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NORM INEQUALITIES FOR VECTOR VALUED
RANDOM SERIES

YORAM SAGHER AND NIANDI XIANG

1. Introduction

It is well known that Rademacher functions, r,, (t), which are defined by

/ 0 < <
ro(t + 1) ro(t) rn (t) r0(2nt) n >ro(t)

-1 <t <

form a sequence of independent, symmetric and identically distributed random vari-
ables. Rademacher series rj(t)uj where uj belong to a Banach space have been
investigated extensively; see [1], [5], [9], [12], [13].
An important result for Rademacher series is the Khinchin-Kahane inequality: for

any 0 < q < p < xz, there exists constant b(p, q) such that for any N > 1,

?’j-lUj < b(p, q) rj-lUj
j--1 p j=l q

holds in any Banach space.
This inequality holds for a large class of zero-mean random variables; see [2],

[4], [5], [8], [14]. We extend the inequality to a class of nonzero-mean random
variables and we show that a constant vector can be added to both sides of the
inequality. The latter enables us to study vector valued versions of the Burkholder
local distribution estimates which Stein used in the proof of his celebrated theorem
on limits of sequences of operators 13]. In a subsequent paper we will give a vector
valued version of Stein’s theorem [13] by using this local distribution estimate.
We prove vector valued local norm inequalities in Lp as well as in some Orlicz

spaces for certain independent random variables which satisfy the Khinchin-Kahane
inequality. We show that the local behavior of the tail series is the same as the global
behavior of the series itself.

2. An extension of the Khinchin-Kahane inequality

Throughout the paper, for a sequence of independent random variables {Xj }, we
will denote X {Xj }.
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For a given sequence X and Banach space/3, if

N

uo +
j=l

< b(q, p) uo + Xjuj
p q

(1)

where 0 < q < p < cxz, N > arbitrary, b(q, p)- b(q, p,B)and arbitrary
u0, uj 6/3, then we say X satisfies the Khinchin-Kahane inequality in/3. By a result
in [6], see also Theorem 5 below, if (1) holds for one q (0, p) then it holds for
every q 6 (0, p).

The treatment of this inequality in general Banach space in the literature is mainly
for zero mean random variables and u0 0; see [5], [7], [8], [14]. We show that the
inequality (1) holds for a class of nonzero mean random variables.

DEFINITION 1. Let (fl, y,/z) be a measure space, and 13 be a Banach space.
Let (FaB F) be a normed subspace of the space ofstrongly measurablefunctions
on (, -, #)"

F {f f" f2 -+ B, f measurable, IlfllF < cx}.

Denote by f, the distributionfunction of f B"

f,(ot) {w" Ilf (w)llB > a}, rot > O.

If f Fff, and f,(ot) g,(ot), ot > O, implies g FaB and IlfllF --IlgllF, then
we say that (FaB F) is a rearrangement invariant Banach space.

The principle of contraction, proved in the next lemma, is proved in [5], [12] for
LP spaces with u0 0.

LEMMA 1. Let (f, [IF) be a rearrangement invariant Banach space. Let
X be a sequence of independent symmetric random variables such that Xju
(Fa,[[ [IF),u 13. Let .j R,j 0,1 N. Then for any N > and
any vectors {uj, 0 < j < N},

_< m.ax(l,j I)
N

uo +
j--I

Proof. We may assume [)j[ 1, j 0, N. Let V0 be a Bemoulli random
variable which is independent of (X1 XN). Define Vj VoXj, < j < N.
Then (Vo, V1 VN) is a sequence of independent symmetric random variables.
Since

Zouo +
j=l

N

oVo.o +
j=l

N

j=O
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and since, if Oj +1, the sums -f=o )J Vj uj and -f=o Oj ;,j Vj uj are equidistributed,
it suffices to consider 0 < )j < 1, j 0 N.

The technique we use below is due to Kahane [5]. Let us first consider the case
that .j is either 0 or 1, 0 < j < N. Define Oj 23.j 1, j 0, N; thus
Oj =4-1.

