) \eta_b].$$

Transvecting it with ϕ^{cb} , using Ricci identities and transvecting with η^a gives $\phi^{cb}R_{cbd}{}^a\eta_a\rho^d=4n\tau$. Using (2.6) in the last equation gives $\tau=0$, completing the proof. \square

4. Proofs of the theorems

Before proving the theorems we first find some integrability conditions for (2.10) using (2.4), (2.10) and (2.11). Lie-differentiating (2.4) along v and using (2.11) gives

$$(4.1) \quad R_{cba}{}^{d} \pounds_{v} \eta_{d} = (k \pounds_{v} \eta_{c} + 2\rho k \eta_{c} + \eta_{d} \nabla_{c} \rho^{d}) g_{ab}$$
$$- (k \pounds_{v} \eta_{b} + 2k \rho \eta_{b} + \eta_{d} \nabla_{b} \rho^{d}) g_{ca} + \eta_{c} \nabla_{b} \rho_{a} - \eta_{b} \nabla_{c} \rho_{a}.$$

Transvecting it with η^c and using (2.4) we have

$$(4.2) \quad \nabla_b \rho_a = -(2k\rho + \eta^c \eta^d \nabla_c \rho_d) g_{ab} + 2k\rho \eta_a \eta_b + \eta_c (\eta_b \nabla_a \rho^c + \eta_a \nabla_b \rho^c).$$

Transvecting this with g^{ba} gives

$$(4.3) \Delta \rho = 4kn\rho + (2n-1)\eta^a \eta^b \nabla_b \rho_a.$$

Using (4.3) in (4.2),

$$(4.4) \nabla_b \rho_a = \{1/(2n-1)\}(2k\rho - \Delta\rho)g_{ab} + 2k\eta_a\eta_b + \eta_c(\eta_b\nabla_a\rho^c + \eta_a\nabla_b\rho^c).$$

Next, transvecting (4.1) with ϕ^{cb} we obtain

$$(4.5) \qquad (\phi^{cb}R_{cba}{}^d + 2k\phi_a{}^d) \pounds_v \eta_d = -2\eta^d \phi_a{}^c \nabla_c \rho_d.$$

Proof of Theorem 1. Here n = 1, k = 1 and h = 0. Use of (2.6) and (2.9) in (4.5) yields

$$(4.6) (R-6) \pounds_v \eta_a = 2\eta_c \nabla_a \rho^c + (\rho R - 6\rho - 2\eta^d \eta^c \nabla_c \rho_d) \eta_a.$$

Now applying ∇_c to (4.4), transvecting with ϕ^{cb} , using the Ricci identities, equations (2.6), (4.3) and (2.9) we obtain

(4.7)
$$\eta_c \nabla_a \rho^c = (1/6) \{ R \rho_c - 2 \nabla_c (\Delta \rho) \} \phi_a^c - (4\rho - \Delta \rho) \eta_a.$$

At this point, using the hypothesis R= constant in (2.13) we have $\rho R=2\Delta\rho$ which, on differentiation, gives $R\rho_a=2\nabla_a(\Delta\rho)$. So (4.7) yields $\eta_c\nabla_a\rho^c=(\rho/2)(R-8)\eta_a$ and (4.4) reduces to

(4.8)
$$\nabla_b \rho_a = (\rho/2)(4 - R)g_{ba} + \rho(R - 6)\eta_a \eta_b.$$

This shows by virtue of Lemma 3.3 that R=6 and hence equation (2.9) provides $R_{ab}=2g_{ab}$. Hence M is Einstein and, being 3-dimensional, is of constant curvature 1. Finally, v is special concircular from (4.8). This proves part (A). For part (B) since $\pounds_v\eta_a=f\eta_a$ and $f=\rho$, from Lemma 3.1, we have from (4.6) that $\eta_c\nabla_a\rho^c=(\eta^d\eta^c\nabla_c\rho_d)\eta_a$. Using this and (4.3) in (4.4) we obtain $\nabla_b\rho_a=(2\rho-\Delta\rho)g_{ab}+2(\Delta\rho-3\rho)\eta_a\eta_b$. Applying Lemma 3.3 immediately gives $\nabla_b\rho_a=-\rho g_{ab}$, proving part (B). Thus in either case v is special concircular. And hence, if in addition, M is complete and connected then by Obata's theorem M is isometric to a unit sphere, completing the proof. \square

Proof Of Theorem 2. First we consider n > 1. If k = 1 then M is Sasakian and hence v is special concircular by Okumura's theorem. So let k < 1. Using (2.8) in (2.13) we find

$$(4.9) \Delta \rho = (2n - 2 + k)\rho.$$

Transvecting (4.2) with h^{ab} gives

$$(4.10) h^{ab} \nabla_a \rho_b = 0.$$

As £_v $g_{ab} = 2\rho g_{ab}$ we have £_v $g^{ab} = -2\rho g^{ab}$ and hence

(4.11)
$$\pounds_{v} R^{ab} = (\pounds_{v} R_{cd}) g^{ca} g^{db} - 4\rho R^{ab}.$$

Now using (2.7) we compute

$$(4.12) R_{ab}R^{ab} = 4n[2(n-1)^2(2-k) + nk^2].$$

Hence from (4.11) we have

$$0 = \pounds_{v}(R_{ab}R^{ab}) = (\pounds_{v}R_{ab})R^{ab} + R_{ab}(\pounds_{v}R^{ab})$$

= $2(\pounds_{v}R_{ab})R^{ab} - 4\rho R_{ab}R^{ab}$.

Use of (2.12) and (4.12) in the above and simplification yields

$$(n-1)[\Delta \rho - \{2(n-1)(2-k) + k\}\rho] = 0.$$

As n > 1, $\Delta \rho = (2(n-1)(2-k)+k)\rho$. Comparing with (4.9) gives $(n-1)(1-k)\rho = 0$. Since n > 1 and k < 1 we conclude $\rho = 0$, showing that v is Killing. Hence $\eta^a \pounds_v \eta_a = 0 = \eta_a \pounds_v \eta^a$. That is, $\pounds_v \eta^a$ is orthogonal to η^a . Thus taking the Liederivative of (2.7) along v, transvecting with η^b (since v is Killing) we have

$$(4.13) (n-1)(\pounds_v h_{ab})\eta^b + (nk+1-n)\pounds_v \eta_a = 0.$$

Since $h_{ab}\eta^b = 0$ we have $(\pounds_v h_{ab})\eta^b = -h_{ab} \pounds_v \eta^b$. Hence (4.13) becomes

$$(4.14) hX = ((nk+1-n)/(n-1))X$$

where X is given by $X^a = \pounds_v \eta^a$. If X = 0 on M then v is an automorphism of the contact metric structure. If $X \neq 0$ in some open neighborhood of a point p of M then (4.14) says that X is an eigenvector of h with eigenvalue (nk+1-n)/(n-1) in that neighborhood. But it is well-known [15] that the eigenvalues of h for eigenvectors orthogonal to ξ are $\pm (1-k)^{1/2}$. So $(nk+1-n)/(n-1) = \pm (1-k)^{1/2}$. This simplifies to $k(kn^2-n^2+1)=0$. Hence either k=0 or $1-n^{-2}$. However the second possibility can be ruled out as follows: Lie-differentiating (2.4) along v and using $\pounds_v R_{abc}{}^d = 0$ (as v is Killing) we have

$$R_{cbad} \pounds_v \eta^d = k(g_{ab} \pounds_v \eta_c - g_{ca} \pounds_v \eta_b).$$