Since E=o Oj Vjuj is equidistributed with Yf=o Vjuj, we have

N V N

bj
=o F j=0 =0 F

< v. + oVu v.
=o =oj=o F F F

l/ouo+ VoXu uo+ xu
"= F j=l F

If0<) < 1, j=0,1 N, let

’J E 2-)j’ )j 0, 1.
k=l

Denoting Xo 1, we have ;=o )Xu EX=l 2-k E;=0 jkXj gj. Hence by the
first part of the proof,

j=0 F k=l j=0 F j=0 F

For a sequence of random variables X {Xj} with EXj mj, we will let
Zj Xj -mj and Z- {Zj} throughout the paper.

THEOREM 1. Let 13 be a Banach space. For p > 0, if X satisfies the Khinchin-
Kahane inequality then so does Z. Conversely,for p > 1, ifZ satisfies the Khinchin-
Kahane inequality with uo 0 then X satisfies the inequalityfor any uo E 13.

Proof Assume that X satisfies (1). Fix an N >_ and uo, uj 13. Let v

E;=I mjuj. Then

o+Zu o-+
j=l p j--1 p

<_ b(q, p)
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b(q, p) UO -[- Zj Uj
q

Assume that Z satisfies (1) with u0 0. Let us first show that the symmetrization
X of X satisfies (1). Let {Xj} be an independent copy of {Xy }. Let X} Xy Xj,
Z Xj my. Then X) Z). It suffices to show the inequality for one q 6 (1, p).
Since (u0 + -;= Zyuj, uo + Y’;=I Zyuj _,=, Zuj)is a two-term martingale,
we have, for all < r _< p and any u0 6/3,

Also since

uo + Zu
_

j=l

.o+ Z;u
j=l

Iluo <
N

uo + z:u
j=l

we get

N

.o+ZX;u
j--1

N

o + zu
j--1

N

uo + Z x;u
j=l

< Iluoll-+- 2

N

uo + y: zu
j=l

+ 2b(q, p)
q q

uo + Xjuj + 2b(q, p) Xuj
j--1 q j--1

_< (1 + 2b(q, p))
j=l q

where in the last inequality we apply Lemma 1. By the previous argument we have

N

.o++Zx;u
j--1

< (1 + 2b(q, p)) Nilj--1

< (1 + 2b(q, p)) ( .0 + xu +
j=l q

q)
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< (1 + 2b(q, p)) (
(1 + 2b(q, p)) (

N

tl0 --1-" . X u
j=l

N

uo + }2 xu
j=l

j=l q

uo + 2 x,, uo +
j=l j=l

< 3(1 + 2b(q, p))
N

.0 + 2xu
j=l

q)

THEOREM 2. Let 13 be a Banach space and X be the symmetrization of X. For
p > 1, if X satisfies the Khinchin-Kahane inequality then so does Xs. Conversely,
for p > 1, ifX satisfies the Khinchin-Kahane inequality then so does X.

Proof. Assume that X satisfies (1). By Theorem 1, Z also satisfies (1), and so
for0<q < 1, wehave

N

,,o +
j=l

q

j---1 j=l

dtz(w’)

<_ bq (q, 1) f
N N

.o + 2zu 2z(m’u
j=l j=l

<_ bq (q 1) uo + Xj Uj
j=l

q

q

d#(w’)
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Since for p > 1, b(q, 1) < b(q, p),

Nilj=l p

N

o + z.
j=l

N

.0 + zu
j=l

_< 3b(q, p) - Zu.
j--I

P

j=l p

uo + zu
j=l

< 3b2(q, p)

N

uo + zu
j=l

N

j=lq q

The proof of the other part is contained in the proof of Theorem 1.

Let us recall [7], [8]"

DEFINITION 2. Let Y be an Lp (lZ) random variable defined on (f2, , v) and 13
a Banach space. Iffor some 0 < q < p < cx, there is a constant c Cqp(3) such
that

Ilu0 + cYu lip Ilu0 + YUl [[q

holdsfor any uj in 13, j 0, 1, then we say Y is a hypercontractive random variable,
and write Y 7-[C (p, q, c, 13).