This shows $\mathfrak{L}_{v}\eta^{a}$ lies in N(k). But for $k \neq 0$ and < 1 it is known [1] that N(k) is the linear span of ξ . It therefore follows that $\pounds_v \eta^a = f \eta^a$. Since $f = (\pounds_v \eta^a) \eta_a = 0$ (as v is Killing) we conclude that $\pounds_{\nu}\eta^{a}=0$, a contradiction. So the only case when the Killing v may not be an automorphism of the contact metric structure is k=0for which we know that N(k) is the tangent bundle of the factor E^{n+1} of the sphere bundle $E^{n+1} \times S^n(4)$ (see [1], [3]). Let us examine it more closely. For k = 0, M is locally $E^{n+1} \times S^n(4)$ and hence admits Killing vector fields orthogonal to ξ (note that ξ is tangential to E^{n+1}). Now h has eigenvalues 0 corresponding to eigenvector ξ , 1 corresponding to *n*-dimensional eigenspace {1} and -1 corresponding to *n*dimensional eigenspace $\{-1\}$. If X is an eigenvector of h with eigenvalue 1 then ϕX is also an eigenvector of h with eigenvalue -1. The eigenspace $\{-1\}$ and ξ span an integrable distribution $\xi \oplus \{-1\}$ that is tangent to E^{n+1} ; and $\{1\}$ is tangent to $S^{n}(4)$. Let X be an arbitrary vector field in $\{1\}$. Then $g(X, \xi) = 0$ whence $g(\mathfrak{t}_v X, \xi) + g(X, \mathfrak{t}_v \xi) = 0$. But (4.14) says $\mathfrak{t}_v \xi$ is in $\{-1\}$, giving $g(\mathfrak{t}_v X, \xi) = 0$. As v is orthogonal to ξ it follows that $g(X, \nabla_v \xi) = g(\nabla_X \xi, v)$. Using (2.3) and the fact that ϕh is self-adjoint, we obtain $g(\phi X, v) = 0$ which shows that v is in {1}. Next $\pounds_{v}\xi = \nabla_{v}\xi - \nabla_{\xi}v = -2\phi v - \nabla_{\xi}v$. As $\pounds_{v}\xi$ and ϕv both lie in $\{-1\}$ so does $\nabla_{\xi}v$. Therefore $h(\nabla_{\xi}v) = -\nabla_{\xi}v$; i.e., $\nabla_{\xi}(hv) - (\nabla_{\xi}h)v = -\nabla_{\xi}v$. But hv = v and since $\nabla_{\xi} h = 0$ (see [1]) we get $\nabla_{\xi} v = 0$. Therefore $\pounds_{v} \xi = -2\phi v$. This shows $\pounds_{v} \xi \neq 0$ otherwise v would vanish. Hence v can not be an automorphism of the contact metric structure on M.

Next we turn our attention to the case n = 1. If k = 0, M is flat and for k = 1, M is Sasakian which has been discussed in Theorem 1. So we consider k < 1 and $\neq 0$. In this case too, equations (4.1) through (4.5) hold. As stated in Section 2 we have

$$R_{ab} = 2k\eta_a\eta_b$$
 and $R = 2k$.

Therefore from (2.13) and (4.3),

$$\Delta \rho = k \rho \text{ and } \eta^a \eta^b \nabla_a \rho_b = -3k \rho.$$

Now (4.4) becomes

(4.15)
$$\nabla_b \rho_a = k \rho (g_{ab} + 2\eta_a \eta_b) + \eta_d (\eta_b \nabla_a \rho^d + \eta_a \nabla_b \rho^d),$$

and hence $h^{ab}\nabla_b\rho_a=0$. Applying ∇_c on (4.15) and transvecting with ϕ^{cb} , we get

$$(4.16) \phi^{cb} \nabla_c \nabla_b \rho_a = k \rho_c \phi^c{}_a + 2k \rho \eta_a \phi^{cb} \nabla_c \eta_b + \phi^{cb} (\nabla_c \eta_d) (\nabla_b \rho^d) \eta_a$$
$$+ \eta_d [(\phi^{cb} \nabla_c \eta_b) \nabla_a \rho^d + \phi^{cb} (\nabla_c \eta_a) \nabla_b \rho^d + (\phi^{cb} \nabla_c \nabla_b \rho^d) \eta_a].$$

Using the Ricci identities and skew-symmetry of ϕ^{cb} , we have $\phi^{cb}\nabla_c\nabla_b\rho_a = -(1/2)\phi^{cb}R_{cba}{}^d\rho_d$. Using (2.3), $h\phi = -\phi h$ and (2.6) we get

$$\rho^{d}[\phi_{ae}R_{d}^{e} - k\phi_{ad}] = k\rho_{c}\phi^{c}_{a} + 9k\rho\eta_{a} + 3\eta^{d}\nabla_{a}\rho_{d} + \eta^{d}h_{a}^{b}\nabla_{b}\rho_{d} + (\phi_{de}R_{b}^{e} - k\phi_{db})\eta_{a}\eta^{d}\rho^{b},$$

but $R_{ab} = 2k\eta_a\eta_b$ and hence

$$(4.17) 9k\rho\eta_a + 3\eta^d\nabla_a\rho_d + h_a{}^b\eta^d\nabla_b\rho_d = 0.$$