It is well known, see [8], that a sequence of independent symmetric hypercontrac-
tive random variables satisfies (1) with u0 0. In the next theorem we show that (1)
holds without the condition that Yj are symmetric.

THEOREM 3. Let 13 be a Banach space. Let {Xj} be independent and Zj
7-/C (p, q, cj, 13) with p >_ l, and c inf{cj > 0. Then X satisfies the Khinchin-
Kahane inequality.

Proof Since Zj 7-[C (p, q, cj, 13), we have, by Lemma 1, for 0 < q < 1,

f .0 + z()u
j=l

du(w)

du(w)

uo + Zj(w)uj _, cjZj(w’)uj dtt(w’) dtt(w)
j=l j=l
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N N

,,o + z()
j=l j=l

N

j=l

q N

j=l

dlz(w’) ) dtz(w)

We also have from the proof of Theorem 1, that the same inequality holds for <
q < p. Applying Lemma 1, we thus get

N

uo + Xu
j--1

N

no + cj Xi.j
j=l p

Iluo + no / cj Zj uj uo / cj Zf uj
j=l j=l p

_< Iluo + 2 uo + cj Zj uj < 3 uo + cj Zj uj
j=l p j--1

< 3 uo+ Zu _<3 uo+ Xu
j=l q j=l q

Let v E;=I mjuj. First, assume that 0 < q < 1. Then

N

uo + xu
j=l

<_ U0 + P + X} uj
j=lp p

< 3C-1 U0WV+ X}uj
j=l

< 3c-1
N

.o + xu
j=l

< 3C-1 Uo +
N

j=l

3c-1 UO + Xjuj

q)
1/q
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xj. 
j--I j=l

_< 31+ C-- UO + Xjuj
j--1 q

If q > 1, the above proof gives

N

uo +
j=l

< 9c-1
N

.o +
j=lP q

q)
1/q

Since any L2 random variable Xj with mean zero is hypercontractive in any Hilbert
space (see [7]), applying Theorem 3 to the independent sequence X, we have:

COROLLARY 1. Let 13 be a Hilbert space. Then any sequence ofindependent L2

random variables satisfies the Khinchin-Kahane inequality in 13.

We extend a result ofKwapiefi and Szulga on the connection between the Khinchin-
Kahane inequality and the hypercontractivity.

THEOREM 4. Let 13 be a Banach space and X be i.i.d, random variables. Let
X be the symmetrization of X. Then for p > 1, X satisfies the Khinchin-Kahane
inequality iff X} 7-[C (p, qo, c, 13), /j > for any qo (1, p).

Proof. From Theorem 3, if X] ?C(p, q0, c, 13), Vj >_ 1, then {Xj} satisfies
(1). By Theorem 2, {Xj} satisfies (1). Conversely, by Theorem 2, if X satisfies (1),
then so does Xs. The latter, by a theorem of Kwapieri and Szulga [8], is equivalent
to X 7-lC(p, qo, c, 13) for any q0

3. Distribution estimates

Let us recall the Marcinkiewicz-Paley-Zygmund property [6].

DEFINITION 3. Let 13 be a Banach space. Let X be a sequence of independent
random variables. Iffor some 0 < p < c there exist positive constants ot

or(p, 13, X), tp (p, 13, X) such thatfor any N > 0 and any vectors {uj C ]3, we
have the inequality

# 03" UO + Xj (ll))Uj >_ [p uo At- Xj uj
j=l j=l

then we say X has the MPZ(p, 13) property, and write X MPZ(p, 13).
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The following result is proved in [6].