Transvecting with h_c^a and using $h^2 = (k-1)\phi^2$,

$$(1-k)\{\eta^d \nabla_c \rho_d - (\eta^b \eta^d \nabla_b \rho_d)\eta_c\} + 3h_c{}^b \eta^d \nabla_b \rho_d = 0.$$

Using (4.17) and simplifying,

$$(k+8)(\eta^d \nabla_c \rho_d + 3k\rho \eta_c) = 0.$$

Thus k=-8 or $\eta^d \nabla_c \rho_d=-3k\rho\eta_c$. In the second case, (4.15) reduces to $\nabla_b \rho_a=k\rho(g_{ab}-4\eta_a\eta_b)$ and hence Lemma 3.3 gives $k\rho=0$ and in turn $\rho=0$. So, in the second case v is Killing and hence $\pounds_v R_{ab}=0$. Using this in $R_{ab}=2k\eta_a\eta_b$ gives

$$(\pounds_v \eta_a) \eta_b + \eta_a (\pounds_v \eta_b) = 0.$$

Transvecting with η^b gives $\pounds_v \eta_a = 0$, because $\eta^b \pounds_v \eta_b = \rho = 0$. This shows, by virtue of Lemma 3.2, that v is an infinitesimal automorphism of the contact metric structure. Now the first case seems obviously unnatural. In order to dispose of this case we use the Lie-group theoretic approach. Let (e_1, e_2, e_3) be an orthonormal basis of the Lie-algebra of vector fields on M defined by (we refer to [4] for details):

$$[e_1, e_2] = (1 + \lambda)e_3, [e_3, e_1] = (1 - \lambda)e_2, [e_2, e_3] = 2e_1,$$

where $e_1 = \xi$, e_2 is a unit eigenvector of h corresponding to eigenvalue λ and $e_3 = \phi e_2$. In our case $k = 1 - \lambda^2 < 1$ and $\neq 0$. Following Milnor's classification [7] of 3-dimensional manifolds admitting the Lie-algebra defined above we see that the universal covering space of M is either SU(2) for k > 0 or SL(2, R) for k < 0. The case k = -8 corresponds to $\lambda = \pm 3$. As $g(e_a, e_b) = \delta_{ab}$, we have $(\pounds_v g)(e_a, e_b) = g([e_a, v], e_b) + g(e_a, [e_b, v])$. Setting $v = v^a e_a$ we have

$$(4.18) \quad (\pounds_{\nu}\eta)(e_1) = e_1 v^1, (\pounds_{\nu}\eta)(e_2) = e_2 v^1 + 2v^3, (\pounds_{\nu}\eta)(e_3) = e_3 v^1 - 2v^2.$$

Since $\pounds_{\nu}g = 2\rho g$ we get

(4.19)
$$e_1 v^1 = e_2 v^2 = e_3 v^3 = \rho,$$

$$e_1 v^2 + e_2 v^1 + (\lambda + 1) v^3 = 0,$$

$$e_1 v^3 + e_3 v^1 + (\lambda - 1) v^2 = 0,$$

$$e_2 v^3 + e_3 v^2 - 2\lambda v^1 = 0.$$

Introduce auxiliary functions a_1 , a_2 , a_3 by

(4.20)
$$e_2 v^1 = a_1 - ((\lambda + 1)/2)v^3, e_3 v^2 = a_2 + \lambda v^1,$$
$$e_1 v^3 = a_3 - ((\lambda - 1)/2)v^2.$$

Then

$$(4.21) e_3 v^1 = -a_3 - (1/2)(\lambda - 1)v^2, e_1 v^2 = -a_1 - (1/2)(\lambda + 1)v^3,$$

$$e_2 v^3 = -a_2 + \lambda v^1.$$

Now

$$0 = ([e_1, e_2] - (1 + \lambda)e_3)v^1$$

= $e_1(a_1 - ((\lambda + 1)/2)v^3) - e_2\rho + (1 + \lambda)(a_3 + ((\lambda - 1)/2)v^2)$

whence

$$e_1a_1 - e_2\rho + ((1+\lambda)/2)a_3 + (3/4)(\lambda^2 - 1)v^2 = 0.$$

Similarly,

$$\begin{aligned} e_2a_1 + e_1\rho - (3/2)(1+\lambda)a_2 - (\lambda/2)(1+\lambda)v^1 &= 0, \\ e_2a_3 + e_1a_2 + (1/2)(3-\lambda)\rho &= 0, \\ e_2a_3 + e_3a_1 + \rho &= 0, \\ e_2a_2 - e_3\rho + (2+\lambda)a_1 + (1/2)(2+\lambda-\lambda^2)v^3 &= 0, \\ e_3a_2 + e_2\rho + (\lambda-2)a_3 + (1/2)(\lambda^2+\lambda-2)v^2 &= 0, \\ e_1a_3 + e_3\rho + (1/2)(\lambda-1)a_1 + (3/4)(1-\lambda^2)v^3 &= 0, \\ e_3a_1 + e_1a_2 + (1/2)(3+\lambda)\rho &= 0, \\ e_3a_3 - e_1\rho + (3/2)(1-\lambda)a_2 - (\lambda/2)(1-\lambda)v^1 &= 0. \end{aligned}$$

Solving them and setting $b_a = e_a \rho$, we get

$$e_{1}a_{1} = b_{2} - (1/2)(\lambda + 1)a_{3} - (3/4)(\lambda^{2} - 1)v^{2},$$

$$e_{2}a_{1} = -b_{1} + (3/2)(1 + \lambda)a_{2} + (\lambda/2)(\lambda + 1)v^{1},$$

$$e_{3}a_{1} = -(1/2)(\lambda + 1)\rho,$$

$$e_{1}a_{2} = -\rho,$$

$$e_{2}a_{2} = b_{3} - (2 + \lambda)a_{1} - (1/2)(2 + \lambda - \lambda^{2})v^{3},$$

$$e_{3}a_{2} = -b_{2} - (1/2)(\lambda^{2} + \lambda - 2)v^{2} - (\lambda - 2)a_{3},$$

$$e_{1}a_{3} = -b_{3} - (1/2)(\lambda - 1)a_{1} - (3/4)(1 - \lambda^{2})v^{3},$$

$$e_{2}a_{3} = (1/2)(\lambda - 1)\rho,$$

$$e_{3}a_{3} = b_{1} + (3/2)(\lambda - 1)a_{2} - (\lambda/2)(\lambda - 1)v^{1}.$$

Their integrability conditions are

$$\begin{aligned} e_1b_2 - e_2b_1 &= (1+\lambda)b_3, \\ e_2b_3 - e_3b_2 &= 2b_1, \\ e_3b_1 - e_1b_3 &= (1-\lambda)b_2, \\ e_1b_1 + e_2b_2 &= 2(\lambda^2 - 1)\rho \\ e_3b_1 &= (1-\lambda)b_2 + 2a_3(1-\lambda^2) + (3+\lambda-3\lambda^2-\lambda^3)v^3, \\ e_3b_2 &= (\lambda-1)b_1, \\ e_1b_3 &= 2(1-\lambda^2)a_3 + (3+\lambda-3\lambda^2-\lambda^3)v^2, \end{aligned}$$

$$e_{2}b_{2} + e_{3}b_{3} = 2\rho(1 - \lambda^{2}),$$

$$e_{1}b_{2} = 2(\lambda^{2} - 1)a_{1} + (\lambda - 3 + 3\lambda^{2} - \lambda^{3})v^{3},$$

$$e_{2}b_{3} = (1 + \lambda)b_{1},$$

$$(4.22) \qquad e_{2}b_{1} = 2(\lambda^{2} - 1)a_{1} - (1 + \lambda)b_{3} + (\lambda - 3 + 3\lambda^{2} - \lambda^{3})v^{3}$$

$$e_1b_1 + e_3b_3 = 2(\lambda^2 - 1)\rho$$
.

Therefore $e_1b_1=-3(e_2b_2)=-3(e_3b_3)=3(\lambda^2-1)\rho$. Next applying $e_1e_2-e_2e_1-(1+\lambda)e_3=0$ and two other Lie-algebra equations to any two of b_1 , b_2 , b_3 and using above equations we obtain $\rho=0$, $a_2=-v^1$, $2a_3+(\lambda+3)v^2=0$ and for $\lambda\neq 3$, $2a_1-(\lambda-3)v^3=0$. As $\rho=0$, $b_a=0$. Going back to equations (4.19), (4.20) and (4.21), (4.18) shows $\mathfrak{L}_v\eta=0$. Hence v is an infinitesimal automorphism of the contact metric structure. For case $\lambda=3$, i.e., k=-8, we have $\rho=0$, $a_2+v^1=0$, $a_3+3v^2=0$ and $b_a=0$, but no information on a_1 . However appealing to (4.22) we obtain $a_1=0$. Again equations (4.18) through (4.21) show $\mathfrak{L}_v\eta=0$. This completes the proof. \square