THEOREM 5. Let 13 be a Banach space. If X satisfies the Khinchin-Kahane
inequalityfor some 0 < q < p then X MPZ(p,/3). IfX MPZ(p,/3) then X
satisfies the Khinchin-Kahane inequalityfor all 0 < q < p:

N

j--1

<_ uo + Xjuj
j=l

P q

(2)

LEMMA 2. IfX MPZ(p, 13), then Yjl Xj uj converges a.e. in 13 "iffyj= Xjuj
converges in Lp (#).

Proof. For a proof that Lp convergence of a series of vector valued independent
random variables implies its a.e. convergence, see [4] for example. To show the
converse, we apply the MPZ(p,/3) property and get for any N > 0 and any {uj C 13,

j=l

N

xj (w)uj
j--1

If the series does not converge in Lp, then there exists an > 0 and an increasing
sequence of integers Nk, such that

Ij--Nk+l

Xj uj >, k=l,2
p

This implies

j=N,+I

>c, k=l,2

Let us define

IIj=gk+l
>/3p},k- 1,2

Then at all to Nil Uk=i Ak, the series diverges. Since

"= k=i

we have a contradiction. I-3
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We therefore have"

THEOREM 6. /f X 6 MPZ(p, B) and uj 13, then for every 0 < q < p, there
is a constant B(q, p) B(q, p, 13, X) such that ifj1Xjuj converges a.e., then

uo + Xuj
j--1

< B(q,p)
j=l q

THEOREM 7. Let X MPZ(p, 13) and uj 13. If’jl Xj uj converges to zero
a.e. on a set ofmeasure greater than , where ot is the constant appearing in the
MPZ(p, 13) property, then uj O, j > 1.

Proof If j=l Xj uj 7 0, then, since X 6 MPZ(p, B),
p

IX W: X u > 0 >_19/,
j=l

a contradiction. Thus we have -j=l Xj(w)ujllp O. Let X’s be the symmetriza-
tions of Xj’s. Since _jl Xj(w)uj 0 a.e., we also have

X] (w)uj 0 a.e.
j=l

By the Paul L6vy inequality, for any > 0,

w" sup IIX(w)u > 2 w" X}(w)uj > O.
lj j=

This shows that X} uj 0 a.e. which implies that uj O, j 1.

The Stein property, a local version of the MPZ property, was originally defined in
the scalar case by Burkholder in [3]. We give a somewhat different definition in the
vector valued case:

DEFINITION 4. Let 13 be a Banach space. Let X be a sequence ofindependent ran-
dom variables. Iffor some p > 0 there existpositive constants or(p, 13, X),
(p, 13, X) such thatfor any E }-, Ix(E) > O, there is an n n(E) such thatfor
any N > n and any uj 13,

weE: + >_ >_
j=l j=n+l p

then we say X has the p-Stein property (in 13) and write X S(p, 13).
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With exactly the same proof as that in [3], we obtain:

THEOREM 8 [3]. Let 13 be a Banach space. Then X S(p, 13) iff there exists a
positive constant t(p, 13, X) such thatfor any E -, Ix(E) > O, there is an

n n(E) such thatfor any N > n and any {uj} C 13,

eSSSUPwE
N

j----l j=n+l

THEOREM 9. If X MPZ(p,/) for p >_ and EXj 0, j >_ 1, then X
S(p, 13). Moreover, if YO=l Xjuj converges a.e. for some vectors {uj} C 13, then
VE -, Ix(E) > 0, :In n(E) such that

weE"
j=l

Proof Since X satisfies the Khinchin-Kahane inequality, by Theorem 2, the
symmetrization X of X also satisfies the Khinchin-Kahane ilaequality, which implies
that the X* 6 MPZ(p,/3). Thus, there are some constants/’ and or’ such that for
anyN >0,

uo + x) (u)u >_
j=l

N

j=l

>a’>0.

The following argument is similar to one used by Burkholder in [3].
Let A ’ and Ix(A) > 0. Let .T, --tr(X1 Xn), .Too cr(Fn, n > 1). Let

or’ (A). Then thereU E(XaloT’oo and V E(XAI.T’n). Choose 0 < 6 < .Ix
exists an n such that

EIU- VnI < 3.