Proof of the Corollary to Theorem 2. In [11] it was proved that if M is a contact metric manifold with non-vanishing $K(\xi,X)$ and $K(\xi,X)=K(\xi,\phi X)$ everywhere and for all X orthogonal to ξ , then a vector field v satisfying $\pounds_v R_{abc}{}^d=0$ is homothetic. Now we have equation (2.4) which implies that the ξ -sectional curvature $K(\xi,X)=k$. By hypothesis $k\neq 0$. Thus v is homothetic. Obviously $R_{ab}\eta^a\eta^b=2nk$ and $\pounds_v R_{ab}=0$ and hence $R_{ab}\eta^a \pounds_v \eta^b=0$. But $R_{ab}\eta^a=2nk\eta_b$ and so $(\pounds_v \eta^b)\eta_b=0$, since $k\neq 0$. Lie-differentiating $g_{ab}\eta^a\eta^b=1$ gives $(\pounds_v g_{ab})\eta^a\eta^b=-2(\pounds_v \eta^b)\eta_b=0$. Now $\pounds_v g_{ab}=cg_{ab}$ (c constant) gives $c=(\pounds_v g_{ab})\eta^a\eta^b=0$. Thus v is Killing and hence from Theorem 2, v is an automorphism of the contact metric structure. \square

Concluding Remark. Motivated by the result (see [14]) that conformally flat K-contact manifolds are Sasakian manifolds of constant curvature we pose this question: "Are there K-contact manifolds that admit a conformal motion and are not Sasakian?"

Acknowledgment. The authors appreciate Professor Luc Vrancken's help in resolving the unnaturally arising case k=-8 in Theorem 2 using Mathematica. R.S. is also thankful to Professor D. Perrone for suggesting the corollary and remark following Theorem 1 and to Professors M. Okumura and T. Koufogiorgos for going over the manuscript.

REFERENCES

1. C. Baikoussis, D. E. Blair and T. Koufogiorgos, A decomposition of the curvature tensor of a contact manifold satisfying $R(X, Y)\xi = k(\eta(Y)X - \eta(X)Y)$, Math. Technical Report, University of Ioannina, Greece, 1992.

- D. E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in Mathematics no. 509, Springer-Verlag, Berlin 1976.
- 3. D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J. 29 (1977), 319–324.
- 4. D. E. Blair and H. Chen, A classification of 3-dimensional contact metric manifolds with $Q\phi = \phi Q$ II, Bull. Inst. Math. Acad. Sinica **20** (1992), 379–383.
- 5. D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189-214.
- 6. D. E. Blair, T. Koufogiorgos and R. Sharma, A classification of 3-dimensional contact metric manifolds with $Q\phi = \phi Q$, Kodai Math. J. 13 (1990), 391–401.
- 7. J. Milnor, Curvature of left invariant metrics on Lie-groups, Adv. in Math. 21 (1976), 293-329.
- 8. M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340.
- 9. M. Okumura, Some remarks on space with certain contact structures, Tohoku Math. J. 14 (1962), 135–145.
- 10. _____, On infinitesimal conformal and projective transformations of normal contact spaces, Tohoku Math. J. 14 (1962), 398–412.
- 11. R. Sharma, On the curvature of contact metric manifolds, J. Geom. 53 (1995), 179–190.
- 12. S. Tanno, *Note on infinitesimal transformations over contact manifolds*, Tohoku Math. J. **14** (1962), 416–430
- 13. _____, Some transformations on manifolds with almost contact and contact metric structures, Tohoku Math. J. **15** (1963), 140–147.
- 14. ______, Locally symmetric K-contact Riemannian manifolds, Proc. Japan Acad. 43 (1967), 581–583.
- 15. _____,Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. 40 (1988), 441-448.
- Y. Watanabe, Geodesic symmetries in Sasakian locally φ- symmetric spaces, Kodai Math. J. 3 (1980), 48–55.
- 17. K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, New York, (1970).

University of New Haven
West Haven, Connecticut

MICHIGAN STATE UNIVERSITY
EAST LANSING, MICHIGAN