Define

By independence,

N

j=l j=u+l

N

,(w’) +
j=n+l
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nwhere v(w’) uo + Ej=I Xj(wt)uj and w’ 6 f2. Since

N

,(,,’)+ x()u
j--n+l

<5- x,,
j=n+l

N

,(’) +
j=n+l

< - Xuj
j=n+l

N

j--n+l j=n+l p

tO:

j=n+l j=n+l

< or’,

we have E(xtl.T’n)(W’) < /1-or’. Therefore

lz(A fq B) E(U XB) < E(V,, XB) + ,
E[V,. E(XI..T’n)] + ,5 < E(V,). /1 or’ + ,

<_ (EU + ) /1 ’ + <_ #(A) /1 a’ + 2.

(o) o, (< lt(A). 1--f +#(A).---#(A). 1--
Thus we can take oe 7, fl and get

w6A"
N

UO -1- E Xj(tO)uj
j=l j=n+l

> ot#(A).

Finally,

w6A: uo + x(w)uj <
j=l j=n+l q}

w 6 A" lim
N

bl0 "+" X tO bl < iNm
+
X bl
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limNinf wEA"

!
< lim inf#

N /
wEA"

uo + x()u <
j=l j=n+l q

N

.o + } x()u
j--1 j=n+l q}

_< (1 a) #(A). VI

Repeating the proof of Theorem 7, we have:

THEOREM 10. Let B be a Banach space. Let X S(p, 13) and uj 13. If
uo + --j Xjuj converges to zero on any subset A ofpositive measure, then
all butfinitely many uj are zero.

4. Local LP-norm inequalities

We show that behavior of the tail series of sequences of independent random
variables on subset E 6 f’ mimics their global behavior.

Let E E y, #(E) > O. We let

[[fllL /z(E)
[[fllPd#E

THEOREM 1. Let X MPZ(p, 13). Then 0 < r/ < 1, 0 < < p and
’v’E 9t-, #(E) > 0, n n(E, , rI, p) such thatfor all 0 < q < p ,

Ilu0 -+ #=n+ Xjujll q
Lq

-1

,S PProof Define s f p--
and En 6 ’n such that

For given E 6 $-, there exist n n (E, , 7, P)

#/’(EnAE) < #(E)- r/.. (1 -+- pP)-’.

Let f Iluo + -jCn+ X#ujll. By (2), we have

(fofqdlz <_ #I/S(EnAE) fq’’dlz
AE

< #l/S(EnAE)llfnllqp <_ #l/S(EnAE)(poll/q)-q Ilfnllqq.
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Since tip __< 1, we have fl;qot-l(1 + flpqO) _< fl;Pot-l(1 + fl;ot) and so

fefqdix-ffnqdix(E) fE fnqdix
IX(E)

IX(En)

< fqdz+
ix(E)

< [ix(En AE) -1 ix- (EnAE)
ix(E)

ix’; En AE ;qo-1 (1 + flpqot)IIAIIqq

_< Ilfnll- D

COROLLARY 2. Let X MPZ(p, B). Then 0 < e < p, YE o, ix(E) >
0, 3n n (E, e, p) such thatfor all 0 < q <_ p ,

uo + xu
j=n+l Le L

,,o+ ] x.
j=n+l Lq

uo + xu
j=n+l

A similar argument shows:

THEOREM 12. Let X MPZ(p, 13)for all 0 < p < oo. There are constants

ap a(p, 13), bp b(p, 13) such that YE .To, ix(E) > O, 3n n(E) such that

for all O < p <

ap uo+ Xjuj
j=n+l

< bpuo + Xuj
j=n+l LpLF LE

,,o + xu
j=n+l

The last result and (2) prove:

COROLLARY 3 11]. Let X MPZ(p, 13) for all 0 < p < oo. There are
constants Cp c(p, 13), dp d(p, 13) such that YE .Tc, ix(E) > O, Bn n(E)
such thatfor all 0 < p <

Cp uo + Xuj
j=n+l
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5. Some Orlicz-norm inequalities

We now consider some Orlicz spaces. Recall the definition of the norm in an Orlicz
space L" Let be a Young function defined on [0, o), and let f be a measurable
function on a measure space (, y,/z). Then

IlfllL+ inf ) > 0: d/z <

In what follows, we denote by L- the Orlicz space with respect to the Young function:
p(t) --exp(t TM) 1, 0 < ot < 1.
We consider sequences X such that for some 0 < u < 1, all p > 2 and any N > 1,

j=l p j=l 2

THEOREM 13. Let X satisfy condition (3), and {uj, 0 < j < cxz} be vectors in 13.
IfEj= Xj uj converges a.e. then Zj%I Xjuj converges in L". Moreover, there are
constants A A(ot, X), Bu B(ot, X) such that

Aa uo + E Xjuj
j=l

.o +
j’-I

uo +
j--1

Proof By Lemma 2, we have Ilu0 + Xull L2. Let d Ilu0 +
_

Xjuj 112. The proof of the inequality is along the same lines as the proof in

[15] for c . We may assume that in (3), B(p, 13) < r p for some r > 0. Set
F0 r -1 ot (2e)-. Taking p k/a, k 1, 2 in (3), we have

d
d#

0 . UO -]- Xjuj
k=O j=l

kk

< EOt-k-klakkrk/a kOYo k-’S (2e)k k
k=0

Hence

uo +
j--1

_<--d=rc- (2e) uo+ Xjuj
’0 /=1

and the L2 convergence of Ej=I Xj Uj implies its convergence in L-
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Similarly one can also prove:

THEOREM 14. LetX satisfy condition 3). Assumethatexp(CIXjl 1/) LI(IX), ’v’C >
0, j >_ 1. Let {uj be vectors in 13. Ifj=1Xjuj converges a.e., then for all C > 0,

exp (C uo +
j--1

We can also prove a local version of the Orlicz norm inequalities. Let

f inf {) > O:
IX(E) -- d# <

THEOREM 15. Let X satisfies condition (3). There are constants C C(ot, X),
D D(ot, X) such that for {uj C 13, if Zj= Xjblj converges a.e., then for any
E ’, IX(E) > 0, :in n(E, or), such that

C uo + Xu
j=n+l

uo +
j=n+lLe Lej=n+l

Proof In view of Theorem 13 and Theorem 12, it suffices to prove that there are
constants C’ C’(c, X), D D’(ot, X) such that for any E 6 o, IX(E) > 0,
=In n (E, or) such that

uo +
j=n+l

UO -t- Xjuj
j=n+l

Xjuj k > 1. We have shown thatLet dk+l uo + Zj=k+l 2’

Ilu0 "-[- __jcx:=kA_ Xauall
d# < 2.exp ’o

dk+l

For E 6 F, :In n(E) and En f’n such that both Theorem 12 and

IXl/2(EnA E
ix(E)

<1

hold, which implies

ix(En)
ix(E)
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Thus, applying H61der’s inequality, we get

feexp [1 ( ’luo+}--j=n+lXjUjl])l/ld##(E) - ’0
dn+l

f Iluo + j=n+ Xjujll
1/

< Je exp d
(E)

o

[ Iluo + j=n+l Xjujll
1/

+ ]e exp d
(E) XE.

YO dn+l

UO -]- j=n+l J lgj
+ #3(E\En)

exp go d
(E) dn+l

Let us denote g () go.

g(E)
exp g

d+l
dg

[ Iluo + j=n+l XjUj
/

< exp 3 g dg)/3
(E) Je

( [luo + j=+ Xjujll
(g(E) Jeexp go

d+

Applying Theorem 12, we get that for n R n (E),

j=n+l 2 j=n+l Le
Thus

blO -[- E Xjblj
j=n+l

_< b2v -1

LeE LE
.o +

j=n+l

1/2

d#) /3 < 2.
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